Geometric Complexity Theory:

No Occurrence Obstructions for Determinant vs Permanent

Peter Bürgisser
joint work with Christian Ikenmeyer and Greta Panova
GCT Online Lecture

November 22, 2021

Permanent versus determinant

- How many arithmetic operations are sufficient to evaluate the permanent of an m by m matrix $\left(x_{i j}\right)$?

$$
\operatorname{per}_{m}:=\sum_{\pi \in S_{m}} x_{1 \pi(1)} \cdots x_{m \pi(m)}
$$

- Best known algorithm: $O\left(m 2^{m}\right)$ operations
- The determinant det_{n} can be evaluated with poly(n) operations

$$
\operatorname{det}_{n}:=\sum_{\pi \in S_{n}} \operatorname{sgn}(\pi) x_{1 \pi(1)} \cdots x_{n \pi(n)}
$$

- Work over \mathbb{C}

Valiant's Conjecture

- Are there linear forms $a_{i j}=a_{i j}(x, z)$ in $x_{i j}$ and z such that $(n \geq m)$

$$
z^{n-m} \operatorname{per}_{m}=\operatorname{det}\left[\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \tag{}\\
\vdots & & \vdots \\
a_{n 1} & \ldots & a_{n n}
\end{array}\right] \quad ?
$$

- Impossible for $n=m>2$ (Polya)
- Possible for $n \leq 2^{m}-1$ (Valiant, Grenet)
- $n \geq \frac{1}{2} m^{2}$ (Mignon \& Ressayre 2004)
- Valiant's Conjecture (1979): $\left.\mathbf{(}^{*}\right)$ impossible for $n=\operatorname{poly}(m)$
- Conjecture equivalent to the separation VBP $\neq \mathrm{VNP}$ of complexity classes
- $\mathrm{P} \neq \mathrm{NP}$ nonuniformly implies VBP $\neq \mathrm{VNP}$ under GRH (B, 2000)

Orbit closure of det_{n}

- Approach by Mulmuley and Sohoni (2001) based on algebraic geometry and representation theory
- Idea of orbit closures already in Strassen (1987) for tensor rank
- nth symmetric power $\operatorname{Sym}^{n} V^{*}$ of dual space V^{*} with natural action of group $G:=\mathrm{GL}(V)$
- Orbit $G \cdot f:=\{g \cdot f \mid g \in G\}$ of $f \in \operatorname{Sym}^{n} V^{*}$
- Take $V:=\mathbb{C}^{n \times n}, N=n^{2}$, view det_{n} as element of $\operatorname{Sym}^{n} V^{*}$
- Orbit closure w.r.t. Euclidean or Zariski topology

$$
\Omega_{n}:=\overline{\mathrm{GL}_{n^{2}} \cdot \operatorname{det}_{n}} \subseteq \operatorname{Sym}^{n}\left(\mathbb{C}^{n \times n}\right)^{*}
$$

- $\Omega_{2}=\operatorname{Sym}^{2}\left(\mathbb{C}^{2 \times 2}\right)^{*} ; \Omega_{3}$ known (Hüttenhain \& Lairez '16); Ω_{4} already unknown

Orbit Closure Conjecture

- Padded permanent $X_{11}^{n-m} \operatorname{per}_{m} \in \operatorname{Sym}^{n}\left(\mathbb{C}^{n \times n}\right)^{*}$, where $n>m$
- Orbit Closure Conjecture (M-S 2001)

For all $c \in \mathbb{N}_{\geq 1}$ we have $X_{11}^{m^{c}-m}$ per $_{m} \notin \Omega_{m}$ cor infinitely many m.

