Geometric Complexity Theory Lie Algebraic Methods for Projective Closures

Bharat Adsul (IITB), Milind Sohoni (IITB and IITGoa), K V Subrahmanyam (CMI)
https://arxiv.org/abs/2201.00135

Jan. 27, 2022

Outline

- Preliminaries, group actions - the stabilizer question.
- The Big Picture, structure, paths and our contributions
- The Local Model
- Quotients of lie algebra action on $G \times_{H} V$.
- The local model expressions and its properties.
- Forms - Limits and the local stabilizers
- The family $f(t)=A(t) \cdot f=g+t^{b} f_{b}+\ldots$, with stabilizers \mathcal{H} and \mathcal{K} of g and f.
- A basis for $\mathcal{K}(t)$ and its properties $-\mathcal{K}_{0}$ and $\overline{f_{b}}$.
- The special case of $\lambda(t)$ and the triple-stabilizer conditions.
- The co-dimension-1 case.
- One Matrix under Conjugation
- The spectrum block partition and the top nilpotent. The local analysis of J_{n}.
- Advanced topics
- The very local stabilizer $\mathcal{K}[\epsilon]$ and the Lie algebra cohomology condition.
- Paths - Optimization and differential geometry.
- G, connected reductive algebraic group over \mathbb{C}.
- $\rho: G \rightarrow \operatorname{End}(V)$, rational representation.
- $y \in V$. Orbit of $y, O(y):=\{g \cdot y \mid g \in G\}$.
- $O(y)$ need not be closed, it is constructible.
- $\overline{O(y)}$, orbit closure of y - Zariski topology or Euclidean topology.
- $G L_{n}$ action on $\mathbb{C}^{n} \cdot \overline{O(v)}=\mathbb{C}^{n}, v \in \mathbb{C}^{n}, v \neq 0$,
- $G L_{n}$ adjoint action on $M_{n} \cdot \overline{O\left(J_{n}\right)}=\mathcal{N}$, the nilpotent cone.

Question:

- Given $x, y \in V$, is $x \in \overline{O(y)}$? Distinctive stabilizers.
- Given $[x],[y] \in \mathbb{P}(V)$, is $[x] \in \overline{O([y])}$? - direct relevance to algebraic complexity theory.

The Big Picture

We have $x, y \in V$, with a G-action, and λ such that:

$$
\lambda(t) \cdot y=t^{a} x+t^{b} y_{b}+\text { higher terms }
$$

Thus x appears as the leading term in a weight-space decomposition of y under λ. How do we connect the stabilizers of x and y ?

Example: $y=\operatorname{det}\left(X_{n n}\right)$ and $x=x_{n n}^{n-m} \operatorname{perm}\left(X_{m m}\right)$.

Question

Is there a homogenous substitution in the matrix so that the determinant becomes a smaller permanent, suitably homogenized?

Stabilizers change dramatically under taking limits!

The Big Picture

We have $x, y \in V$, with a G-action, and the question: Is there NO λ such that:

$$
\lambda(t) y=t^{a} x+t^{b} y_{b}+\text { higher terms }
$$

How do we determine the answer, even when x and y have distinctive stabilizers H, K ?

The GCT approach: The distinctive stabilizers have the required information. The hunt for obstructions.

$$
\mathbb{C}[\overline{O(y)}] \rightarrow \mathbb{C}[\overline{O(x)}] \rightarrow 0
$$

- Representations as Obstructions. Burgisser, Ikenmeyer and others.
- Geometric Approach: Ressayre-Mignon-Landsberg and others. Algebro-geometric properties of y (or x) and their closures.
- Algebraic Complexity Theory: Various questions pertaining to orbits and closures, optimizability - Wigderson et. al.

The Stabilizer Problem -The Structure and the Path

- Luna slice theorem: Rich structure of the neighborhood of x when it has a reductive stabilizer. No non-reductive version.
- Lie algebraic limits. If \mathcal{K} is the stabilizer of q then $\lim _{t \rightarrow 0} \lambda(t) \mathcal{K} \lambda(t)^{-1} \subseteq \mathcal{H}$. But deeper connection with Lie algebra deformations needed.

What we achieve:

- build a Luna type partly factorized "lower-triangular" model for non-reductive points.
- illustrate the computability of this model and its connections with standard and classical problems.
- demonstrate that the local model retains (possibly) relevant differential geometry information in the vicinity of x.
- provides a beginning to understanding the deformation of the Lie algebra \mathcal{K} (of y) to the Lie algebra \mathcal{H} of x.
- provide a beginning to understanding the path along which $\mathcal{K} \rightsquigarrow \mathcal{H}$, the importance of the tangents of exit and entry.
- hopefully provide links, connections of GCT to geometry.

