Geometric Complexity Theory Lie Algebraic Methods for Projective Closures

Bharat Adsul (IITB), Milind Sohoni (IITB and IITGoa), K V Subrahmanyam (CMI) https://arxiv.org/abs/2201.00135

Jan. 27, 2022

Outline

- Preliminaries, group actions the stabilizer question.
- The Big Picture, structure, paths and our contributions
- The Local Model
 - Quotients of lie algebra action on $G \times_H V$.
 - The local model expressions and its properties.
- Forms Limits and the local stabilizers
 - The family $f(t) = A(t) \cdot f = g + t^b f_b + \dots$, with stabilizers \mathcal{H} and \mathcal{K} of g and f.
 - A basis for $\mathcal{K}(t)$ and its properties \mathcal{K}_0 and $\overline{f_b}$.
 - The special case of $\lambda(t)$ and the triple-stabilizer conditions.
 - The co-dimension-1 case.
- One Matrix under Conjugation
 - The spectrum block partition and the top nilpotent. The local analysis of J_n .
- Advanced topics
 - The very local stabilizer $\mathcal{K}[\epsilon]$ and the Lie algebra cohomology condition.
 - Paths Optimization and differential geometry.

Preliminaries

- *G*, connected reductive *algebraic* group over \mathbb{C} .
- $\rho: G \rightarrow End(V)$, rational representation.
- $y \in V$. Orbit of y, $O(y) := \{g \cdot y | g \in G\}$.
- O(y) need not be closed, it is constructible.
- $\overline{O(y)}$, orbit closure of y Zariski topology or Euclidean topology.
 - GL_n action on \mathbb{C}^n . $\overline{O(v)} = \underline{\mathbb{C}^n}, v \in \mathbb{C}^n, v \neq 0$,
 - GL_n adjoint action on M_n . $\overline{O(J_n)} = \mathcal{N}$, the *nilpotent cone*.

Question:

- Given $x, y \in V$, is $x \in \overline{O(y)}$? Distinctive stabilizers.
- Given $[x], [y] \in \mathbb{P}(V)$, is $[x] \in \overline{O([y])}$? direct relevance to algebraic complexity theory.

The Big Picture

We have $x, y \in V$, with a *G*-action, and λ such that:

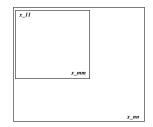
$$\lambda(t) \cdot y = t^a x + t^b y_b + \text{higher terms}$$

Thus x appears as the leading term in a weight-space decomposition of y under λ . How do we connect the stabilizers of x and y?

Example:
$$y = det(X_{nn})$$
 and $x = x_{nn}^{n-m} perm(X_{mm})$.

Question

Is there a homogenous substitution in the matrix so that the determinant becomes a smaller permanent, suitably homogenized?



Stabilizers change dramatically under taking limits!

The Big Picture

We have $x, y \in V$, with a *G*-action, and the question: Is there NO λ such that:

$$\lambda(t)y = t^a x + t^b y_b + higher terms$$

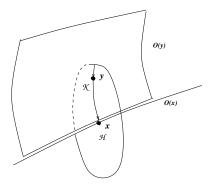
How do we determine the answer, even when x and y have distinctive stabilizers H, K?

The GCT approach: The distinctive stabilizers have the required information. The hunt for obstructions.

$$\mathbb{C}[\overline{O(y)}] \to \mathbb{C}[\overline{O(x)}] \to 0$$

- Representations as Obstructions. Burgisser, Ikenmeyer and others.
- Geometric Approach: Ressayre-Mignon-Landsberg and others. Algebro-geometric properties of y (or x) and their closures.
- Algebraic Complexity Theory: Various questions pertaining to orbits and closures, optimizability Wigderson et. al.

The Stabilizer Problem - The Structure and the Path

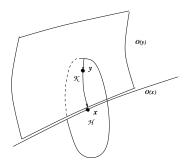


- Luna slice theorem: Rich structure of the neighborhood of x when it has a reductive stabilizer. No non-reductive version.
- Lie algebraic limits. If \mathcal{K} is the stabilizer of q then $\lim_{t\to 0} \lambda(t)\mathcal{K}\lambda(t)^{-1} \subseteq \mathcal{H}$. But deeper connection with Lie algebra deformations needed.