- The Orbit Closure Conjecture implies Valiant's Conjecture

Splitting into irreps

- Action of group $G=\mathrm{GL}(V)$ on $\operatorname{Sym}^{n} V^{*}$ induces action on its graded coordinate ring $\mathbb{C}\left[\mathrm{Sym}^{n} V^{*}\right]=\oplus_{d \in \mathbb{N}} \operatorname{Sym}^{d} \mathrm{Sym}^{n} V$
- The plethysms $\operatorname{Sym}^{d} \operatorname{Sym}^{n} V$ splits into irreducible G-representations \mathcal{W}_{λ} (Weyl modules), labeled by partitions $\lambda \vdash d n$ into at most $\operatorname{dim} V=n^{2}$ parts
- Visualize partition as Young diagram: $(5,3,1) \vdash 9$ write as \square
- Size $|(5,3,1)|:=9$ is number of boxes; length $\ell(5,3,1)=3$ is number of parts
- $\mathbb{C}\left[\Omega_{n}\right]$ denotes coordinate ring of Ω_{n}
- Restriction of polynomial maps to Ω_{n} gives surjective G-equivariant linear map:

$$
\operatorname{Sym}^{d} \operatorname{Sym}^{n} V=\mathbb{C}\left[\operatorname{Sym}^{n} V^{*}\right] \rightarrow \mathbb{C}\left[\Omega_{n}\right]_{d}
$$

- Say λ occurs in $\mathbb{C}\left[\Omega_{n}\right]_{d}$ if it contains a copy of \mathcal{W}_{λ}

Obstructions

- $Z_{n, m}$ denotes orbit closure of the padded permanent $(n>m)$:

$$
\begin{equation*}
Z_{n, m}:=\overline{\mathrm{GL}_{n^{2}} \cdot X_{11}^{n-m} \operatorname{per}_{m}} \subseteq \operatorname{Sym}^{n}\left(\mathbb{C}^{n \times n}\right)^{*} \tag{1}
\end{equation*}
$$

- Suppose $X_{11}^{n-m} \operatorname{per}_{m} \in \Omega_{n}$
- Then $Z_{n, m} \subseteq \Omega_{n}$ and restriction gives $\mathbb{C}\left[\Omega_{n}\right] \rightarrow \mathbb{C}\left[Z_{n, m}\right]$
- Schur's lemma: if λ occurs in $\mathbb{C}\left[Z_{n, m}\right]$, then λ occurs in $\mathbb{C}\left[\Omega_{n}\right]$
- Partition λ violating this condition is called occurrence obstruction.
- Its existence would prove $Z_{n, m} \nsubseteq \Omega_{n}$
- Schur's lemma also gives inequality of multiplicities:

$$
\operatorname{mult}_{\lambda} \mathbb{C}\left[\Omega_{n}\right] \geq \operatorname{mult}_{\lambda} \mathbb{C}\left[Z_{n, m}\right]
$$

- Partition λ violating this inequality is called multiplicity obstruction.

Main Result

M-S suggested the following conjecture

```
Occurrence Obstruction Conjecture (M-S 2001)
```

For all $c \in \mathbb{N}_{\geq 1}$, for infinitely many m, there exists a partition λ occurring in $\mathbb{C}\left[Z_{m^{c}, m}\right]$ but not in $\mathbb{C}\left[\Omega_{m^{c}}\right]$.

Occurrence Obstruction Conjecture implies Orbit Closure Conjecture Unfortunately, the Occurrence Obstruction Conjecture is false!

Thm. (B, Ikenmeyer, Panova, FOCS 16, J. AMS '18)
Let n, d, m be positive integers with $n \geq m^{25}$ and $\lambda \vdash n d$. If λ occurs in $\mathbb{C}\left[Z_{n, m}\right]$, then λ also occurs in $\mathbb{C}\left[\Omega_{n}\right]$. In particular, the Occurrence Obstruction Conjecture is false.