The Local Model

Stabilizer Question

- Luna: G action near $x \Leftrightarrow H$-action on N.
- Factorization of action - Stabilizers in the vicinity of x are subgroups of H, in fact stabilizers of $n \in N$.

The difficulty with extending Luna

- There is no N which is left invariant by H.
- A candidate is to use $\bar{N}=V /\left(T_{x}(O(x))\right.$ and construct $G \times_{H} \bar{N} \rightarrow V$. But \bar{N} is H-invariant. So that does not work.
- The only map which works is $G \times_{H} V \rightarrow V$ which has a non-zero-dimensional fiber. This is used to develop the model.

The Local Model

- Select a suitable $M \subseteq G$ and $N \subseteq V$ - the orbit and the normal.
- Let $\mathcal{S} \oplus \mathcal{H}=\mathcal{G}$. Let $M \subset G$, submanifold containing $e \in G$ and complementary to H at e such that $T_{e} M=\mathcal{S}$.
- $M \cdot x$ is the orbit, $M \cdot(x+n)$ is merely the same dimension of $M \cdot x$ and transversal to $N . \mathcal{S} \cdot(x+n) \oplus N=T_{x+n} V$.
- Let $O(x)$ be G-orbit of x. Let N be a complement to $T O_{x}$.

$$
\mu: M \times N \rightarrow V: \mu(m, n)=m \cdot(x+n)
$$

Clearly, μ is a local diffeomorphism.

The \mathcal{G}-action

Objective

- To obtain an explicit \mathcal{G} action on a neighbourhood of $(e, 0) \in M \times N$ such that μ is equivariant.
- To compute this action on (e, N)

Immerse $M \times N$ in a suitable \mathcal{G}-equivariant map and project to $T(M \times N)$. Easy for Lie algebra actions!

- The map $\mu: G \times V \rightarrow V$ given by $\mu(g, v)=g \cdot(x+v)$ factorizes through $G \times_{H} V$.

$$
\begin{gathered}
\mu\left(g h, h^{-1} v\right)=g h\left(x+h^{-1} V\right)=g(x+v) \text { since } h \cdot x=x \\
G \times V \rightarrow G x_{H} V \rightarrow V
\end{gathered}
$$

$$
M \times N \rightarrow M \times V
$$

- Thus, $\mu: M \times V \rightarrow V$ is \mathcal{G}-equivariant and regular at $(e, 0)$.
- $M \times N$ is transversal to this map. This is the local model.

Recipe

- Compute the \mathfrak{g}-action on $M \times V$. Project that tangent vector to $M \times N$!

The Local Projections and the Action

- For $\mathfrak{g}=\mathfrak{h}+\mathfrak{s}$ and $(e, n) \in M \times V$, we have:

$$
\mathfrak{g} \cdot(e, n)=(\mathfrak{s}, \mathfrak{h} \cdot n)
$$

- If $\mathfrak{h} \cdot n \in N$ then we are done! If not, let
$\mathfrak{h} \cdot n=\mathfrak{s}^{\prime} \cdot(x+n)+n^{\prime}$, then:

$$
\mathfrak{g} \cdot(e, n)=\left(\mathfrak{s}+\mathfrak{s}^{\prime}, n^{\prime}\right)=\left(\mathfrak{s}+\lambda_{\mathcal{S}}(n)(\mathfrak{h} \cdot n), \quad \lambda_{N}(n)(\mathfrak{h} \cdot n)\right)
$$

- Thus $\mathfrak{g} \cdot(e, n) \in T_{(e, n)} M \times N=T_{e} M \times T_{n} N=\mathcal{S} \times N$.

The Local Model

The format $-\mathfrak{g}=\mathfrak{h}+\mathfrak{s}$ on the \mathcal{S} part and the N part

element	\mathcal{S}	N
\mathfrak{s}	\mathfrak{s}	0
$\mathfrak{h}^{a}=\mathfrak{r}+\mathfrak{q}$	$\lambda_{\mathcal{S}}(\mathfrak{q} \cdot n)$	$\lambda_{N}(\mathfrak{h} \cdot n)$