What we achieve:

- build a Luna type partly factorized "lower-triangular" model for non-reductive points.
- illustrate the computability of this model and its connections with standard and classical problems.
- demonstrate that the local model retains (possibly) relevant differential geometry information in the vicinity of *x*.
- provides a beginning to understanding the deformation of the Lie algebra K (of y) to the Lie algebra H of x.
- provide a beginning to understanding the path along which
 K → *H*, the importance of the tangents of exit and entry.
- hopefully provide links, connections of GCT to geometry.

The Local Model

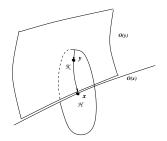


Stabilizer Question

- Luna: G action near $x \Leftrightarrow H$ -action on N.
- Factorization of action Stabilizers in the vicinity of x are subgroups of H, in fact stabilizers of n ∈ N.

The difficulty with extending Luna

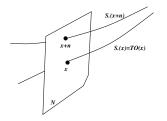
- There is no N which is left invariant by H.
- A candidate is to use $\overline{N} = V/(T_x(O(x)))$ and construct $G \times_H \overline{N} \to V$. But \overline{N} is *H*-invariant. So that does not work.
- The only map which works is G ×_H V → V which has a non-zero-dimensional fiber. This is used to develop the model.



The Local Model

- Select a suitable M ⊆ G and N ⊆ V the orbit and the normal.
- Let S ⊕ H = G. Let M ⊂ G, submanifold containing e ∈ G and complementary to H at e such that T_eM = S.
- M ⋅ x is the orbit, M ⋅ (x + n) is merely the same dimension of M ⋅ x and transversal to N. S ⋅ (x + n) ⊕ N = T_{x+n}V.
- Let O(x) be *G*-orbit of *x*. Let *N* be a complement to TO_x . $\mu: M \times N \to V: \mu(m, n) = m \cdot (x + n)$

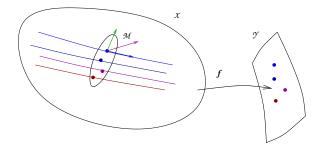
Clearly, μ is a local diffeomorphism.



The \mathcal{G} -action

Objective

- To obtain an explicit \mathcal{G} action on a neighbourhood of $(e, 0) \in M \times N$ such that μ is equivariant.
- To compute this action on (e, N)



Immerse $M \times N$ in a suitable \mathcal{G} -equivariant map and project to $\mathcal{T}(M \times N)$. Easy for Lie algebra actions!

The associated bundles

• The map
$$\mu : G \times V \to V$$
 given by $\mu(g, v) = g \cdot (x + v)$
factorizes through $G \times_H V$.
$$\mu(gh, h^{-1}v) = gh(x + h^{-1}V) = g(x + v) \text{ since } h \cdot x = x$$
$$G \times V \to G \times_H V \to V$$
$$\uparrow \swarrow$$

 $M \times N \rightarrow M \times V$

- Thus, $\mu: M \times V \to V$ is \mathcal{G} -equivariant and regular at (e, 0).
- $M \times N$ is transversal to this map. This is the local model.

Recipe

 Compute the g-action on M × V. Project that tangent vector to M × N!

The Local Projections and the Action

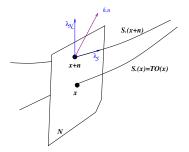
• For
$$\mathfrak{g} = \mathfrak{h} + \mathfrak{s}$$
 and $(e, n) \in M \times V$, we have:

 $\mathfrak{g} \cdot (e, n) = (\mathfrak{s}, \mathfrak{h} \cdot n)$

• If $\mathfrak{h} \cdot n \in N$ then we are done! If not, let $\mathfrak{h} \cdot n = \mathfrak{s}' \cdot (x + n) + n'$, then:

$$\mathfrak{g} \cdot (e, n) = (\mathfrak{s} + \mathfrak{s}', n') = (\mathfrak{s} + \lambda_{\mathcal{S}}(n)(\mathfrak{h} \cdot n), \ \lambda_{N}(n)(\mathfrak{h} \cdot n))$$

• Thus $\mathfrak{g} \cdot (e, n) \in T_{(e,n)}M \times N = T_eM \times T_nN = S \times N$.