Before this, [IP16] (Ikenmeyer, Panova FOCS 16) had a similar result showing that the Orbit Closure Conjecture cannot be resolved via Kronecker coefficients

No occurrence obstructions for Waring rank

- Waring rank (symmetric tensor rank) of $p \in \operatorname{Sym}^{n} V^{*}$: minimum r s.t. $p=\varphi_{1}^{n}+\ldots+\varphi_{r}^{n}$ for linear forms $\varphi_{i} \in V^{*}$
- Can prove exponential lower bound on Waring rank of det_{n}, $^{\text {per }}{ }_{n}$
- May think of proving lower bounds on Waring rank by studying orbit closure

$$
\mathrm{PS}_{n}:=\overline{\mathrm{GL}_{n^{2}} \cdot\left(X_{1}^{n}+\cdots+X_{n^{2}}^{n}\right)} \subseteq \operatorname{Sym}^{n}\left(\mathbb{C}^{n^{2}}\right)^{*}
$$

Corollary

Let n, d, m be positive integers with $n \geq m^{25}$ and $\lambda \vdash n d$. If λ occurs in $\mathbb{C}\left[Z_{n, m}\right]$, then λ also occurs in $\mathbb{C}\left[\mathrm{PS}_{n}\right]$. Moreover, the permanent can be replaced by any homogeneous polynomial p of degree m in m^{2} variables.

Hence strategy of occurrence obstructions cannot even be used in weak model of PS_{n} against padded polynomials!

Outline and Ingredients of Proof

Kadish \& Landsberg's observation

- body $\bar{\lambda}$ of λ : obtained by removing the first row of λ,

Kadish \& Landsberg '14

If $\lambda \vdash n d$ occurs in $\mathbb{C}\left[Z_{n, m}\right]_{d}$, then $\ell(\lambda) \leq m^{2}$ and $|\bar{\lambda}| \leq m d$.

- $|\bar{\lambda}| \leq m d$ is equivalent to $\lambda_{1} \geq(n-m) d: \lambda$ must have a very long first row if n is substantially larger than m
- This is the only information we exploit about the orbit closure $Z_{n, m}$ of the padded permanent
- Can replace the permanent by any homogeneous polynomial p of degree m in m^{2} variables
- Kadish \& Landsberg also crucially used in [IP16]

Semigroup property

- Need to show that many partitions λ occur in $\mathbb{C}\left[\Omega_{n}\right]$
- For this establish the occurrence of certain basic shapes in $\mathbb{C}\left[\Omega_{n}\right]$
- Then get more shapes by

$$
\begin{aligned}
& \text { Semigroup Property } \\
& \text { If } \lambda \text { occurs in } \mathbb{C}\left[\Omega_{n}\right] \text { and } \mu \text { occurs in } \mathbb{C}\left[\Omega_{n}\right] \text {, } \\
& \text { then } \lambda+\mu \text { occurs in } \mathbb{C}\left[\Omega_{n}\right] \text {. }
\end{aligned}
$$

- Pf. There are highest weight vectors $F_{\lambda}, F_{\mu} \in \mathbb{C}\left[\Omega_{n}\right]$ of weight λ, μ, resp. The product $F_{\lambda} \cdot F_{\mu}$ is a highest weight vectors of weight $\lambda+\mu$.
- Semigroup Property also crucially used in [IP16]

Basic building blocks

- Denote by $(k \times \ell)^{\sharp n k}$ the rectangular diagram $k \times \ell$ with k rows of length ℓ, to which a row has been appended s.t. we get $n k$ boxes

$$
(3 \times 4)^{\sharp 18}=\begin{array}{|l|l|l|l|l}
\square & & \square & \\
\hline & \\
\hline
\end{array}
$$

- Prop. RER (Row Extended Rectangles)

Let $n \geq k \ell$ and ℓ be even. Then $(k \times \ell)^{\sharp n k}$ occurs in $\mathbb{C}\left[\Omega_{n}\right]_{k}$.

- The only property of Ω_{n} used in the proof is that Ω_{n} contains many padded power sums (follows from universality of determinant)

Prop. PPS (Padded Power Sums)

- Let $X, \varphi_{1}, \ldots, \varphi_{k}$ be linear forms on $\mathbb{C}^{n \times n}$ and assume $n \geq s k$. Then the power sum $X^{n-s}\left(\varphi_{1}^{s}+\cdots+\varphi_{k}^{s}\right)$ of k terms of degree s, padded to degree n, is contained in Ω_{n}.

