Geometric Complexity Theory: No Occurrence Obstructions for Determinant vs Permanent

Peter Bürgisser

joint work with Christian Ikenmeyer and Greta Panova

GCT Online Lecture

November 22, 2021

Problem and Main Result

Permanent versus determinant

How many arithmetic operations are sufficient to evaluate the permanent of an m by m matrix (x_{ij})?

$$\operatorname{per}_m := \sum_{\pi \in S_m} x_{1\pi(1)} \cdots x_{m\pi(m)}$$

- ▶ Best known algorithm: $O(m2^m)$ operations
- ▶ The determinant det_n can be evaluated with poly(n) operations

$$\det_n := \sum_{\pi \in S_n} sgn(\pi) x_{1\pi(1)} \cdots x_{n\pi(n)}$$

 \blacktriangleright Work over $\mathbb C$

Valiant's Conjecture

Are there linear forms $a_{ij} = a_{ij}(x, z)$ in x_{ij} and z such that $(n \ge m)$

$$z^{n-m} \operatorname{per}_{m} = \det \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \dots & a_{nn} \end{bmatrix} ? \qquad (*)$$

- Impossible for n = m > 2 (Polya)
- ▶ Possible for $n \leq 2^m 1$ (Valiant, Grenet)
- ▶ $n \ge \frac{1}{2}m^2$ (Mignon & Ressayre 2004)
 - Valiant's Conjecture (1979): (*) impossible for n = poly(m)
- Conjecture equivalent to the separation VBP \neq VNP of complexity classes
- ▶ $P \neq NP$ nonuniformly implies $VBP \neq VNP$ under GRH (B, 2000)

Orbit closure of \det_n

- Approach by Mulmuley and Sohoni (2001) based on algebraic geometry and representation theory
- Idea of orbit closures already in Strassen (1987) for tensor rank
- nth symmetric power SymⁿV* of dual space V* with natural action of group G := GL(V)
- Orbit $G \cdot f := \{g \cdot f \mid g \in G\}$ of $f \in \operatorname{Sym}^n V^*$
- ► Take $V := \mathbb{C}^{n \times n}$, $N = n^2$, view det_n as element of Symⁿ V^{*}
- Orbit closure w.r.t. Euclidean or Zariski topology

$$\Omega_n := \overline{\operatorname{GL}_{n^2} \cdot \operatorname{det}_n} \subseteq \operatorname{Sym}^n (\mathbb{C}^{n \times n})^*$$

► $\Omega_2 = \text{Sym}^2 (\mathbb{C}^{2 \times 2})^*$; Ω_3 known (Hüttenhain & Lairez '16); Ω_4 already unknown

Orbit Closure Conjecture

▶ Padded permanent $X_{11}^{n-m} per_m \in Sym^n (\mathbb{C}^{n \times n})^*$, where n > m

Orbit Closure Conjecture (M-S 2001) For all $c \in \mathbb{N}_{>1}$ we have $X_{11}^{m^c-m} \operatorname{per}_m \notin \Omega_{m^c}$ for infinitely many m.

The Orbit Closure Conjecture implies Valiant's Conjecture

Splitting into irreps

- ► Action of group G = GL(V) on SymⁿV^{*} induces action on its graded coordinate ring C[SymⁿV^{*}] = ⊕_{d∈N}Sym^dSymⁿV
- The plethysms Sym^dSymⁿV splits into irreducible G-representations W_λ (Weyl modules), labeled by partitions λ ⊢ dn into at most dim V = n² parts
- ▶ Visualize partition as Young diagram: $(5,3,1) \vdash 9$ write as

- $\mathbb{C}[\Omega_n]$ denotes coordinate ring of Ω_n
- Restriction of polynomial maps to Ω_n gives surjective G-equivariant linear map:

$$\operatorname{Sym}^{d}\operatorname{Sym}^{n}V = \mathbb{C}[\operatorname{Sym}^{n}V^{*}] \twoheadrightarrow \mathbb{C}[\Omega_{n}]_{d}$$