The Local Model

The format - $\mathfrak{g} = \mathfrak{h} + \mathfrak{s}$ on the $\mathcal S$ part and the N part

element	S	N
\$	5	0
$\mathfrak{h}^a = \mathfrak{r} + \mathfrak{q}$	$\lambda_{\mathcal{S}}(\mathbf{q}\cdot \mathbf{n})$	$\lambda_N(\mathfrak{h}\cdot n)$

^ain a reductive-nilpotent Levi decomposition

- $\mathfrak{g} \cdot (e, n) = 0 \Rightarrow \lambda_N(\mathfrak{h} \cdot n) = 0$. The stabilizer condition: $\mathcal{H}_n = \{\mathfrak{h} | \lambda_N(\mathfrak{h} \cdot n) = 0\}.$
- For any $\mathfrak{h} \in \mathcal{G}$ and n, define its S completion as that element $\mathfrak{g} = \mathfrak{h} + \mathfrak{s}$ such that $\mathfrak{s} = -\lambda_{\mathcal{S}}(n)(\mathfrak{h} \cdot n)$. Then $\mathfrak{g} \cdot n = 0$.
- \bullet Note that $\mathcal S\text{-completion}\ \mathcal H\to \mathcal G$ is a linear operation.
- If K ⊆ G is the stabilizer of x + n, then H_n ⊆ H has same dimension and the S-completion of every element of h ∈ H_n is K.
- Note that reductive algebras may appear in the vicinity of nilpotent algebras.

Implementing $\lambda_N(n)$ and $\lambda_S(n)$ - The maps θ, Θ and Φ

We define the map: $\theta(n): V \to V$ as:

$$\theta(n)(v) \stackrel{\Delta}{=} \lambda_{\mathcal{S}}(0)(v) \cdot n$$

Thus, $T_{\times}O(x)$ is both a subspace of V as well as a space S of lie algebra elements. Note that $\theta(n): V \to V$ is linear in n.

$$\lambda_{\mathcal{S}}(n) = \lambda_{\mathcal{S}} \circ (1 + heta(n))^{-1}$$
 and $\lambda_N(n) = \lambda_N \circ (1 + heta(n))^{-1}$

Then, for $\mathfrak{g} = \mathfrak{h} + \mathfrak{s}$, we have:

 $\mathfrak{g} \circ (e, n) = (\mathfrak{s} + \lambda_{\mathcal{S}} \circ (1 + \theta(n))^{-1}(\mathfrak{h} \cdot n), \lambda_{N} \circ (1 + \theta(n))^{-1}(\mathfrak{h} \cdot n))$

Equivariance

H = RQ is the Levi decomposition and \mathcal{R} and \mathcal{Q} their lie algebras. Suppose that \mathcal{S} and N are chosen as R-module complements of $\mathcal{H} \subseteq \mathcal{G}$ and $TO_x \subseteq V$. $\mathfrak{g} = \mathfrak{r} + \mathfrak{q} + \mathfrak{s}$, we have:

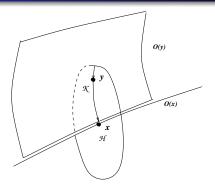
 $\mathfrak{g}\circ(e,n)=(\mathfrak{s}+\lambda_{\mathcal{S}}\circ(1+\theta(n))^{-1}(\mathfrak{q}\cdot n),\mathfrak{r}\cdot n+\lambda_{N}\circ(1+\theta(n))^{-1}(\mathfrak{q}\cdot n))$

Moreover the Θ : $V \otimes N \rightarrow V$ and Φ : $S \otimes N \rightarrow S$ maps are *R*-equivariant.

$$\begin{array}{lll} \Theta(v \otimes n) & \stackrel{\Delta}{=} & \lambda_{\mathcal{S}}(v) \cdot n \\ \Phi(\mathfrak{s} \otimes v) & \stackrel{\Delta}{=} & \lambda_{\mathcal{S}}(\mathfrak{s} \cdot n) \end{array}$$

- Only the nilpotent part q transmits to the S-part. If \mathcal{H} is reductive, we recover classical result.
- The "Gauss" map Φ : S × N → S is an algebraic version of curvature form Π : S × S → N. It captures the same data for reductive group representations.