Strategy of proof of main result

- Suppose have even $\lambda \vdash n d$ such that $n \geq m^{25}$ and λ occurs in $\mathbb{C}\left[Z_{n, m}\right]$. Want to show that λ occurs in $\mathbb{C}\left[\Omega_{n}\right]$.
- By [KL14] we have $\ell(\lambda) \leq m^{2}$ and $|\bar{\lambda}| \leq m d$.
- Distinguish two cases
- CASE 1: If the degree d is large (say $d \geq 24 m^{6}$), we proceed as in [IP16]: we decompose body $\bar{\lambda}$ into a sum of even rectangles
- Since n and d are sufficiently large in comparison with m, can write (!) λ as a sum of row extended rectangles $(k \times \ell)^{\sharp n k}$, where $n \geq k \ell$.
- By Prop. RER the row extended rectangles occur in $\mathbb{C}\left[\Omega_{n}\right]$. The semigroup property implies that λ occurs in $\mathbb{C}\left[\Omega_{n}\right]$.

Case of small degree

- CASE 2: If the degree d is small, we rely on the following crucial result. Recall $V=\mathbb{C}^{n \times n}$.

Prop. ALL

Let $\lambda \vdash n d$ be such that $|\bar{\lambda}| \leq m d$ and $m d^{2} \leq n$ for some m. Then every highest weight vector of weight λ in $\operatorname{Sym}^{d} \operatorname{Sym}^{n} V$, viewed as a degree d polynomial function on $\operatorname{Sym}^{n} V^{*}$, does not vanish on Ω_{n}.
In particular, if λ occurs in $\operatorname{Sym}^{d} \operatorname{Sym}^{n} V$, then λ occurs in $\mathbb{C}\left[\Omega_{n}\right]_{d}$.

- The proof relies on new insights on "lifting highest weight vectors" in plethysms
- This is related to known stability property of plethysms, for which we obtain new proofs
- For treating noneven partitions, need more bulding blocks (row and column extended rectangles) and more tricks

Some Basics

Polynomials as symmetric tensors

-dth tensor power tensor $\bigotimes^{d} V$ of $V \simeq \mathbb{C}^{N}$

- Symmetrizing projection

$$
\bigotimes^{d} V \rightarrow \operatorname{Sym}^{d} V, w \mapsto \frac{1}{d!} \sum_{\pi \in \mathfrak{G}_{d}} \pi(w)
$$

- Have pairing (contraction)

$$
\operatorname{Sym}^{d} V^{*} \times \operatorname{Sym}^{d} V,(F, w) \mapsto\langle F, w\rangle
$$

- Polarization: view homogeneous polynomials as symmetric tensors

$$
\operatorname{Sym}^{d} V \xrightarrow{\sim} \mathbb{C}\left[V^{*}\right]_{d}, F \mapsto\left(v \mapsto\left\langle F, v^{\otimes d}\right\rangle\right):=F(v)
$$

- In particular, $\operatorname{Sym}^{d} \operatorname{Sym}^{n} V \xrightarrow{\sim} \mathbb{C}\left[\operatorname{Sym}^{n} V^{*}\right]_{d}$, and $F(p):=\left\langle F, p^{\otimes d}\right\rangle$ for $p \in \operatorname{Sym}^{n} V^{*}$.

Highest weight vectors

- Suppose that \mathscr{V} is rational $\mathrm{GL}_{N}(\mathbb{C})$-module
- $U_{N} \subseteq \mathrm{GL}_{N}(\mathbb{C})$: subgroup of upper triangular matrices with 1 's on main diagonal
- $f \in \mathscr{V}$ is called highest weight vector of weight $\lambda \in \mathbb{Z}^{N}$ iff
- $f \neq 0$ is U_{N}-invariant, i.e., $u \cdot f=f$ for all $u \in U_{N}$,
- f is a weight vector of weight λ, i.e., for all $\alpha_{i} \in \mathbb{C}^{\times}$
$\operatorname{diag}\left(t_{1}, \ldots, t_{N}\right) \cdot f=t_{1}^{\lambda_{1}} \cdots t_{N}^{\lambda_{N}} f$
- Have $\lambda_{1} \geq \ldots \geq \lambda_{N}$, so λ is partition if its entries are nonnegative.
- $\mathrm{HWV}_{\lambda}(\mathscr{V})$: vector space of highest weight vectors of weight λ.
- Ex. $\mathrm{HWV}_{\lambda}\left(\mathrm{Sym}^{d} \mathbb{C}^{N}\right)=\mathbb{C} e_{1}^{\otimes d}$
- Known:

