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Preliminaries

G , connected reductive algebraic group over C.
ρ : G → End(V ), rational representation.

y ∈ V . Orbit of y , O(y) := {g · y |g ∈ G}.
O(y) need not be closed, it is constructible.

O(y), orbit closure of y - Zariski topology or Euclidean
topology.

GLn action on Cn . O(v) = Cn, v ∈ Cn, v ̸= 0,
GLn adjoint action on Mn. O(Jn) = N , the nilpotent cone.

Question:

Given x , y ∈ V , is x ∈ O(y)? Distinctive stabilizers.

Given [x ], [y ] ∈ P(V ), is [x ] ∈ O([y ])? – direct relevance to
algebraic complexity theory.
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The Big Picture

We have x , y ∈ V , with a G -action, and λ such that:

λ(t) · y = tax + tbyb + higher terms

Thus x appears as the leading term in a weight-space
decomposition of y under λ. How do we connect the stabilizers of
x and y?

Example: y = det(Xnn) and
x = xn−m

nn perm(Xmm).

Question

Is there a homogenous substitution in
the matrix so that the determinant
becomes a smaller permanent, suitably
homogenized?

Stabilizers change dramatically under taking limits!

x_11

x_mm

x_nn
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The Big Picture

We have x , y ∈ V , with a G -action, and the question: Is there NO
λ such that:

λ(t)y = tax + tbyb + higher terms

How do we determine the answer, even when x and y have
distinctive stabilizers H,K?

The GCT approach: The distinctive stabilizers have the required
information. The hunt for obstructions.

C[O(y)] → C[O(x)] → 0

Representations as Obstructions. Burgisser, Ikenmeyer and
others.

Geometric Approach: Ressayre-Mignon-Landsberg and others.
Algebro-geometric properties of y (or x) and their closures.

Algebraic Complexity Theory: Various questions pertaining to
orbits and closures, optimizability - Wigderson et. al.
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The Stabilizer Problem -The Structure and the Path

y

x

O(x)

O(y)

H

K

Luna slice theorem: Rich structure of the neighborhood of x
when it has a reductive stabilizer. No non-reductive version.

Lie algebraic limits. If K is the stabilizer of q then
limt→0 λ(t)Kλ(t)−1 ⊆ H. But deeper connection with Lie
algebra deformations needed.
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What we achieve:

build a Luna type partly factorized “lower-triangular” model
for non-reductive points.

illustrate the computability of this model and its connections
with standard and classical problems.

demonstrate that the local model retains (possibly) relevant
differential geometry information in the vicinity of x .

provides a beginning to understanding the deformation of the
Lie algebra K (of y) to the Lie algebra H of x .

provide a beginning to understanding the path along which
K⇝ H, the importance of the tangents of exit and entry.

hopefully provide links, connections of GCT to geometry.
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The Local Model

y

x

O(x)

O(y)

H

K

Stabilizer Question

Luna: G action near x ⇔ H-action on N.

Factorization of action - Stabilizers in the vicinity of x are
subgroups of H, in fact stabilizers of n ∈ N.
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The difficulty with extending Luna

There is no N which is left invariant by H.

A candidate is to use N = V /(Tx(O(x)) and construct
G ×H N → V . But N is H-invariant. So that does not work.

The only map which works is G ×H V → V which has a
non-zero-dimensional fiber. This is used to develop the model.

y

x

O(x)

O(y)

H

K
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The Local Model

Select a suitable M ⊆ G and N ⊆ V - the orbit and the
normal.

Let S ⊕H = G. Let M ⊂ G , submanifold containing e ∈ G
and complementary to H at e such that TeM = S.
M · x is the orbit, M · (x + n) is merely the same dimension of
M · x and transversal to N. S · (x + n)⊕ N = Tx+nV .

Let O(x) be G -orbit of x . Let N be a complement to TOx .

µ : M × N → V : µ(m, n) = m · (x + n)

Clearly, µ is a local diffeomorphism.

x

x+n

N

S.(x+n)

S.(x)=TO(x)
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The G-action

Objective

To obtain an explicit G action on a neighbourhood of
(e, 0) ∈ M × N such that µ is equivariant.

To compute this action on (e,N)

Y

f

X

M

Immerse M × N in a suitable G-equivariant map and project to
T (M × N). Easy for Lie algebra actions!
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The associated bundles

The map µ : G × V → V given by µ(g , v) = g · (x + v)
factorizes through G ×H V .