Say λ occurs in $\mathbb{C}[\Omega_n]_d$ if it contains a copy of \mathcal{W}_λ

Obstructions

 \triangleright $Z_{n,m}$ denotes orbit closure of the padded permanent (n > m):

$$Z_{n,m} := \overline{\operatorname{GL}_{n^2} \cdot X_{11}^{n-m} \operatorname{per}_m} \subseteq \operatorname{Sym}^n(\mathbb{C}^{n \times n})^*.$$
(1)

► Suppose
$$X_{11}^{n-m} \operatorname{per}_m \in \Omega_n$$

- ► Then $Z_{n,m} \subseteq \Omega_n$ and restriction gives $\mathbb{C}[\Omega_n] \twoheadrightarrow \mathbb{C}[Z_{n,m}]$
- Schur's lemma: if λ occurs in $\mathbb{C}[Z_{n,m}]$, then λ occurs in $\mathbb{C}[\Omega_n]$
- Partition λ violating this condition is called occurrence obstruction.
- ► Its existence would prove $Z_{n,m} \not\subseteq \Omega_n$
- Schur's lemma also gives inequality of multiplicities:

$$\operatorname{mult}_{\lambda} \mathbb{C}[\Omega_n] \geq \operatorname{mult}_{\lambda} \mathbb{C}[Z_{n,m}]$$

Partition λ violating this inequality is called multiplicity obstruction. See Dörfler, Ikenmeyer, Panova 2019

Main Result

M-S suggested the following conjecture

Occurrence Obstruction Conjecture (M-S 2001) For all $c \in \mathbb{N}_{>1}$, for infinitely many *m*, there exists a partition λ

occurring in $\mathbb{C}[Z_{m^c,m}]$ but not in $\mathbb{C}[\Omega_{m^c}]$.

Occurrence Obstruction Conjecture implies Orbit Closure Conjecture Unfortunately, the Occurrence Obstruction Conjecture is false!

Thm. (B, Ikenmeyer, Panova, FOCS 16, J. AMS '18)

Let n, d, m be positive integers with $n \ge m^{25}$ and $\lambda \vdash nd$. If λ occurs in $\mathbb{C}[Z_{n,m}]$, then λ also occurs in $\mathbb{C}[\Omega_n]$. In particular, the Occurrence Obstruction Conjecture is false.

Before this, [IP16] (Ikenmeyer, Panova FOCS 16) had a similar result showing that the Orbit Closure Conjecture cannot be resolved via Kronecker coefficients

No occurrence obstructions for Waring rank

- Waring rank (symmetric tensor rank) of p ∈ SymⁿV^{*}: minimum r s.t. p = φⁿ₁ + ... + φⁿ_r for linear forms φ_i ∈ V^{*}
- ► Can prove exponential lower bound on Waring rank of det_n , per_n
- May think of proving lower bounds on Waring rank by studying orbit closure

$$\mathrm{PS}_n := \overline{\mathrm{GL}_{n^2} \cdot (X_1^n + \cdots + X_{n^2}^n)} \subseteq \mathrm{Sym}^n (\mathbb{C}^{n^2})^*.$$

Corollary

Let n, d, m be positive integers with $n \ge m^{25}$ and $\lambda \vdash nd$. If λ occurs in $\mathbb{C}[Z_{n,m}]$, then λ also occurs in $\mathbb{C}[PS_n]$. Moreover, the permanent can be replaced by any homogeneous polynomial p of degree m in m^2 variables.

Hence strategy of occurrence obstructions cannot even be used in weak model of PS_n against padded polynomials!

Outline and Ingredients of Proof

Kadish & Landsberg's observation

body $\overline{\lambda}$ of λ : obtained by removing the first row of λ ,

Kadish & Landsberg '14

If $\lambda \vdash nd$ occurs in $\mathbb{C}[Z_{n,m}]_d$, then $\ell(\lambda) \leq m^2$ and $|\overline{\lambda}| \leq md$.