${ }^{a}$ in a reductive-nilpotent Levi decomposition

- $\mathfrak{g} \cdot(e, n)=0 \Rightarrow \lambda_{N}(\mathfrak{h} \cdot \boldsymbol{n})=0$. The stabilizer condition: $\mathcal{H}_{n}=\left\{\mathfrak{h} \mid \lambda_{N}(\mathfrak{h} \cdot n)=0\right\}$.
- For any $\mathfrak{h} \in \mathcal{G}$ and n, define its \mathcal{S} completion as that element $\mathfrak{g}=\mathfrak{h}+\mathfrak{s}$ such that $\mathfrak{s}=-\lambda_{\mathcal{S}}(n)(\mathfrak{h} \cdot n)$. Then $\mathfrak{g} \cdot n=0$.
- Note that \mathcal{S}-completion $\mathcal{H} \rightarrow \mathcal{G}$ is a linear operation.
- If $\mathcal{K} \subseteq \mathcal{G}$ is the stabilizer of $x+n$, then $\mathcal{H}_{n} \subseteq \mathcal{H}$ has same dimension and the \mathcal{S}-completion of every element of $\mathfrak{h} \in \mathcal{H}_{n}$ is \mathcal{K}.
- Note that reductive algebras may appear in the vicinity of nilpotent algebras.

Implementing $\lambda_{N}(n)$ and $\lambda_{\mathcal{S}}(n)$ - The maps θ, Θ and Φ

We define the map: $\theta(n): V \rightarrow V$ as:

$$
\theta(n)(v) \triangleq \lambda_{\mathcal{S}}(0)(v) \cdot n
$$

Thus, $T_{x} O(x)$ is both a subspace of V as well as a space \mathcal{S} of lie algebra elements.
Note that $\theta(n): V \rightarrow V$ is linear in n.

$$
\lambda_{\mathcal{S}}(n)=\lambda_{\mathcal{S}} \circ(1+\theta(n))^{-1} \text { and } \lambda_{N}(n)=\lambda_{N} \circ(1+\theta(n))^{-1}
$$

Then, for $\mathfrak{g}=\mathfrak{h}+\mathfrak{s}$, we have:
$\mathfrak{g} \circ(e, n)=\left(\mathfrak{s}+\lambda_{\mathcal{S}} \circ(1+\theta(n))^{-1}(\mathfrak{h} \cdot n), \lambda_{N} \circ(1+\theta(n))^{-1}(\mathfrak{h} \cdot n)\right)$
$H=R Q$ is the Levi decomposition and \mathcal{R} and \mathcal{Q} their lie algebras.
Suppose that \mathcal{S} and N are chosen as R-module complements of $\mathcal{H} \subseteq \mathcal{G}$ and $T O_{X} \subseteq V . \mathfrak{g}=\mathfrak{r}+\mathfrak{q}+\mathfrak{s}$, we have:
$\mathfrak{g} \circ(e, n)=\left(\mathfrak{s}+\lambda_{\mathcal{S}} \circ(1+\theta(n))^{-1}(\mathfrak{q} \cdot n), \mathfrak{r} \cdot n+\lambda_{N} \circ(1+\theta(n))^{-1}(\mathfrak{q} \cdot n)\right)$
Moreover the $\Theta: V \otimes N \rightarrow V$ and $\Phi: \mathcal{S} \otimes N \rightarrow \mathcal{S}$ maps are R-equivariant.

$$
\begin{aligned}
\Theta(v \otimes n) & \triangleq \lambda_{\mathcal{S}}(v) \cdot n \\
\Phi(\mathfrak{s} \otimes v) & \triangleq \lambda_{\mathcal{S}}(\mathfrak{s} \cdot n)
\end{aligned}
$$

- Only the nilpotent part \mathfrak{q} transmits to the \mathcal{S}-part. If \mathcal{H} is reductive, we recover classical result.
- The "Gauss" map $\Phi: \mathcal{S} \times N \rightarrow \mathcal{S}$ is an algebraic version of curvature form $\Pi: \mathcal{S} \times \mathcal{S} \rightarrow N$. It captures the same data for reductive group representations.

Comparison

Luna	Local Model
G-action $\Leftrightarrow H$-action on N	\mathcal{H}-action through λ_{N} and Θ
Horizontal action through G / H	Horizontal action through \mathcal{Q}
	and \mathcal{S}.
Stabilizer $G_{n} \subseteq H$	\mathcal{G}_{n} are \mathcal{S}-completions of \mathcal{H}_{n}
Valid for good orbits x	Valid for all x

Understanding $\mathcal{K} \rightsquigarrow \mathcal{H}$ in limits of forms.

- Let X be a set of indeterminates and let V be the $G L(X)$-module $V=\operatorname{Sym}^{d}(X)$ and $f, g \in V$ be non-zero forms.
- Let \mathcal{G} be the algebra $g l(X), \mathcal{K} \subseteq \mathcal{G}$ be the stabilizer of f and \mathcal{H} be the Lie algebra stabilizing g.
- Algebraic family $A(t) \subseteq G L(X)$, parametrized by t such that $A(1)=e$, the identity element. Let

$$
f(t)=A(t) \cdot f=t^{a} g+t^{b} f_{b}+t^{b+1} f_{b+1}+\ldots+t^{D} f_{D}
$$

- Such a family exists for projective closures in form space!