Comparison



Luna	Local Model			
G -action \Leftrightarrow H -action on N	\mathcal{H} -action through λ_N and Θ			
Horizontal action through G/H	Horizontal action through ${\cal Q}$			
	and ${\cal S}$.			
Stabilizer $G_n \subseteq H$	${\mathcal G}_n$ are ${\mathcal S}$ -completions of ${\mathcal H}_n$			
Valid for good orbits x	Valid for all x			

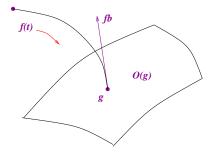
Understanding $\mathcal{K} \rightsquigarrow \mathcal{H}$ in limits of forms.

Forms

- Let X be a set of indeterminates and let V be the GL(X)-module V = Sym^d(X) and f, g ∈ V be non-zero forms.
- Let \mathcal{G} be the algebra gl(X), $\mathcal{K} \subseteq \mathcal{G}$ be the stabilizer of f and \mathcal{H} be the Lie algebra stabilizing g.
- Algebraic family $A(t) \subseteq GL(X)$, parametrized by t such that A(1) = e, the identity element. Let

$$f(t) = A(t).f = t^{a}g + t^{b}f_{b} + t^{b+1}f_{b+1} + \ldots + t^{D}f_{D},$$

• Such a family exists for projective closures in form space!

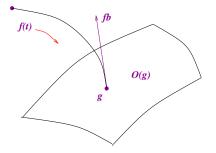


After re-normalization, we may assume:

$$f(t) = A(t).f = g + t^b f_b + t^{b+1} f_{b+1} + \ldots + t^D f_D,$$

with $f_b \neq 0$. We call f_b as the tangent of approach. **Transversality Assumption**. Vector space spanned by f_b, \ldots, f_D intersects $T_g O(g)$ trivially.

The Stabilizer Condition



- Notation: $A(t) \cdot f = f(t) = g + t^b f_b + \dots$, and $f^+(t) = \sum_{i=b}^{D} f_i t^i$. Note that t^b divides $f^+(t)$.
- $\mathcal{K}(t_0)$ is the stabilizer of $f(t_0)$, then $\mathcal{K}(t_0) = A(t_0)\mathcal{K}A(t_0)^{-1}$. $dim(\mathcal{K}(t_0) = dim(\mathcal{K}) = k$.
- Applying the local model to a parametrized family - $\mathcal{H}(t) \subseteq \mathcal{H}$ whose S-completion is the stabilizer $\mathcal{K}(t)$.
- Gives us a uniform basis for K(t) which goes into H in the limit, giving us K₀, a subalgebra of H.

Key Proposition

There is a C(t)-basis {t_i(t)}_{i=1}^k of K(t), the stabilizer Lie algebra of f(t) and a large number D such that

$$\mathfrak{k}_i(t) = \sum_{j=0}^D (\mathfrak{s}_{ij} + \mathfrak{h}_{ij}) t^j, = \mathfrak{h}_i(t) + t^b \mathfrak{s}_i(t)$$

for suitable elements $\mathfrak{s}_{ij} \in \mathcal{S}, \mathfrak{h}_{ij} \in \mathcal{H}$. The dimension of \mathcal{K}_0 is the same as the dimension of $\mathcal{K}(t_0)$ for a generic $t_0 \in \mathbb{C}$.

- ② Let $\mathcal{H}(t) = \mathbb{C}(t) \cdot \{\mathfrak{h}_i(t) | i = 1, ..., k\}$. For any generic $t_0 \in \mathbb{C}$, subspace $\mathcal{H}(t_0) \subseteq \mathcal{H}$, has dimension k and $\mathcal{K}(t_0)$ is the S-completion of $\mathcal{H}(t_0)$ for the point $f^+(t_0)$.
- The space K₀ = C ⋅ {t₁(0),...,t_k(0)}, C-space of leading terms t_i(0) = t_{i0} = h_{i0} is a Lie subalgebra of H and of dimension k. Moreover, if t(t) ∈ K(t) is any element such that t(0) is defined, then t(0) ∈ K₀.