µ(gh, h−1v) = gh(x + h−1V ) = g(x + v) since h · x = x

G × V → G ×H V → V

↑ ↗

M × N → M × V

Thus, µ : M × V → V is G-equivariant and regular at (e, 0).

M × N is transversal to this map. This is the local model.

Recipe

Compute the g-action on M × V . Project that tangent vector
to M × N!
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The Local Projections and the Action

For g = h+ s and (e, n) ∈ M × V , we have:

g · (e, n) = (s, h · n)

If h · n ∈ N then we are done! If not, let
h · n = s′ · (x + n) + n′, then:

g · (e, n) = (s+ s′, n′) = (s+ λS(n)(h · n), λN(n)(h · n))

Thus g · (e, n) ∈ T(e,n)M × N = TeM × TnN = S × N.

x

x+n

N

S.(x+n)

S.(x)=TO(x)

h.n

λN

Sλ
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The Local Model

The format - g = h+ s on the S part and the N part

element S N

s s 0

ha = r+ q λS(q · n) λN(h · n)
ain a reductive-nilpotent Levi decomposition

g · (e, n) = 0 ⇒ λN(h · n) = 0. The stabilizer condition:
Hn = {h|λN(h · n) = 0}.
For any h ∈ G and n, define its S completion as that element
g = h+ s such that s = −λS(n)(h · n). Then g · n = 0.

Note that S-completion H → G is a linear operation.

If K ⊆ G is the stabilizer of x + n, then Hn ⊆ H has same
dimension and the S-completion of every element of h ∈ Hn is
K.

Note that reductive algebras may appear in the vicinity of
nilpotent algebras.

14 / 43



Implementing λN(n) and λS(n) - The maps θ,Θ and Φ

We define the map: θ(n) : V → V as:

θ(n)(v)
∆
= λS(0)(v) · n

Thus, TxO(x) is both a subspace of V as well as a space S of lie
algebra elements.
Note that θ(n) : V → V is linear in n.

λS(n) = λS ◦ (1 + θ(n))−1 and λN(n) = λN ◦ (1 + θ(n))−1

Then, for g = h+ s, we have:

g ◦ (e, n) = (s+ λS ◦ (1 + θ(n))−1(h · n), λN ◦ (1 + θ(n))−1(h · n))
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Equivariance

H = RQ is the Levi decomposition and R and Q their lie algebras.
Suppose that S and N are chosen as R-module complements of
H ⊆ G and TOx ⊆ V . g = r+ q+ s, we have:

g◦(e, n) = (s+λS ◦ (1 + θ(n))−1(q · n), r · n + λN ◦ (1 + θ(n))−1(q · n))

Moreover the Θ : V ⊗ N → V and Φ : S ⊗ N → S maps are
R-equivariant.

Θ(v ⊗ n)
∆
= λS(v) · n

Φ(s⊗ v)
∆
= λS(s · n)

Only the nilpotent part q transmits to the S-part. If H is
reductive, we recover classical result.

The “Gauss” map Φ : S × N → S is an algebraic version of
curvature form Π : S × S → N. It captures the same data for
reductive group representations.
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Comparison

y

x

O(x)

O(y)

H

K

Luna Local Model

G -action ⇔ H-action on N H-action through λN and Θ
Horizontal action through G/H Horizontal action through Q

and S.
Stabilizer Gn ⊆ H Gn are S-completions of Hn

Valid for good orbits x Valid for all x
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Understanding K⇝ H in
limits of forms.
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Forms

Let X be a set of indeterminates and let V be the
GL(X )-module V = Symd(X ) and f , g ∈ V be non-zero
forms.

Let G be the algebra gl(X ), K ⊆ G be the stabilizer of f and
H be the Lie algebra stabilizing g .

Algebraic family A(t) ⊆ GL(X ), parametrized by t such that
A(1) = e, the identity element. Let

f (t) = A(t).f = tag + tbfb + tb+1fb+1 + . . .+ tD fD ,

Such a family exists for projective closures in form space!
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Forms

fb

O(g)

f(t)

g

After re-normalization, we may assume:

f (t) = A(t).f = g + tbfb + tb+1fb+1 + . . .+ tD fD ,

with fb ̸= 0. We call fb as the tangent of approach.
Transversality Assumption. Vector space spanned by fb, . . . , fD
intersects TgO(g) trivially.
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The Stabilizer Condition

fb

O(g)

f(t)

g

Notation: A(t) · f = f (t) = g + tbfb + . . ., and
f +(t) =

∑D
i=b fi t

i . Note that tb divides f +(t).