- ► $|\overline{\lambda}| \leq md$ is equivalent to $\lambda_1 \geq (n m)d$: λ must have a very long first row if *n* is substantially larger than *m*
- This is the only information we exploit about the orbit closure $Z_{n,m}$ of the padded permanent
- Can replace the permanent by any homogeneous polynomial p of degree m in m² variables
- Kadish & Landsberg also crucially used in [IP16]

Semigroup property

- ▶ Need to show that many partitions λ occur in $\mathbb{C}[\Omega_n]$
- For this establish the occurrence of certain basic shapes in $\mathbb{C}[\Omega_n]$
- Then get more shapes by

```
Semigroup Property
If \lambda occurs in \mathbb{C}[\Omega_n] and \mu occurs in \mathbb{C}[\Omega_n],
then \lambda + \mu occurs in \mathbb{C}[\Omega_n].
```

- Pf. There are highest weight vectors $F_{\lambda}, F_{\mu} \in \mathbb{C}[\Omega_n]$ of weight λ, μ , resp. The product $F_{\lambda} \cdot F_{\mu}$ is a highest weight vectors of weight $\lambda + \mu$.
- Semigroup Property also crucially used in [IP16]

Basic building blocks

Denote by (k × l)^{\$nk} the rectangular diagram k × l with k rows of length l, to which a row has been appended s.t. we get nk boxes

$$(3 \times 4)^{\sharp 18} =$$

Prop. RER (Row Extended Rectangles)

Let $n \ge k\ell$ and ℓ be even. Then $(k \times \ell)^{\sharp nk}$ occurs in $\mathbb{C}[\Omega_n]_k$.

The only property of Ω_n used in the proof is that Ω_n contains many padded power sums (follows from universality of determinant)

Prop. PPS (Padded Power Sums)

• Let $X, \varphi_1, \ldots, \varphi_k$ be linear forms on $\mathbb{C}^{n \times n}$ and assume $n \ge sk$. Then the power sum $X^{n-s}(\varphi_1^s + \cdots + \varphi_k^s)$ of k terms of degree s, padded to degree n, is contained in Ω_n .

Strategy of proof of main result

- Suppose have even $\lambda \vdash nd$ such that $n \geq m^{25}$ and λ occurs in $\mathbb{C}[Z_{n,m}]$. Want to show that λ occurs in $\mathbb{C}[\Omega_n]$.
- ▶ By [KL14] we have $\ell(\lambda) \le m^2$ and $|\overline{\lambda}| \le md$.
- Distinguish two cases
- ▶ CASE 1: If the degree *d* is large (say $d \ge 24m^6$), we proceed as in [IP16]: we decompose body $\overline{\lambda}$ into a sum of even rectangles
- Since n and d are sufficiently large in comparison with m, can write (!) λ as a sum of row extended rectangles (k × ℓ)^{\$nk}, where n ≥ kℓ.
- ▶ By Prop. RER the row extended rectangles occur in $\mathbb{C}[\Omega_n]$. The semigroup property implies that λ occurs in $\mathbb{C}[\Omega_n]$.

Case of small degree

► CASE 2: If the degree d is small, we rely on the following crucial result. Recall V = C^{n×n}.

```
Prop. ALL
```

Let $\lambda \vdash nd$ be such that $|\overline{\lambda}| \leq md$ and $md^2 \leq n$ for some m.

Then every highest weight vector of weight λ in $\operatorname{Sym}^{d}\operatorname{Sym}^{n}V$, viewed as a degree d polynomial function on $\operatorname{Sym}^{n}V^{*}$, does not vanish on Ω_{n} .

In particular, if λ occurs in $\operatorname{Sym}^{d}\operatorname{Sym}^{n}V$, then λ occurs in $\mathbb{C}[\Omega_{n}]_{d}$.