The Wrap-up Theorem

The *-action: \mathcal{H} acts on $\overline{N} = V/(TO(g))$. This is the traditional quotient action. If H is reductive, N may itself be an \mathcal{H} -module.

- For any element h ∈ K₀, we have λ_N(h ⋅ f_b) = 0 and thus, there is an s ∈ S such that s ⋅ g + λ_S(h ⋅ f_b) = 0. Paves the way for *-action
- On The subalgebra K₀ is contained within H_b ⊆ H, the stabilizer of f_b for the *-action of H.
- **③** The local model matches $G \times_H \overline{N}$ infinitesimally close to x.

The coupling of \mathcal{K} and \mathcal{H}

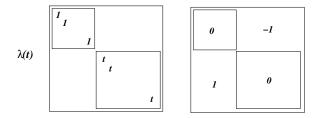
$$\mathcal{K} \rightsquigarrow \mathcal{K}_0 \to \mathcal{H}_b \to \mathcal{H}$$

Thus, when the small permanent appears in the orbit closure of the determinant, a "smashed" version of the stabilizer of the determinant sits inside the stabilizer of the homogenized small permanent as a subalgebra!

The 1-PS case

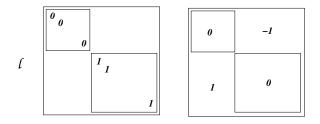
Important, in GCT as well as in Kempf and other limits.

$$\lambda(t) \cdot f = t^a g + t^b f_b + \text{ higher terms}$$



- Implements singular substitutions $f(A \cdot X)$. Let $X = Y \cup Z$. $\lambda(t) \cdot y = y, \forall y \in Y, \lambda(t) \cdot z = tz, \forall z \in z$
- $\mathcal{G} = \mathcal{G}_{-1} \oplus \mathcal{G}_0 \oplus \mathcal{G}_1$. $\lambda(t)\mathfrak{g}_i\lambda(t)^{-1} = t^i\mathfrak{g}_i$ for any $\mathfrak{g}_i \in \mathcal{G}_i$, and that $\mathcal{G}_i \cdot V_j = V_{i+j}$.

The 1-PS case



- $\mathcal{G} = \mathcal{G}_{-1} \oplus \mathcal{G}_0 \oplus \mathcal{G}_1$. $\lambda(t)\mathfrak{g}_i\lambda(t)^{-1} = t^i\mathfrak{g}_i$ for any $\mathfrak{g}_i \in \mathcal{G}_i$, and that $\mathcal{G}_i \cdot V_j = V_{i+j}$.
- *H* is graded. We can choose *S_i* ⊆ *G_i* to be a complement of *H_i*, so that *S* is graded. *H_b* is graded.
- \mathcal{K}_0 are the leading terms of elements of \mathcal{K} . So \mathcal{K}_0 is graded.

The Lie algebra element ℓ

• Setting $\ell = \log(t^{-a/d}\lambda(t))$, (i) $\ell \in \mathcal{H}, \ \ell \notin \mathcal{H}_b$ but $[\ell, \mathcal{H}_b] \subseteq \mathcal{H}_b$ and $[\ell, \mathcal{K}_0] \subseteq \mathcal{K}_0, \ \ell$ normalizes $\mathcal{H}_b, \mathcal{K}_0$.

The tangent of exit

Definition

Assume $\lambda(t)f = t^ag + t^bf_b + \cdots + t^Df_D$. Then the tangent of exit is the form $\lim_{t\to 1} \frac{f(t)-f(1)}{t-1}$.

- $\ell f = af_a + bf_b + \ldots + Df_D$, and the tangent of exit is $\ell f f$.
- ℓf is in an element of TO_f .
- Tangent of exit given by the action of ℓ , $\ell \notin \mathcal{K}$.

Key Questions

- What is the stabilizer of ℓf within TO_f , under \mathcal{K} ?
- Are there some symmetries which f, ℓf, g share, and will that shed light on K → H?
- Element $\mathfrak{k} \in \mathcal{K}$ of pure ℓ -weight are triple stabilizers!

