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Permanent versus determinant

I How many arithmetic operations are su�cient to evaluate the
permanent of an m by m matrix (xij)?

perm :=
X

⇡2Sm

x1⇡(1) · · · xm⇡(m)

I Best known algorithm: O(m2m) operations

I The determinant detn can be evaluated with poly(n) operations

detn :=
X

⇡2Sn

sgn(⇡) x1⇡(1) · · · xn⇡(n)

I Work over C
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Valiant’s Conjecture
I Are there linear forms aij = aij(x , z) in xij and z such that (n � m)

z
n�mperm = det

2

64
a11 . . . a1n
...

...
an1 . . . ann

3

75 ? (*)

I Impossible for n = m > 2 (Polya)

I Possible for n  2m � 1 (Valiant, Grenet)

I n � 1
2m

2 (Mignon & Ressayre 2004)

I Valiant’s Conjecture (1979): (*) impossible for n = poly(m)

I Conjecture equivalent to the separation VBP 6= VNP of complexity
classes

I P 6= NP nonuniformly implies VBP 6= VNP under GRH (B, 2000)
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Orbit closure of detn

I Approach by Mulmuley and Sohoni (2001) based on algebraic
geometry and representation theory

I Idea of orbit closures already in Strassen (1987) for tensor rank

I nth symmetric power Symn
V

⇤ of dual space V
⇤ with natural action

of group G := GL(V )

I Orbit G · f := {g · f | g 2 G} of f 2 Symn
V

⇤

I Take V := Cn⇥n, N = n
2, view detn as element of Symn

V
⇤

I Orbit closure w.r.t. Euclidean or Zariski topology

⌦n := GLn2 · detn ✓ Symn(Cn⇥n)⇤

I ⌦2 = Sym2(C2⇥2)⇤; ⌦3 known (Hüttenhain & Lairez ‘16); ⌦4 already
unknown
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Orbit Closure Conjecture

I Padded permanent X n�m
11 perm 2 Symn(Cn⇥n)⇤, where n > m

I Orbit Closure Conjecture (M-S 2001)

For all c 2 N�1 we have X
mc�m
11 perm 62 ⌦mc for infinitely many m.

I The Orbit Closure Conjecture implies Valiant’s Conjecture
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Splitting into irreps
I Action of group G = GL(V ) on Symn

V
⇤ induces action on its

graded coordinate ring C[Symn
V

⇤] = �d2NSym
dSymn

V

I The plethysms SymdSymn
V splits into irreducible G -representations

W� (Weyl modules), labeled by partitions � ` dn into at most
dimV = n

2 parts

I Visualize partition as Young diagram: (5, 3, 1) ` 9 write as

I Size |(5, 3, 1)| := 9 is number of boxes; length `(5, 3, 1) = 3 is
number of parts

I C[⌦n] denotes coordinate ring of ⌦n

I Restriction of polynomial maps to ⌦n gives surjective G -equivariant
linear map:

SymdSymn
V = C[Symn

V
⇤] ⇣ C[⌦n]d

I Say � occurs in C[⌦n]d if it contains a copy of W�
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Obstructions

I Zn,m denotes orbit closure of the padded permanent (n > m):

Zn,m := GLn2 · X n�m
11 perm ✓ Symn(Cn⇥n)⇤. (1)

I Suppose X
n�m
11 perm 2 ⌦n

I Then Zn,m ✓ ⌦n and restriction gives C[⌦n] ⇣ C[Zn,m]

I Schur’s lemma: if � occurs in C[Zn,m], then � occurs in C[⌦n]

I Partition � violating this condition is called occurrence obstruction.

I Its existence would prove Zn,m 6✓ ⌦n

I Schur’s lemma also gives inequality of multiplicities:

mult�C[⌦n] � mult�C[Zn,m]

I Partition � violating this inequality is called multiplicity obstruction.
See Dörfler, Ikenmeyer, Panova 2019
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M-S suggested the following conjecture

Occurrence Obstruction Conjecture (M-S 2001)

For all c 2 N�1, for infinitely many m, there exists a partition �
occurring in C[Zmc ,m] but not in C[⌦mc ].

Occurrence Obstruction Conjecture implies Orbit Closure Conjecture

Unfortunately, the Occurrence Obstruction Conjecture is false!