- The proof relies on new insights on "lifting highest weight vectors" in plethysms
- This is related to known stability property of plethysms, for which we obtain new proofs
- For treating noneven partitions, need more building blocks (row and column extended rectangles) and more tricks

Some Basics

Polynomials as symmetric tensors

- dth tensor power tensor $\bigotimes^d V$ of $V \simeq \mathbb{C}^N$
- Symmetrizing projection

$$\bigotimes^d V \twoheadrightarrow \operatorname{Sym}^d V, \ w \mapsto \frac{1}{d!} \sum_{\pi \in \mathfrak{S}_d} \pi(w)$$

Have pairing (contraction)

$$\operatorname{Sym}^d V^* \times \operatorname{Sym}^d V, (F,w) \mapsto \langle F,w \rangle$$

Polarization: view homogeneous polynomials as symmetric tensors

$$\operatorname{Sym}^{d} V \xrightarrow{\sim} \mathbb{C}[V^*]_d, \, F \mapsto \left(v \mapsto \langle F, v^{\otimes d} \rangle \right) := F(v)$$

▶ In particular, $\operatorname{Sym}^{d}\operatorname{Sym}^{n}V \xrightarrow{\sim} \mathbb{C}[\operatorname{Sym}^{n}V^{*}]_{d}$, and $F(p) := \langle F, p^{\otimes d} \rangle$ for $p \in \operatorname{Sym}^{n}V^{*}$.

Highest weight vectors

- Suppose that \mathscr{V} is rational $\operatorname{GL}_N(\mathbb{C})$ -module
- ► U_N ⊆ GL_N(C): subgroup of upper triangular matrices with 1's on main diagonal
- ▶ $f \in \mathscr{V}$ is called highest weight vector of weight $\lambda \in \mathbb{Z}^N$ iff
 - ▶ $f \neq 0$ is U_N -invariant, i.e., $u \cdot f = f$ for all $u \in U_N$,
 - f is a weight vector of weight λ , i.e., for all $\alpha_i \in \mathbb{C}^{\times}$ diag $(t_1, \ldots, t_N) \cdot f = t_1^{\lambda_1} \cdots t_N^{\lambda_N} f$
- Have $\lambda_1 \geq \ldots \geq \lambda_N$, so λ is partition if its entries are nonnegative.
- $HWV_{\lambda}(\mathscr{V})$: vector space of highest weight vectors of weight λ .
- ► Ex. $\mathrm{HWV}_{\lambda}(\mathrm{Sym}^{d}\mathbb{C}^{N}) = \mathbb{C}e_{1}^{\otimes d}$
- Known:

$${\mathscr V}$$
 irreducible \Longleftrightarrow dim ${\sf HWV}_\lambda({\mathscr V})=1$

 λ determines isomorphy type of $\mathscr V;$ call $\mathscr V$ of type λ

• Known: if λ is rectangular, $\lambda_1 = \ldots = \lambda_N$, then f is SL_N -invariant

Constructing HWVs in tensor powers

- How to construct highest weight vectors in $\bigotimes^d V$?
- ▶ $v_{j \times 1} := e_1 \wedge e_2 \wedge \cdots \wedge e_j$ is highest weight vector of weight $j \times 1$.
- Let λ ⊢ D and µ denote transpose of λ, so µ_i denotes number of boxes in *i*-th column of λ.

Then

$$\mathbf{v}_{\lambda} := \mathbf{v}_{\mu_1 \times 1} \otimes \ldots \otimes \mathbf{v}_{\mu_{\lambda_1} \times 1} \in \mathbf{O}^D \mathbf{V}$$

is highest weight vector of weight $\boldsymbol{\lambda}$

Schur-Weyl duality implies

span{
$$\pi v_{\lambda} \mid \pi \in \mathfrak{S}$$
} = HWV _{λ} ($\bigotimes^{D} V$)

Constructing HWVs in plethysms

• Consider block decomposition of positions for D = 6:

 $\{1,2,3\}\cup\{4,5,6\}$

Symmetrize within blocks and simultaneously permute blocks $\Sigma_{2,3}:: \bigotimes^{6} V \to \operatorname{Sym}^{2} \operatorname{Sym}^{3} V$