After re-normalization, we may assume:

$$
f(t)=A(t) \cdot f=g+t^{b} f_{b}+t^{b+1} f_{b+1}+\ldots+t^{D} f_{D}
$$

with $f_{b} \neq 0$. We call f_{b} as the tangent of approach.
Transversality Assumption. Vector space spanned by f_{b}, \ldots, f_{D} intersects $T_{g} O(g)$ trivially.

The Stabilizer Condition

- Notation: $A(t) \cdot f=f(t)=g+t^{b} f_{b}+\ldots$, and $f^{+}(t)=\sum_{i=b}^{D} f_{i} t^{i}$. Note that t^{b} divides $f^{+}(t)$.
- $\mathcal{K}\left(t_{0}\right)$ is the stabilizer of $f\left(t_{0}\right)$, then $\mathcal{K}\left(t_{0}\right)=A\left(t_{0}\right) \mathcal{K} A\left(t_{0}\right)^{-1}$. $\operatorname{dim}\left(\mathcal{K}\left(t_{0}\right)=\operatorname{dim}(\mathcal{K})=k\right.$.
- Applying the local model to a parametrized family $\mathcal{H}(t) \subseteq \mathcal{H}$ whose \mathcal{S}-completion is the stabilizer $\mathcal{K}(t)$.
- Gives us a uniform basis for $\mathcal{K}(t)$ which goes into \mathcal{H} in the limit, giving us \mathcal{K}_{0}, a subalgebra of \mathcal{H}.

Key Proposition

(1) There is a $\mathbb{C}(t)$-basis $\left\{\mathfrak{k}_{i}(t)\right\}_{i=1}^{k}$ of $\mathcal{K}(t)$, the stabilizer Lie algebra of $f(t)$ and a large number D such that

$$
\mathfrak{k}_{i}(t)=\sum_{j=0}^{D}\left(\mathfrak{s}_{i j}+\mathfrak{h}_{i j}\right) t^{j},=\mathfrak{h}_{i}(t)+t^{b} \mathfrak{s}_{i}(t)
$$

for suitable elements $\mathfrak{s}_{i j} \in \mathcal{S}, \mathfrak{h}_{i j} \in \mathcal{H}$. The dimension of \mathcal{K}_{0} is the same as the dimension of $\mathcal{K}\left(t_{0}\right)$ for a generic $t_{0} \in \mathbb{C}$.
(2) Let $\mathcal{H}(t)=\mathbb{C}(t) \cdot\left\{\mathfrak{h}_{i}(t) \mid i=1, \ldots, k\right\}$. For any generic $t_{0} \in \mathbb{C}$, subspace $\mathcal{H}\left(t_{0}\right) \subseteq \mathcal{H}$, has dimension k and $\mathcal{K}\left(t_{0}\right)$ is the \mathcal{S}-completion of $\mathcal{H}\left(t_{0}\right)$ for the point $f^{+}\left(t_{0}\right)$.
(3) The space $\mathcal{K}_{0}=\mathbb{C} \cdot\left\{\mathfrak{k}_{1}(0), \ldots, \mathfrak{k}_{k}(0)\right\}, \mathbb{C}$-space of leading terms $\mathfrak{k}_{i}(0)=\mathfrak{k}_{i 0}=\mathfrak{h}_{i 0}$ is a Lie subalgebra of \mathcal{H} and of dimension k. Moreover, if $\mathfrak{k}(t) \in \mathcal{K}(t)$ is any element such that $\mathfrak{k}(0)$ is defined, then $\mathfrak{k}(0) \in \mathcal{K}_{0}$.

The Wrap-up Theorem

The \star-action: \mathcal{H} acts on $\bar{N}=V /(T O(g))$. This is the traditional quotient action. If H is reductive, N may itself be an \mathcal{H}-module.
(1) For any element $\mathfrak{h} \in \mathcal{K}_{0}$, we have $\lambda_{N}\left(\mathfrak{h} \cdot f_{b}\right)=0$ and thus, there is an $\mathfrak{s} \in \mathcal{S}$ such that $\mathfrak{s} \cdot g+\lambda_{\mathcal{S}}\left(\mathfrak{h} \cdot f_{b}\right)=0$. Paves the way for \star-action
(2) The subalgebra \mathcal{K}_{0} is contained within $\mathcal{H}_{b} \subseteq \mathcal{H}$, the stabilizer of $\overline{f_{b}}$ for the \star-action of \mathcal{H}.
(3) The local model matches $G \times_{H} \bar{N}$ infinitesimally close to x.