$$
\mathscr{V} \text { irreducible } \Longleftrightarrow \operatorname{dim} \operatorname{HWV}_{\lambda}(\mathscr{V})=1
$$

λ determines isomorphy type of \mathscr{V}; call \mathscr{V} of type λ

- Known: if λ is rectangular, $\lambda_{1}=\ldots=\lambda_{N}$, then f is SL_{N}-invariant

Constructing HWVs in tensor powers

- How to construct highest weight vectors in $\bigotimes^{d} V$?
- $v_{j \times 1}:=e_{1} \wedge e_{2} \wedge \cdots \wedge e_{j}$ is highest weight vector of weight $j \times 1$.
- Let $\lambda \vdash D$ and μ denote transpose of λ, so μ_{i} denotes number of boxes in i-th column of λ.
- Then

$$
v_{\lambda}:=v_{\mu_{1} \times 1} \otimes \ldots \otimes v_{\mu_{\lambda_{1}} \times 1} \in \bigotimes^{D} V
$$

is highest weight vector of weight λ

- Schur-Weyl duality implies

$$
\operatorname{span}\left\{\pi v_{\lambda} \mid \pi \in \mathfrak{S}\right\}=H W V_{\lambda}\left(\otimes^{D} V\right)
$$

Constructing HWVs in plethysms

- Consider block decomposition of positions for $D=6$:

$$
\{1,2,3\} \cup\{4,5,6\}
$$

- Symmetrize within blocks and simultaneously permute blocks

$$
\Sigma_{2,3}:: \otimes^{6} V \rightarrow \operatorname{Sym}^{2} \operatorname{Sym}^{3} V
$$

- For $\lambda \vdash 6$ we obtain

$$
\operatorname{span}\left\{\Sigma_{2,3} \pi v_{\lambda} \mid \pi \in \mathfrak{S}_{6}\right\}=\operatorname{HWV}_{\lambda}\left(\operatorname{Sym}^{2} \operatorname{Sym}^{3} V\right)
$$

- Think of $\Sigma_{2,3} v_{\lambda}$ as encoded by

$$
\begin{aligned}
& \pi \begin{array}{|l|l|l|l}
\hline 1 & 3 & 5 & 6 \\
\hline 2 & 4 & \\
\hline
\end{array}
\end{aligned}
$$

- Encode HWVs of $\operatorname{Sym}^{d} \operatorname{Sym}^{n} V$ by Young tableau T of shape $\lambda \vdash d n$, filled with d different letters, where each letter occurs n times

Highest weight vectors as polynomial functions

- How to show that λ occurs in $\mathbb{C}\left[\Omega_{n}\right]$?
- Recall: $F \in \operatorname{Sym}^{d} \operatorname{Sym}^{n} \mathbb{C}^{N}$ is highest weight vector of weight λ if

$$
\left(\begin{array}{cccc}
t_{1} & * & * & * \\
& t_{2} & * & * \\
& & \ddots & \vdots \\
& & & t_{N}
\end{array}\right) \cdot F=t_{1}^{\lambda_{1}} \cdots t_{N}^{\lambda_{N}} F \quad \text { for all } t_{i} \in \mathbb{C}^{*}
$$

- View F as homogeneous degree d polynomial function

$$
F: \operatorname{Sym}^{n}\left(\mathbb{C}^{N}\right)^{*} \rightarrow \mathbb{C}, \quad F(p)=\left\langle F, p^{n}\right\rangle
$$