Let f, g, λ and ℓ be as above. Then at least one of the following hold:

(A) \mathcal{K}_0 is a nilpotent algebra, or

(B) there is a unipotent element $u \in U(\lambda)$ and an element $\mathfrak{k} \in \mathcal{K}$ such that g is a limit of f^u under λ and \mathfrak{k}^u is a triple stabilizer for the data $(f^u, \ell f^u, g)$.

semi-simple elements in \mathcal{K} of ℓ -weight zero! Or more generally:

$$\mathfrak{k}^{u} \in \mathcal{K}^{u}(\rightsquigarrow \mathcal{K}^{u}_{0}) \to \mathcal{H}^{u}_{b} \to \mathcal{H}$$

Closure of affine forms

Let g be a projective limit of codimension 1 of f under λ as above. Then at least one of the following conditions hold:

- $\textbf{0} \ \mathcal{K}_0 \text{ is nilpotent and } \mathcal{H} = \mathcal{K}_0 \oplus \mathbb{C}\ell \text{ is a Levi factorization of } \mathcal{H}.$
- O There are unipotent elements u ∈ U(λ) and elements t ∈ K such that utu⁻¹ stabilizes g, f^u and ℓf^u, and g is the limit of f^u under λ.

3×3 -determinant

$det_{3}(X) = det \left(\left[\begin{array}{rrrr} x_{1} & x_{2} & x_{3} \\ x_{4} & x_{5} & x_{6} \\ x_{7} & x_{8} & x_{9} \end{array} \right] \right)$									
1 - PS	forms	$dim((\mathcal{K}_0)_i)$			ℓf	$\mathit{dim}(\mathcal{K}_{\ell f})$			
		$dim((\mathcal{H})_i)$							
	(f,g)	1	0	-1					
ℓ_1	det ₃	0	8	8		_			
	Q_1	0	8 + 1	8	Q_1'	0+4+0			
ℓ_2	det ₃	0	8	8		-			
	Q_2	0	8 + 1	8	Q_3	0 + 8 + 0			
ℓ_4	det ₃	1	10	5		-			
	<i>Q</i> 4	1	13 + 1	7	Q'_4	1 + 6 + 1			

Matrices under Conjugation

Conjugation action..

Jordan Form

Affine closures well understood, both inside and outside the null-cone. How do points y outside the null-cone interact with x inside?

Projective orbit closures

- Let x be a nilpotent matrix completely characterized by its nilpotent-block partition.
- Let y be any matrix described by its Jordan canonical form.
- When does x belong to the projective orbit closure of y?

When y itself is nilpotent, this is determined by the dominance ordering on the nilpotent-block partitions.

The Krull-Schmidt Dimensions

The dimensions of Krull-Schmidt sequence determines projective closures.

Spectrum block-partition

Let y be in Jordan canonical form with s eigenvalues μ_1, \ldots, μ_s . For μ_i , we define the block-partition $\lambda_i = (\lambda_{i1} \ge \lambda_{i2} \ge \ldots)$ which records the sizes of Jordan blocks of type μ_i

The spectrum block-partition λ of y is the sum $\lambda = \lambda_1 + \ldots + \lambda_s$

$$\mathbf{y} = \begin{bmatrix} -1 & 1 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 3 & 1 \\ 0 & 0 & 0 & 0 & 0 & 3 \end{bmatrix}$$

The block-partitions are (2, 1, 1), (2) for eigenvalues -1 and 3 The spectrum block-partition of y is (2, 1, 1) + (2) = (4, 1, 1)

If y has m distinct eigenvalues, its spectrum block-partition is (m).

Main Theorem

Let x be a nilpotent matrix whose nilpotent block-partition is θ . and y be a matrix whose spectrum block-partition is λ The projective orbit closure of y contains x iff $\theta \leq \lambda$.

$$y = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \quad y' = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \quad x = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

- The spectrum block-partition of y is (1,1) + (1) = (2,1)
- The spectrum block-partition of y' is (2) + (1) = (3).
- The nilpotent block-partition of x is (3)

We conclude that

- $y \in \overline{O(y')}$ (classical)
- $[x] \notin \overline{O([y])}$ (our theorem)
- $[x] \in \overline{O([y'])}$ (our theorem)