The coupling of \mathcal{K} and \mathcal{H}

$$
\mathcal{K} \rightsquigarrow \mathcal{K}_{0} \rightarrow \mathcal{H}_{b} \rightarrow \mathcal{H}
$$

Thus, when the small permanent appears in the orbit closure of the determinant, a "smashed" version of the stabilizer of the determinant sits inside the stabilizer of the homogenized small permanent as a subalgebra!

Important, in GCT as well as in Kempf and other limits.

$$
\lambda(t) \cdot f=t^{a} g+t^{b} f_{b}+\text { higher terms }
$$

- Implements singular substitutions $f(A \cdot X)$. Let $X=Y \cup Z$. $\lambda(t) \cdot y=y, \forall y \in Y, \lambda(t) \cdot z=t z, \forall z \in z$
- $\mathcal{G}=\mathcal{G}_{-1} \oplus \mathcal{G}_{0} \oplus \mathcal{G}_{1}$. $\lambda(t) \mathfrak{g}_{i} \lambda(t)^{-1}=t^{i} \mathfrak{g}_{i}$ for any $\mathfrak{g}_{i} \in \mathcal{G}_{i}$, and that $\mathcal{G}_{i} \cdot V_{j}=V_{i+j}$.

The 1-PS case

- $\mathcal{G}=\mathcal{G}_{-1} \oplus \mathcal{G}_{0} \oplus \mathcal{G}_{1}$. $\lambda(t) \mathfrak{g}_{i} \lambda(t)^{-1}=t^{i} \mathfrak{g}_{i}$ for any $\mathfrak{g}_{i} \in \mathcal{G}_{i}$, and that $\mathcal{G}_{i} \cdot V_{j}=V_{i+j}$.
- \mathcal{H} is graded. We can choose $\mathcal{S}_{i} \subseteq \mathcal{G}_{i}$ to be a complement of \mathcal{H}_{i}, so that \mathcal{S} is graded. \mathcal{H}_{b} is graded.
- \mathcal{K}_{0} are the leading terms of elements of \mathcal{K}. So \mathcal{K}_{0} is graded.

The Lie algebra element ℓ

- Setting $\ell=\log \left(t^{-a / d} \lambda(t)\right)$, (i) $\ell \in \mathcal{H}, \ell \notin \mathcal{H}_{b}$ but $\left[\ell, \mathcal{H}_{b}\right] \subseteq \mathcal{H}_{b}$ and $\left[\ell, \mathcal{K}_{0}\right] \subseteq \mathcal{K}_{0}, \ell$ normalizes $\mathcal{H}_{b}, \mathcal{K}_{0}$.

The tangent of exit

Definition

Assume $\lambda(t) f=t^{a} g+t^{b} f_{b}+\cdots+t^{D} f_{D}$. Then the tangent of exit is the form $\lim _{t \rightarrow 1} \frac{f(t)-f(1)}{t-1}$.

- $\ell f=a f_{a}+b f_{b}+\ldots+D f_{D}$, and the tangent of exit is $\ell f-f$.
- ℓf is in an element of $T O_{f}$.
- Tangent of exit given by the action of $\ell, \ell \notin \mathcal{K}$.

Key Questions

- What is the stabilizer of ℓf within $T O_{f}$, under \mathcal{K} ?
- Are there some symmetries which $f, \ell f, g$ share, and will that shed light on $\mathcal{K} \rightsquigarrow \mathcal{H}$?
- Element $\mathfrak{k} \in \mathcal{K}$ of pure ℓ-weight are triple stabilizers!

Let f, g, λ and ℓ be as above. Then at least one of the following hold:
(A) \mathcal{K}_{0} is a nilpotent algebra, or
(B) there is a unipotent element $u \in U(\lambda)$ and an element $\mathfrak{k} \in \mathcal{K}$ such that g is a limit of f^{u} under λ and \mathfrak{k}^{u} is a triple stabilizer for the data $\left(f^{u}, \ell f^{u}, g\right)$.
semi-simple elements in \mathcal{K} of ℓ-weight zero! Or more generally:

$$
\mathfrak{k}^{u} \in \mathcal{K}^{u}\left(\rightsquigarrow \mathcal{K}_{0}^{u}\right) \rightarrow \mathcal{H}_{b}^{u} \rightarrow \mathcal{H}
$$

Closure of affine forms

Let g be a projective limit of codimension 1 of f under λ as above. Then at least one of the following conditions hold:
(1) \mathcal{K}_{0} is nilpotent and $\mathcal{H}=\mathcal{K}_{0} \oplus \mathbb{C} \ell$ is a Levi factorization of \mathcal{H}.
(2) There are unipotent elements $u \in U(\lambda)$ and elements $\mathfrak{k} \in \mathcal{K}$ such that $u \mathfrak{k} u^{-1}$ stabilizes g, f^{u} and ℓf^{u}, and g is the limit of f^{u} under λ.