- Restriction of polynomial functions is surjective and GL_{N}-equivariant

$$
\operatorname{Sym}^{d} \operatorname{Sym}^{n} \mathbb{C}^{N} \simeq \mathbb{C}\left[\operatorname{Sym}^{n}\left(\mathbb{C}^{N}\right)^{*}\right] \rightarrow \mathbb{C}\left[\overline{\mathrm{GL}_{N} \cdot p}\right]
$$

- Essential observation:

$$
\text { If } F(p) \neq 0 \text {, then } \lambda \text { occurs in } \mathbb{C}\left[\overline{\mathrm{GL}_{N} \cdot p}\right]
$$

Fundamental Invariants

Fundamental invariants

- Suppose n is even. Howe ('87) showed:
- If $d<N$, then $\operatorname{Sym}^{d} \operatorname{Sym}^{n} \mathbb{C}^{N}$ doesn't have a nonzero SL_{N}-invariant
- If $d=N$, then $\operatorname{Sym}^{d} \operatorname{Sym}^{n} \mathbb{C}^{N}$ has exactly one SL_{N}-invariant $F_{n, N}$, up to scaling, the fundamental invariant, already known to Cayley as a "hyperdeterminant"
- View $F_{n, N}$ as a homogeneous degree N polynomial map

$$
F_{n, N}: \operatorname{Sym}^{n}\left(\mathbb{C}^{N}\right)^{*} \rightarrow \mathbb{C}
$$

- For $p=\sum_{1 \leq j_{1}, \ldots, j_{n} \leq N} v\left(j_{1}, \ldots, j_{n}\right) X_{j_{1}} \cdots X_{j_{n}}$ with symmetric coefficients

$$
F_{n, N}(p)=\sum_{\sigma_{1}, \ldots, \sigma_{n} \in S_{N}} \operatorname{sgn}\left(\sigma_{1}\right) \cdots \operatorname{sgn}\left(\sigma_{n}\right) \prod_{i=1}^{N} v\left(\sigma_{1}(i), \ldots, \sigma_{n}(i)\right)
$$

- Ex. $n=2$: $F_{2, N}(p)=N!\operatorname{det}(v)$ where v is symmetric matrix
- For $g \in \mathrm{GL}_{N}$

$$
F_{n, N}(g \cdot p)=\operatorname{det}(g)^{n} F_{n, N}(p)
$$

Evaluating fundamental invariants

- [B, Ikenmeyer '17]: systematic investigation of fundamental invariants
- $F_{n, N}$ is a highest weight vector (weight $N \times n$)
- It is not easy to prove $F_{n, N}(p) \neq 0$
- Seemingly simple example (n even)

$$
F_{n, n}\left(X_{1} \cdots X_{n}\right)=\frac{1}{n!}(\#\{\text { col. even latin squares }\}-\#\{\text { col. odd latin squares }\}) \stackrel{?}{=} 0
$$

- This is unknown: Alon-Tarsi Conjecture!
- Essential for basic building blocks: prove $F_{n, N}\left(X_{1}^{n}+\ldots+X_{N}^{n}\right) \neq 0$ by writing it as sum of squares [B, Christandl, Ikenmeyer '11]

Lifting of Highest Weight Vectors

Lifiting in plethysms

- Construct explicit injective linear lifting map for $n \geq m$

$$
\kappa_{m, n}^{d}: \operatorname{Sym}^{d} \operatorname{Sym}^{m} V \rightarrow \operatorname{Sym}^{d} \operatorname{Sym}^{n} V
$$

- $\kappa_{m, n}^{d}$ defined as d-fold symmetric power of linear map

$$
M: \operatorname{Sym}^{m} V \rightarrow \operatorname{Sym}^{n} V, p \mapsto p e_{1}^{n-m}
$$

multiplication with $e_{1}^{n-m}, 1$ st standard basis vector $e_{1} \in V=\mathbb{C}^{N}$

- Use duality to show for $f \in \operatorname{Sym}^{d} \operatorname{Sym}^{m} V, q \in \operatorname{Sym}^{n} V^{*}$,

$$
\left\langle\kappa_{m, n}^{d}(f), q^{d}\right\rangle=\left\langle f, M^{*}(q)^{d}\right\rangle
$$

Here $M^{*}: \operatorname{Sym}^{n} V^{*} \rightarrow \operatorname{Sym}^{m} V^{*}$ denotes dual map of M.