For $\lambda \vdash 6$ we obtain

$$\operatorname{span}\{\Sigma_{2,3}\pi v_{\lambda} \mid \pi \in \mathfrak{S}_{6}\} = \mathsf{HWV}_{\lambda}(\operatorname{Sym}^{2}\operatorname{Sym}^{3}V)$$

• Think of $\Sigma_{2,3}v_{\lambda}$ as encoded by

$$(14) \begin{array}{c|c} 1 & 3 & 5 & 6 \\ \hline 2 & 4 \end{array} = \begin{array}{c|c} 4 & 3 & 5 & 6 \\ \hline 2 & 1 \end{array} \mapsto \begin{array}{c|c} b & a & b & b \\ \hline a & a \end{array}$$

Encode HWVs of Sym^dSymⁿV by Young tableau T of shape λ ⊢ dn, filled with d different letters, where each letter occurs n times

Highest weight vectors as polynomial functions

- How to show that λ occurs in $\mathbb{C}[\Omega_n]$?
- ► Recall: $F \in \text{Sym}^{d}\text{Sym}^{n}\mathbb{C}^{N}$ is highest weight vector of weight λ if

$$egin{pmatrix} t_1 & * & * & * \ & t_2 & * & * \ & & \ddots & \vdots \ & & & \ddots & \vdots \ & & & t_N \end{pmatrix} \cdot F = t_1^{\lambda_1} \cdots t_N^{\lambda_N} F \qquad ext{for all } t_i \in \mathbb{C}^*$$

View F as homogeneous degree d polynomial function

$$F \colon \operatorname{Sym}^n(\mathbb{C}^N)^* \to \mathbb{C}, \quad F(p) = \langle F, p^n \rangle$$

► Restriction of polynomial functions is surjective and GL_N -equivariant $\operatorname{Sym}^d \operatorname{Sym}^n \mathbb{C}^N \simeq \mathbb{C}[\operatorname{Sym}^n (\mathbb{C}^N)^*] \twoheadrightarrow \mathbb{C}[\overline{\operatorname{GL}_N \cdot \rho}]$

Essential observation:

If $F(p) \neq 0$, then λ occurs in $\mathbb{C}[\overline{\operatorname{GL}_N \cdot p}]$

Fundamental Invariants

Fundamental invariants

- Suppose *n* is even. Howe ('87) showed:
- ▶ If d < N, then $\operatorname{Sym}^{d} \operatorname{Sym}^{n} \mathbb{C}^{N}$ doesn't have a nonzero SL_{N} -invariant
- ▶ If d = N, then $\operatorname{Sym}^{d} \operatorname{Sym}^{n} \mathbb{C}^{N}$ has exactly one SL_{N} -invariant $F_{n,N}$, up to scaling, the fundamental invariant, already known to Cayley as a "hyperdeterminant"
- ► View $F_{n,N}$ as a homogeneous degree N polynomial map

$$F_{n,N} \colon \operatorname{Sym}^n(\mathbb{C}^N)^* \to \mathbb{C}$$

For $p = \sum_{1 \le j_1, \dots, j_n \le N} v(j_1, \dots, j_n) X_{j_1} \cdots X_{j_n}$ with symmetric coefficients

$$F_{n,N}(p) = \sum_{\sigma_1,\ldots,\sigma_n\in S_N} \operatorname{sgn}(\sigma_1)\cdots\operatorname{sgn}(\sigma_n)\prod_{i=1}^N v(\sigma_1(i),\ldots,\sigma_n(i))$$

Ex. n = 2: F_{2,N}(p) = N! det(v) where v is symmetric matrix
 For g ∈ GL_N
 F_{n,N}(g ⋅ p) = det(g)ⁿF_{n,N}(p)