$\operatorname{det}_{3}(X)=\operatorname{det}$						
$1-P S$	forms	$\begin{gathered} \operatorname{dim}^{\left(\left(\mathcal{K}_{0}\right)_{i}\right)} \\ \operatorname{dim}\left((\mathcal{H})_{i}\right) \end{gathered}$			ℓf	$\operatorname{dim}\left(\mathcal{K}_{\ell f}\right)$
	(f, g)	1	0	-1		
ℓ_{1}	$\begin{gathered} \text { det }_{3} \\ Q_{1} \end{gathered}$	$\begin{array}{\|l\|} \hline 0 \\ 0 \end{array}$	$\begin{gathered} 8 \\ 8+1 \end{gathered}$	$\begin{aligned} & \hline 8 \\ & 8 \end{aligned}$	Q_{1}^{\prime}	$0+4+0$
ℓ_{2}	$\begin{gathered} \operatorname{det}_{3} \\ Q_{2} \end{gathered}$	0	$\begin{gathered} 8 \\ 8+1 \end{gathered}$	$\begin{aligned} & 8 \\ & 8 \end{aligned}$	Q_{3}	$0+\overline{8}+0$
ℓ_{4}	$\begin{gathered} \operatorname{det}_{3} \\ Q_{4} \end{gathered}$	1	$\begin{gathered} 10 \\ 13+1 \end{gathered}$	$\begin{aligned} & 5 \\ & 7 \end{aligned}$	Q_{4}^{\prime}	$1+6+1$

Matrices under Conjugation

Conjugation action..

Jordan Form

Affine closures well understood, both inside and outside the null-cone. How do points y outside the null-cone interact with x inside?

Projective orbit closures

- Let x be a nilpotent matrix completely characterized by its nilpotent-block partition.
- Let y be any matrix described by its Jordan canonical form.
- When does x belong to the projective orbit closure of y ?

When y itself is nilpotent, this is determined by the dominance ordering on the nilpotent-block partitions.

The Krull-Schmidt Dimensions

The dimensions of Krull-Schmidt sequence determines projective closures.

Spectrum block-partition

Let y be in Jordan canonical form with s eigenvalues μ_{1}, \ldots, μ_{s}. For μ_{i}, we define the block-partition $\lambda_{i}=\left(\lambda_{i 1} \geq \lambda_{i 2} \geq \ldots\right)$ which records the sizes of Jordan blocks of type μ_{i}
The spectrum block-partition λ of y is the sum $\lambda=\lambda_{1}+\ldots+\lambda_{s}$

$$
y=\left[\begin{array}{rrrrrr}
-1 & 1 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 3 & 1 \\
0 & 0 & 0 & 0 & 0 & 3
\end{array}\right]
$$

The block-partitions are $(2,1,1)$, (2) for eigenvalues -1 and 3 The spectrum block-partition of y is $(2,1,1)+(2)=(4,1,1)$

If y has m distinct eigenvalues, its spectrum block-partition is (m).

Projective orbit closure theorem

Main Theorem

Let x be a nilpotent matrix whose nilpotent block-partition is θ. and y be a matrix whose spectrum block-partition is λ The projective orbit closure of y contains x iff $\theta \unlhd \lambda$.

$$
y=\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right] \quad y^{\prime}=\left[\begin{array}{rrr}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right] \quad x=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

- The spectrum block-partition of y is $(1,1)+(1)=(2,1)$
- The spectrum block-partition of y^{\prime} is $(2)+(1)=(3)$.
- The nilpotent block-partition of x is (3)

We conclude that

- $y \in \overline{O\left(y^{\prime}\right)}$ (classical)
- $[x] \notin \overline{O([y])}$ (our theorem)
- $[x] \in \overline{O\left(\left[y^{\prime}\right]\right)}$ (our theorem)

Computability of local model at J_{m}

The induced Lie algebra \mathcal{G}-action $\mathfrak{g} \cdot A=[\mathfrak{g}, A]=\mathfrak{g} A-A \mathfrak{g}$ We fix J_{m} and apply the local model at J_{m}

$$
J_{m}=\left[\begin{array}{ccccc}
0 & 1 & 0 & \ldots & \\
0 & 0 & 1 & 0 & \ldots \\
& \vdots & & \vdots & \\
0 & 0 & \ldots & 0 & 1 \\
0 & 0 & \ldots & 0 & 0
\end{array}\right]
$$