Thm. (B, Ikenmeyer, Panova, FOCS 16, J. AMS ’18)

Let n, d ,m be positive integers with n � m
25 and � ` nd . If �

occurs in C[Zn,m], then � also occurs in C[⌦n]. In particular, the
Occurrence Obstruction Conjecture is false.

Before this, [IP16] (Ikenmeyer, Panova FOCS 16) had a similar result
showing that the Orbit Closure Conjecture cannot be resolved via
Kronecker coe�cients
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No occurrence obstructions for Waring rank

I Waring rank (symmetric tensor rank) of p 2 Symn
V

⇤: minimum r

s.t. p = 'n
1 + . . .+ 'n

r for linear forms 'i 2 V
⇤

I Can prove exponential lower bound on Waring rank of detn, pern
I May think of proving lower bounds on Waring rank by studying orbit

closure

PSn := GLn2 · (X n
1 + · · ·+ X n

n2) ✓ Symn(Cn2)⇤.

Corollary

Let n, d ,m be positive integers with n � m
25 and � ` nd . If �

occurs in C[Zn,m], then � also occurs in C[PSn]. Moreover, the
permanent can be replaced by any homogeneous polynomial p of
degree m in m

2 variables.

Hence strategy of occurrence obstructions cannot even be used in weak
model of PSn against padded polynomials!
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Kadish & Landsberg’s observation

I body �̄ of �: obtained by removing the first row of �,

Kadish & Landsberg ’14

If � ` nd occurs in C[Zn,m]d , then `(�)  m
2 and |�̄|  md .

I |�̄|  md is equivalent to �1 � (n �m)d : � must have a very long
first row if n is substantially larger than m

I This is the only information we exploit about the orbit closure Zn,m

of the padded permanent

I Can replace the permanent by any homogeneous polynomial p of
degree m in m

2 variables

I Kadish & Landsberg also crucially used in [IP16]
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Semigroup property

I Need to show that many partitions � occur in C[⌦n]

I For this establish the occurrence of certain basic shapes in C[⌦n]

I Then get more shapes by

Semigroup Property

If � occurs in C[⌦n] and µ occurs in C[⌦n],
then �+ µ occurs in C[⌦n].

I Pf. There are highest weight vectors F�,Fµ 2 C[⌦n] of weight �, µ, resp.
The product F� · Fµ is a highest weight vectors of weight �+ µ.

I Semigroup Property also crucially used in [IP16]
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Basic building blocks
I Denote by (k ⇥ `)]nk the rectangular diagram k ⇥ ` with k rows of

length `, to which a row has been appended s.t. we get nk boxes

I
(3⇥ 4)]18 =

I Prop. RER (Row Extended Rectangles)

Let n � k` and ` be even. Then (k ⇥ `)]nk occurs in C[⌦n]k .

I The only property of ⌦n used in the proof is that ⌦n contains many
padded power sums (follows from universality of determinant)

I
Prop. PPS (Padded Power Sums)

Let X ,'1, . . . ,'k be linear forms on Cn⇥n and assume
n � sk . Then the power sum X

n�s('s
1 + · · ·+ 's

k) of
k terms of degree s, padded to degree n, is contained in ⌦n.
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Strategy of proof of main result

I Suppose have even � ` nd such that n � m
25 and � occurs in

C[Zn,m]. Want to show that � occurs in C[⌦n].

I By [KL14] we have `(�)  m
2 and |�̄|  md .

I Distinguish two cases

I CASE 1: If the degree d is large (say d � 24m6), we proceed as in
[IP16]: we decompose body �̄ into a sum of even rectangles

I Since n and d are su�ciently large in comparison with m, can
write (!) � as a sum of row extended rectangles (k ⇥ `)]nk , where
n � k`.

I By Prop. RER the row extended rectangles occur in C[⌦n]. The
semigroup property implies that � occurs in C[⌦n].
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Case of small degree
I CASE 2: If the degree d is small, we rely on the following crucial

result. Recall V = Cn⇥n.

Prop. ALL

Let � ` nd be such that |�̄|  md and md
2  n for some m.

Then every highest weight vector of weight � in SymdSymn
V ,

viewed as a degree d polynomial function on Symn
V

⇤, does not
vanish on ⌦n.

In particular, if � occurs in SymdSymn
V , then � occurs in C[⌦n]d .