Computability of local model at J_m

The induced Lie algebra \mathcal{G} -action $\mathfrak{g}.A = [\mathfrak{g}, A] = \mathfrak{g}A - A\mathfrak{g}$ We fix J_m and apply the local model at J_m

$$J_m = \left[egin{array}{cccccc} 0 & 1 & 0 & \dots & \ 0 & 0 & 1 & 0 & \dots & \ dots & dots & dots & dots & \ dots & dots & dots & dots & \ dots & dots & dots & dots & \ dots & dots & dots & dots & \ dots & dots & dots & dots & dots & \ dots & dots & dots & dots & dots & dots & \ dots & d$$

The relevant data for J_4 is as follows

Stabilizers in the neighborhood of J_m

We fix $x + n = J_m + n$ where $n \in N$. Say

$$x+n = \begin{bmatrix} -c_3 & 1 & 0 & 0\\ -c_2 & 0 & 1 & 0\\ -c_1 & 0 & 0 & 1\\ -c_0 & 0 & 0 & 0 \end{bmatrix}$$

This is the familiar **companion form**. Next, for $\mathfrak{g} = \mathfrak{h} + \mathfrak{s}$

$$\mathfrak{g}(x+n) = (\mathfrak{s} + \lambda_{\mathcal{S}} \circ (1+\theta(n))^{-1}(\mathfrak{h} \cdot n), \lambda_{N} \circ (1+\theta(n))^{-1}(\mathfrak{h} \cdot n))$$

Calculations:

$$heta^i({\it n})=0 \;\; orall i\geq 2 \; {
m and} \; \lambda_N\circ (1- heta({\it n}))({rak h}\cdot {\it n}))=0$$

So, the stabilizer condition is: $\mathfrak{s} = -\lambda_{\mathcal{S}} \circ (1 - \theta(n))(\mathfrak{h} \cdot n)$

In other words, the stabilizer is the S-completion of the whole subspace \mathcal{H} and has dimension m.

Let y be a polystable point of the form x + n whose projective closure contains $x = J_m$

$$y = x + n = \begin{bmatrix} -c_3 & 1 & 0 & 0 \\ -c_2 & 0 & 1 & 0 \\ -c_1 & 0 & 0 & 1 \\ -c_0 & 0 & 0 & 0 \end{bmatrix}$$

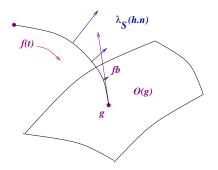
As y is diagonalizable and has stabilizer dimension m, this forces that y has distinct eigenvalues!

Observation: The minimal polynomial of x + n is also its characteristic polynomial, namely $z^m + c_{m-1}z^{m-1} + \ldots + c_0$

Advanced topics

Motivating the infinitesimal analysis

Understanding $\lim_{t\to 0} \mathcal{K}(t) = \mathcal{K}_0$.



The asymmetry in the degree of f

For any element $\mathfrak{g} = t_0^b \mathfrak{s} + \mathfrak{h} \in \mathcal{K}(t_0)$ we have:

$$\mathfrak{s} + \lambda_{\mathcal{S}}((1 + \theta(f^+(t_0)))^{-1}((\mathfrak{h} \cdot f^+(t_0))) = 0.$$
 (1)

Formulating the local stabilizer

- $\mathfrak{h} + \epsilon \mathfrak{s}$ stabilizes $p = g + \epsilon f_b$, with $\epsilon^2 = 0!$
- $\mathcal{G}[\epsilon] = \mathcal{G} \otimes \mathbb{C}[\epsilon]$, similarly $\mathcal{H}[\epsilon]$
- Let $\mathcal{H}_p \subseteq \mathcal{G}[\epsilon]$ is the stabilizer of p. Model for $\mathcal{K}(t)$?
- Given any $\mathfrak{h} \in \mathcal{H}_b$, $\mathfrak{h} \cdot f_b$ is a tangent vector TO_g . Define: $d_b : \mathcal{H}_b \to \mathcal{G}/\mathcal{H}$. d_b is a derivation.
- The stabilizer H_p ⊆ G[ε] is given by the set h₀ + εg such that
 (i) h₀ ∈ H_b, and (ii) g ∈ d_b⁻¹(-h₀f_b).
- $\epsilon \mathcal{H} \subseteq \mathcal{H}_p$. \mathcal{H}_p is too big. $\mathbb{C}[\epsilon]$ -dimension > k.