The relevant data for J_{4} is as follows
$\mathcal{H}=\left[\begin{array}{llll}\alpha & \beta & \gamma & \delta \\ 0 & \alpha & \beta & \gamma \\ 0 & 0 & \alpha & \beta \\ 0 & 0 & 0 & \alpha\end{array}\right] \mathcal{S}=\left[\begin{array}{llll}0 & 0 & 0 & 0 \\ * & * & * & * \\ * & * & * & * \\ * & * & * & *\end{array}\right] N=\left[\begin{array}{llll}* & 0 & 0 & 0 \\ * & 0 & 0 & 0 \\ * & 0 & 0 & 0 \\ * & 0 & 0 & 0\end{array}\right]$

Stabilizers in the neighborhood of J_{m}

We fix $x+n=J_{m}+n$ where $n \in N$. Say

$$
x+n=\left[\begin{array}{llll}
-c_{3} & 1 & 0 & 0 \\
-c_{2} & 0 & 1 & 0 \\
-c_{1} & 0 & 0 & 1 \\
-c_{0} & 0 & 0 & 0
\end{array}\right]
$$

This is the familiar companion form. Next, for $\mathfrak{g}=\mathfrak{h}+\mathfrak{s}$
$\mathfrak{g} \cdot(x+n)=\left(\mathfrak{s}+\lambda_{\mathcal{S}} \circ(1+\theta(n))^{-1}(\mathfrak{h} \cdot n), \lambda_{N} \circ(1+\theta(n))^{-1}(\mathfrak{h} \cdot n)\right)$
Calculations:

$$
\left.\theta^{i}(n)=0 \quad \forall i \geq 2 \text { and } \lambda_{N} \circ(1-\theta(n))(\mathfrak{h} \cdot n)\right)=0
$$

So, the stabilizer condition is: $\mathfrak{s}=-\lambda_{\mathcal{S}} \circ(1-\theta(n))(\mathfrak{h} \cdot n)$
In other words, the stabilizer is the \mathcal{S}-completion of the whole subspace \mathcal{H} and has dimension m.

Diagonalizable matrices with J_{m} in the projective closure

Let y be a polystable point of the form $x+n$ whose projective closure contains $x=J_{m}$

$$
y=x+n=\left[\begin{array}{llll}
-c_{3} & 1 & 0 & 0 \\
-c_{2} & 0 & 1 & 0 \\
-c_{1} & 0 & 0 & 1 \\
-c_{0} & 0 & 0 & 0
\end{array}\right]
$$

As y is diagonalizable and has stabilizer dimension m, this forces that y has distinct eigenvalues!

Observation: The minimal polynomial of $x+n$ is also its characteristic polynomial, namely $z^{m}+c_{m-1} z^{m-1}+\ldots+c_{0}$

Advanced topics

Motivating the infinitesimal analysis

Understanding $\lim _{t \rightarrow 0} \mathcal{K}(t)=\mathcal{K}_{0}$.

The asymmetry in the degree of f
For any element $\mathfrak{g}=t_{0}^{b} \mathfrak{s}+\mathfrak{h} \in \mathcal{K}\left(t_{0}\right)$ we have:

$$
\begin{equation*}
\mathfrak{s}+\lambda_{\mathcal{S}}\left(\left(1+\theta\left(f^{+}\left(t_{0}\right)\right)\right)^{-1}\left(\left(\mathfrak{h} \cdot f^{+}\left(t_{0}\right)\right)\right)=0 .\right. \tag{1}
\end{equation*}
$$

Formulating the local stabilizer

- $\mathfrak{h}+\epsilon \mathfrak{s}$ stabilizes $p=g+\epsilon f_{b}$, with $\epsilon^{2}=0$!
- $\mathcal{G}[\epsilon]=\mathcal{G} \otimes \mathbb{C}[\epsilon]$, similarly $\mathcal{H}[\epsilon]$
- Let $\mathcal{H}_{p} \subseteq \mathcal{G}[\epsilon]$ is the stabilizer of p. Model for $\mathcal{K}(t)$?
- Given any $\mathfrak{h} \in \mathcal{H}_{b}, \mathfrak{h} \cdot f_{b}$ is a tangent vector $T O_{g}$. Define: $d_{b}: \mathcal{H}_{b} \rightarrow \mathcal{G} / \mathcal{H} . d_{b}$ is a derivation.
- The stabilizer $\mathcal{H}_{p} \subseteq \mathcal{G}[\epsilon]$ is given by the set $\mathfrak{h}_{0}+\epsilon \mathfrak{g}$ such that (i) $\mathfrak{h}_{0} \in \mathcal{H}_{b}$, and (ii) $\mathfrak{g} \in d_{b}^{-1}\left(-\mathfrak{h}_{0} f_{b}\right)$.
- $\epsilon \mathcal{H} \subseteq \mathcal{H}_{p}$. \mathcal{H}_{p} is too big. $\mathbb{C}[\epsilon]$-dimension $>k$.