- $M^{*}(q)$ is $(n-m)$-fold partial derivative of q in direction e_{1} (times $m!/ n!$)

Highest weight vectors in plethysms

- Proved that lifting

$$
\kappa_{m, n}^{d}: \operatorname{Sym}^{d} \operatorname{Sym}^{m} V \rightarrow \operatorname{Sym}^{d} \operatorname{Sym}^{n} V,
$$

maps highest weight vectors of weight $\mu \vdash m d$ to highest weight vectors of weight $\mu^{\sharp d n}$ (μ with extended 1st row)

- Constructed system of generators v_{T} of space of highest weight vectors of weight μ, labelled by tableaux T of shape $\mu \vdash d m$ with d letters, each occuring m times (no letter appears more than once in a column)
- Proved: $\kappa_{m, n}^{d}$ maps generator v_{T} to generator $v_{T^{\prime}}$ where T^{\prime} arises from T by adding in the first row $n-m$ copies of each of the d letters
- Side result: new proof of known stability property of plethysms

Corollary on lifting

Cor. Lift

Suppose $\lambda \vdash n d$ satisfies $\lambda_{2} \leq m$ and $\lambda_{2}+|\bar{\lambda}| \leq m d$. Then every highest weight vector of weight λ is obtained as a lifting.

Proof.

- $\lambda_{2}+|\bar{\lambda}| \leq m d$ is number of boxes of λ that appear in non-singleton columns
- Hence λ is obtained by extending the 1st row of some $\mu \vdash m d$
- Let T^{\prime} be a tableau of shape λ with d letters, each occuring m times. Since no letter appears more than once in a column, each of the d letters appears at least $n-\lambda_{2} \geq n-m$ times in singleton columns. Hence T^{\prime} is obtained from a tableau T of shape μ as before
- From before: $\kappa_{m, n}^{d}\left(v_{T}\right)=v_{T^{\prime}}$
- Moreover, the $v_{T^{\prime}}$ generate space of hwv of weight λ

Proof of Prop. ALL

Prop. ALL

$\lambda \vdash n d$ s.t. $|\bar{\lambda}| \leq m d$ and $m d^{2} \leq n$. Then every highest weight vector of weight λ in $\operatorname{Sym}^{d} \operatorname{Sym}^{n} V$ does not vanish on Ω_{n}.

Proof.

- Let $h \in \operatorname{Sym}^{d} \operatorname{Sym}^{n} V$ be hwv of weight λ
- $\lambda_{2} \leq|\bar{\lambda}| \leq m d$ and $\lambda_{2}+|\bar{\lambda}| \leq 2|\bar{\lambda}| \leq 2 m d \leq m d \cdot d$
- Cor. Lift applied to $\mathrm{Sym}^{d} \mathrm{Sym}^{m d} V \rightarrow \operatorname{Sym}^{d} \operatorname{Sym}^{n} V$ shows $h=\kappa_{m d, n}^{d}(f)$ for some hwv $f \in \operatorname{Sym}^{d} \operatorname{Sym}^{m d} V$ of weight λ
- Can show that for almost all power sums $p=\varphi_{1}^{m d}+\cdots+\varphi_{d}^{m d}$ we have $\left\langle f, p^{d}\right\rangle \neq 0$ and with $q:=X_{1}^{n-m d} p$,

$$
\left\langle f, M^{*}(q)^{d}\right\rangle \neq 0
$$

- Using duality

$$
\left\langle h, q^{d}\right\rangle=\left\langle\kappa_{m, n}^{d}(f), q^{d}\right\rangle=\left\langle f, M^{*}(q)^{d}\right\rangle \neq 0 .
$$

By Prop. PPS, we have $q \in \Omega_{n}$ since $n \geq m d \cdot d$.

Thank you for your attention!