I The proof relies on new insights on “lifting highest weight vectors”
in plethysms

I This is related to known stability property of plethysms, for which
we obtain new proofs

I For treating noneven partitions, need more bulding blocks (row and
column extended rectangles) and more tricks
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Polynomials as symmetric tensors

I dth tensor power tensor
N

d
V of V ' CN

I Symmetrizing projection

Nd
V ⇣ Symd

V , w 7! 1

d!

X

⇡2Sd

⇡(w)

I Have pairing (contraction)

Symd
V

⇤ ⇥ Symd
V , (F ,w) 7! hF ,wi

I Polarization: view homogeneous polynomials as symmetric tensors

Symd
V

⇠! C[V ⇤]d , F 7!
�
v 7! hF , v⌦di

�
:= F (v)

I In particular, SymdSymn
V

⇠! C[Symn
V

⇤]d , and F (p) := hF , p⌦di
for p 2 Symn

V
⇤.
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Highest weight vectors

I Suppose that V is rational GLN(C)-module

I UN ✓ GLN(C): subgroup of upper triangular matrices with 1’s on
main diagonal

I f 2 V is called highest weight vector of weight � 2 ZN i↵
I f 6= 0 is UN -invariant, i.e., u · f = f for all u 2 UN ,
I f is a weight vector of weight �, i.e., for all ↵i 2 C⇥

diag(t1, . . . , tN) · f = t�1
1 · · · t�N

N f

I Have �1 � . . . � �N , so � is partition if its entries are nonnegative.

I HWV�(V ): vector space of highest weight vectors of weight �.

I Ex. HWV�(Sym
dCN) = Ce⌦d

1

I Known:
V irreducible () dimHWV�(V ) = 1

� determines isomorphy type of V ; call V of type �

I Known: if � is rectangular, �1 = . . . = �N , then f is SLN -invariant
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Constructing HWVs in tensor powers

I How to construct highest weight vectors in
N

d
V ?

I vj⇥1 := e1 ^ e2 ^ · · · ^ ej is highest weight vector of weight j ⇥ 1.

I Let � ` D and µ denote transpose of �, so µi denotes number of
boxes in i-th column of �.

I Then
v� := vµ1⇥1 ⌦ . . .⌦ vµ�1⇥1 2

ND
V

is highest weight vector of weight �

I Schur-Weyl duality implies

span{⇡v� | ⇡ 2 S} = HWV�(
ND

V )
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Constructing HWVs in plethysms
I Consider block decomposition of positions for D = 6:

{1, 2, 3} [ {4, 5, 6}
I Symmetrize within blocks and simultaneously permute blocks

⌃2,3 : :
N6

V ! Sym2Sym3
V

I For � ` 6 we obtain

span{⌃2,3⇡v� | ⇡ 2 S6} = HWV�(Sym
2Sym3

V )

I Think of ⌃2,3v� as encoded by

⇡ 1 3 5 6
2 4

7! ⇡ a a b b
a b

.

I
(14) 1 3 5 6

2 4
= 4 3 5 6

2 1
7! b a b b

a a
.

I Encode HWVs of SymdSymn
V by Young tableau T of shape

� ` dn, filled with d di↵erent letters, where each letter occurs n
times
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Highest weight vectors as polynomial functions
I How to show that � occurs in C[⌦n]?
I Recall: F 2 SymdSymnCN is highest weight vector of weight � if

0

BBB@

t1 ⇤ ⇤ ⇤
t2 ⇤ ⇤

. . .
...
tN

1

CCCA
· F = t

�1
1 · · · t�N

N F for all ti 2 C⇤

I View F as homogeneous degree d polynomial function

F : Symn(CN)⇤ ! C, F (p) = hF , pni

I Restriction of polynomial functions is surjective and GLN -equivariant

SymdSymnCN ' C[Symn(CN)⇤] ⇣ C[GLN · p]

I Essential observation:

If F (p) 6= 0, then � occurs in C[GLN · p]
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Fundamental invariants
I Suppose n is even. Howe (’87) showed:
I If d < N, then SymdSymnCN doesn’t have a nonzero SLN -invariant
I If d = N, then SymdSymnCN has exactly one SLN -invariant Fn,N ,

up to scaling, the fundamental invariant, already known to Cayley as
a “hyperdeterminant”