The extension question

Is there an $\overline{\mathcal{K}}$ of $\mathbb{C}[\epsilon]$ - dimension k which stabilizes p and such that

$$
\overline{\mathcal{K}} \xrightarrow{\epsilon=0} \mathcal{K}_{0}
$$

The existence of \bar{K} is equivalent to the existence of a derivation $\overline{d_{b}}$ extending d_{b}.

Theorem: Let g be a regular limit of f via $A(t)$ and $f(t)$ and f_{b} be as above. Let $\mathcal{K}(t)$ be the stabilizing Lie algebra of $f(t)$ and \mathcal{H} that of g. Moreover, let $\mathcal{K}_{0} \subseteq \mathcal{H}_{b}$ be the limit of $\mathcal{K}(t)$, as $t \rightarrow 0$. Let $d_{b}: \mathcal{K}_{0} \rightarrow \mathcal{G} / \mathcal{H}$ be the derivation as above. Then there is a derivation $\overline{d_{b}}: \mathcal{K}_{0} \rightarrow \mathcal{G} / \mathcal{K}_{0}$ which extends d_{b}.

Lie algebra Cohomology

We have the exact sequence of \mathcal{K}_{0}-modules:

$$
0 \longrightarrow \mathcal{H} / \mathcal{K}_{0} \longrightarrow \mathcal{G} / \mathcal{K}_{0} \longrightarrow \mathcal{G} / \mathcal{H} \longrightarrow 0
$$

and the corresponding long exact sequence of cohomology modules:

$$
\begin{aligned}
0 & \longrightarrow H^{0}\left(\mathcal{K}_{0}, \mathcal{H} / \mathcal{K}_{0}\right) \longrightarrow H^{0}\left(\mathcal{K}_{0}, \mathcal{G} / \mathcal{K}_{0}\right) \longrightarrow H^{0}\left(\mathcal{K}_{0}, \mathcal{G} / \mathcal{H}\right) \\
& \longrightarrow H^{1}\left(\mathcal{K}_{0}, \mathcal{H} / \mathcal{K}_{0}\right) \longrightarrow H^{1}\left(\mathcal{K}_{0}, \mathcal{G} / \mathcal{K}_{0}\right) \longrightarrow H^{1}\left(\mathcal{K}_{0}, \mathcal{G} / \mathcal{H}\right) \\
& H^{2}\left(\mathcal{K}_{0}, \mathcal{H} / \mathcal{K}_{0}\right) \longrightarrow \ldots
\end{aligned}
$$

Since both d_{b} and $\overline{d_{b}}$ are derivations, they belong to the spaces $H^{1}\left(\mathcal{K}_{0}, \mathcal{G} / \mathcal{H}\right)$ and $H^{1}\left(\mathcal{K}_{0}, \mathcal{G} / \mathcal{K}_{0}\right)$ respectively (but they may be 0).

- Variation of the ideas of Nijenhuis and Richardson where the 2-cocyles are the infinitesimal directions of deformations.
- Likely that \mathcal{K}_{0} is not rigid while $\mathcal{K}\left(t_{0}\right)$ are, for generic $t_{0} \in \mathbb{C}$.

Optimization, Paths and Differential Geometry of Orbits

- Already a close connection between Π, i.e., local curvature form and Θ, the local model.
- This generalizes to higher forms as well. The curvature at y is easily expressed in terms of ρ.
- Different starting directions lead to different limit points. Kempf gives us one optimization function.
- Are their other local functions
 at y ?

Conclusion, open questions

(1) What is the "null cone" in the local model. For Luna, it is the null cone for the H action on N.
(2) Is there an algebraic geometry-analogue of the local model?
(3) Can we classify "generic" limits and their nilpotent algebras \mathcal{K}_{0} ?
(9) What limits do nilpotent families $e^{A t}$ give rise to? How do limit points accumulate stabilizing elements?
(5) Can "generic" co-dimension-1 boundary forms exist for the determinant?
(0) Are the cohomological conditions effective and salient? Especially, in the co-dimension 1 case?
(1) The non-uniqueness of the optimization problem seem to be the core of the projective closure problem. Is there a unification of the Kempf's 1-PS theory and "optimal" paths?

Thank You!