Evaluating fundamental invariants

- ► [B, Ikenmeyer '17]: systematic investigation of fundamental invariants
- ► $F_{n,N}$ is a highest weight vector (weight $N \times n$)
- ▶ It is not easy to prove $F_{n,N}(p) \neq 0$
- Seemingly simple example (n even)

$$F_{n,n}(X_1\cdots X_n) = \frac{1}{n!} (\#\{\text{col. even latin squares}\} - \#\{\text{col. odd latin squares}\}) \stackrel{?}{=} 0$$

- This is unknown: Alon-Tarsi Conjecture!
- Essential for basic building blocks: prove $F_{n,N}(X_1^n + \ldots + X_N^n) \neq 0$ by writing it as sum of squares [B, Christandl, Ikenmeyer '11]

Lifting of Highest Weight Vectors

Lifiting in plethysms

• Construct explicit injective linear lifting map for $n \ge m$

$$\kappa_{m,n}^d \colon \operatorname{Sym}^d \operatorname{Sym}^m V \to \operatorname{Sym}^d \operatorname{Sym}^n V$$

 $\triangleright \kappa_{m,n}^d$ defined as *d*-fold symmetric power of linear map

$$M: \operatorname{Sym}^m V \to \operatorname{Sym}^n V, \ p \mapsto p \ e_1^{n-m}$$

multiplication with e_1^{n-m} , 1st standard basis vector $e_1 \in V = \mathbb{C}^N$ Use duality to show for $f \in \text{Sym}^d \text{Sym}^m V$, $q \in \text{Sym}^n V^*$,

 $\langle \kappa^d_{m,n}(f), q^d \rangle = \langle f, M^*(q)^d \rangle$

Here M^* : Symⁿ $V^* \to$ Sym^m V^* denotes dual map of M. $M^*(q)$ is (n-m)-fold partial derivative of q in direction e_1 (times m!/n!)

Highest weight vectors in plethysms

Proved that lifting

$$\kappa_{m,n}^d$$
: Sym^dSym^m $V \to$ Sym^dSymⁿ V ,

maps highest weight vectors of weight $\mu \vdash md$ to highest weight vectors of weight $\mu^{\sharp dn}$ (μ with extended 1st row)

- Constructed system of generators v_T of space of highest weight vectors of weight µ, labelled by tableaux T of shape µ ⊢ dm with d letters, each occuring m times (no letter appears more than once in a column)
- Proved: \(\kappa_{m,n}^d\) maps generator \(\nu_T\) to generator \(\nu_{T'}\) where \(T'\) arises from \(T\) by adding in the first row \(n m\) copies of each of the \(d\) letters
- Side result: new proof of known stability property of plethysms

Corollary on lifting

Cor. Lift

Suppose $\lambda \vdash nd$ satisfies $\lambda_2 \leq m$ and $\lambda_2 + |\overline{\lambda}| \leq md$. Then every highest weight vector of weight λ is obtained as a lifting.

Proof.

- ▶ $\lambda_2 + |\overline{\lambda}| \leq md$ is number of boxes of λ that appear in non-singleton columns
- ▶ Hence λ is obtained by extending the 1st row of some $\mu \vdash md$
- Let T' be a tableau of shape λ with d letters, each occuring m times. Since no letter appears more than once in a column, each of the d letters appears at least n − λ₂ ≥ n − m times in singleton columns. Hence T' is obtained from a tableau T of shape µ as before

From before:
$$\kappa_{m,n}^d(v_T) = v_{T'}$$

• Moreover, the $v_{T'}$ generate space of hwv of weight λ

Proof of Prop. ALL

Prop. ALL

 $\lambda \vdash nd \text{ s.t. } |\overline{\lambda}| \leq md \text{ and } md^2 \leq n.$ Then every highest weight vector of weight λ in $\operatorname{Sym}^d \operatorname{Sym}^n V$ does not vanish on Ω_n .

Proof.

Using duality

$$\langle h, q^d \rangle = \langle \kappa^d_{m,n}(f), q^d \rangle = \langle f, M^*(q)^d \rangle \neq 0.$$

By Prop. PPS, we have $q \in \Omega_n$ since $n \ge md \cdot d$.

Thank you for your attention!