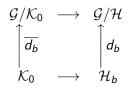
The extension question

Is there an $\overline{\mathcal{K}}$ of $\mathbb{C}[\epsilon]$ - dimension k which stabilizes p and such that

$$\overline{\mathcal{K}} \xrightarrow{\epsilon=0} \mathcal{K}_{0}$$

The extension problem

The existence of \overline{K} is equivalent to the existence of a derivation $\overline{d_b}$ extending d_b .



Theorem: Let g be a regular limit of f via A(t) and f(t) and f_b be as above. Let $\mathcal{K}(t)$ be the stabilizing Lie algebra of f(t) and \mathcal{H} that of g. Moreover, let $\mathcal{K}_0 \subseteq \mathcal{H}_b$ be the limit of $\mathcal{K}(t)$, as $t \to 0$. Let $d_b : \mathcal{K}_0 \to \mathcal{G}/\mathcal{H}$ be the derivation as above. Then there is a derivation $\overline{d_b} : \mathcal{K}_0 \to \mathcal{G}/\mathcal{K}_0$ which extends d_b .

Lie algebra Cohomology

We have the exact sequence of \mathcal{K}_0 -modules:

$$0 \longrightarrow \mathcal{H}/\mathcal{K}_0 \longrightarrow \mathcal{G}/\mathcal{K}_0 \longrightarrow \mathcal{G}/\mathcal{H} \longrightarrow 0$$

and the corresponding long exact sequence of cohomology modules:

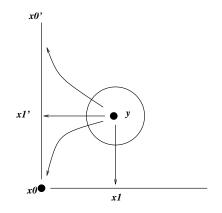
$$\begin{array}{rcl} 0 & \longrightarrow & H^0(\mathcal{K}_0, \mathcal{H}/\mathcal{K}_0) \longrightarrow H^0(\mathcal{K}_0, \mathcal{G}/\mathcal{K}_0) \longrightarrow H^0(\mathcal{K}_0, \mathcal{G}/\mathcal{H}) \\ & \longrightarrow & H^1(\mathcal{K}_0, \mathcal{H}/\mathcal{K}_0) \longrightarrow H^1(\mathcal{K}_0, \mathcal{G}/\mathcal{K}_0) \longrightarrow H^1(\mathcal{K}_0, \mathcal{G}/\mathcal{H}) \\ & \longrightarrow & H^2(\mathcal{K}_0, \mathcal{H}/\mathcal{K}_0) \longrightarrow \dots \end{array}$$

Since both d_b and $\overline{d_b}$ are derivations, they belong to the spaces $H^1(\mathcal{K}_0, \mathcal{G}/\mathcal{H})$ and $H^1(\mathcal{K}_0, \mathcal{G}/\mathcal{K}_0)$ respectively (but they may be 0).

- Variation of the ideas of Nijenhuis and Richardson where the 2-cocyles are the infinitesimal directions of deformations.
- Likely that \mathcal{K}_0 is not *rigid* while $\mathcal{K}(t_0)$ are, for generic $t_0 \in \mathbb{C}$.

Optimization, Paths and Differential Geometry of Orbits

- Already a close connection between Π, i.e., local curvature form and Θ, the local model.
- This generalizes to higher forms as well. The curvature at y is easily expressed in terms of ρ.
- Different starting directions lead to different limit points. Kempf gives us one optimization function.
- Are their other local functions at *y*?



Conclusion, open questions

- What is the "null cone" in the local model. For Luna, it is the null cone for the *H* action on *N*.
- Is there an algebraic geometry-analogue of the local model?
- **③** Can we classify "generic" limits and their nilpotent algebras \mathcal{K}_0 ?
- What limits do nilpotent families e^{At} give rise to? How do limit points accumulate stabilizing elements?
- Can "generic" co-dimension-1 boundary forms exist for the determinant?
- Are the cohomological conditions effective and salient? Especially, in the co-dimension 1 case?
- The non-uniqueness of the optimization problem seem to be the core of the projective closure problem. Is there a unification of the Kempf's 1-PS theory and "optimal" paths?

Thank You!