I View Fn,N as a homogeneous degree N polynomial map

Fn,N : Symn(CN)⇤ ! C

I For p =
P

1j1,...,jnN v(j1, . . . , jn)Xj1 · · ·Xjn with symmetric
coe�cients

Fn,N(p) =
X

�1,...,�n2SN

sgn(�1) · · · sgn(�n)
NY

i=1

v(�1(i), . . . ,�n(i))

I Ex. n = 2: F2,N(p) = N! det(v) where v is symmetric matrix
I For g 2 GLN

Fn,N(g · p) = det(g)nFn,N(p)
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Evaluating fundamental invariants

I [B, Ikenmeyer ’17]: systematic investigation of fundamental invariants

I Fn,N is a highest weight vector (weight N ⇥ n)

I It is not easy to prove Fn,N(p) 6= 0

I Seemingly simple example (n even)

Fn,n(X1 · · ·Xn) =
1

n!
�
#{col. even latin squares}�#{col. odd latin squares}� ?

= 0

I This is unknown: Alon-Tarsi Conjecture!

I Essential for basic building blocks: prove Fn,N(X n
1 + . . .+ X

n
N) 6= 0

by writing it as sum of squares [B, Christandl, Ikenmeyer ’11]
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Lifting of HWVs

Lifiting in plethysms

I Construct explicit injective linear lifting map for n � m

d
m,n : Sym

dSymm
V ! SymdSymn

V

I d
m,n defined as d-fold symmetric power of linear map

M : Symm
V ! Symn

V , p 7! p e
n�m
1

multiplication with e
n�m
1 , 1st standard basis vector e1 2 V = CN

I Use duality to show for f 2 SymdSymm
V , q 2 Symn

V
⇤,

⌦
d
m,n(f ), q

d
↵
=

⌦
f ,M⇤(q)d

↵

Here M
⇤ : Symn

V
⇤ ! Symm

V
⇤ denotes dual map of M.

I M
⇤(q) is (n � m)-fold partial derivative of q in direction e1 (times m!/n!)
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Highest weight vectors in plethysms

I Proved that lifting

d
m,n : Sym

dSymm
V ! SymdSymn

V ,

maps highest weight vectors of weight µ ` md to highest weight
vectors of weight µ]dn (µ with extended 1st row)

I Constructed system of generators vT of space of highest weight
vectors of weight µ, labelled by tableaux T of shape µ ` dm with d

letters, each occuring m times (no letter appears more than once in
a column)

I Proved: d
m,n maps generator vT to generator vT 0 where T

0 arises
from T by adding in the first row n �m copies of each of the d

letters

I Side result: new proof of known stability property of plethysms
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Corollary on lifting

Cor. Lift

Suppose � ` nd satisfies �2  m and �2 + |�̄|  md . Then every
highest weight vector of weight � is obtained as a lifting.

Proof.

I �2 + |�̄|  md is number of boxes of � that appear in non-singleton
columns

I Hence � is obtained by extending the 1st row of some µ ` md

I Let T 0 be a tableau of shape � with d letters, each occuring m

times. Since no letter appears more than once in a column, each of
the d letters appears at least n � �2 � n �m times in singleton
columns. Hence T

0 is obtained from a tableau T of shape µ as
before

I From before: d
m,n(vT ) = vT 0

I Moreover, the vT 0 generate space of hwv of weight �
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Lifting of HWVs

Proof of Prop. ALL

Prop. ALL

� ` nd s.t. |�̄|  md and md
2  n. Then every highest weight

vector of weight � in SymdSymn
V does not vanish on ⌦n.

Proof.
I Let h 2 SymdSymn

V be hwv of weight �
I �2  |�̄|  md and �2 + |�̄|  2|�̄|  2md  md · d
I Cor. Lift applied to SymdSymmd

V ! SymdSymn
V shows

h = d
md,n(f ) for some hwv f 2 SymdSymmd

V of weight �
I Can show that for almost all power sums p = 'md

1 + · · ·+ 'md
d we

have hf , pdi 6= 0 and with q := X
n�md
1 p,

hf ,M⇤(q)di 6= 0

I Using duality

hh, qdi = hd
m,n(f ), q

di = hf ,M⇤(q)di 6= 0.

By Prop. PPS, we have q 2 ⌦n since n � md · d .
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Lifting of HWVs

Thank you for your attention!