K(t0) is the stabilizer of f (t0), then K(t0) = A(t0)KA(t0)
−1.

dim(K(t0) = dim(K) = k .

Applying the local model to a parametrized family -
H(t) ⊆ H whose S-completion is the stabilizer K(t).

Gives us a uniform basis for K(t) which goes into H in the
limit, giving us K0, a subalgebra of H.
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Key Proposition

1 There is a C(t)-basis {ki (t)}ki=1 of K(t), the stabilizer Lie
algebra of f (t) and a large number D such that

ki (t) =
D∑
j=0

(sij + hij)t
j ,= hi (t) + tbsi (t)

for suitable elements sij ∈ S, hij ∈ H. The dimension of K0 is
the same as the dimension of K(t0) for a generic t0 ∈ C.

2 Let H(t) = C(t) · {hi (t)|i = 1, . . . , k}. For any generic
t0 ∈ C, subspace H(t0) ⊆ H, has dimension k and K(t0) is
the S-completion of H(t0) for the point f +(t0).

3 The space K0 = C · {k1(0), . . . , kk(0)}, C-space of leading
terms ki (0) = ki0 = hi0 is a Lie subalgebra of H and of
dimension k . Moreover, if k(t) ∈ K(t) is any element such
that k(0) is defined, then k(0) ∈ K0.
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The Wrap-up Theorem

The ⋆-action: H acts on N = V /(TO(g)). This is the traditional
quotient action. If H is reductive, N may itself be an H-module.

1 For any element h ∈ K0, we have λN(h · fb) = 0 and thus,
there is an s ∈ S such that s · g + λS(h · fb) = 0. Paves the
way for ⋆-action

2 The subalgebra K0 is contained within Hb ⊆ H, the stabilizer
of fb for the ⋆-action of H.

3 The local model matches G ×H N infinitesimally close to x .

The coupling of K and H

K⇝ K0 → Hb → H

Thus, when the small permanent appears in the orbit closure of
the determinant, a “smashed” version of the stabilizer of the
determinant sits inside the stabilizer of the homogenized small
permanent as a subalgebra!
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The 1-PS case

Important, in GCT as well as in Kempf and other limits.

λ(t) · f = tag + tbfb + higher terms

1

0 −1

1

λ

0

t

1

1

t
t

(t)

Implements singular substitutions f (A · X ). Let X = Y ∪ Z .
λ(t) · y = y , ∀y ∈ Y , λ(t) · z = tz , ∀z ∈ z

G = G−1 ⊕ G0 ⊕ G1. λ(t)giλ(t)
−1 = t igi for any gi ∈ Gi , and

that Gi · Vj = Vi+j .
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The 1-PS case

0 −1

1
0

l 1
1

1

0
0

0

G = G−1 ⊕ G0 ⊕ G1. λ(t)giλ(t)
−1 = t igi for any gi ∈ Gi , and

that Gi · Vj = Vi+j .

H is graded. We can choose Si ⊆ Gi to be a complement of
Hi , so that S is graded. Hb is graded.

K0 are the leading terms of elements of K. So K0 is graded.

The Lie algebra element ℓ

Setting ℓ = log(t−a/dλ(t)), (i) ℓ ∈ H, ℓ ̸∈ Hb but
[ℓ,Hb] ⊆ Hb and [ℓ,K0] ⊆ K0, ℓ normalizes Hb,K0.
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The tangent of exit

Definition

Assume λ(t)f = tag + tbfb + · · ·+ tD fD . Then the tangent of exit

is the form limt→1
f (t)−f (1)

t−1 .

ℓf = afa + bfb + . . .+ DfD , and the tangent of exit is ℓf − f .

ℓf is in an element of TOf .

Tangent of exit given by the action of ℓ, ℓ ̸∈ K.

Key Questions

What is the stabilizer of ℓf within TOf , under K?

Are there some symmetries which f , ℓf , g share, and will that
shed light on K⇝ H?

Element k ∈ K of pure ℓ-weight are triple stabilizers!
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Let f , g , λ and ℓ be as above. Then at least one of the following
hold:

(A) K0 is a nilpotent algebra, or

(B) there is a unipotent element u ∈ U(λ) and an element k ∈ K
such that g is a limit of f u under λ and ku is a triple stabilizer
for the data (f u, ℓf u, g).

semi-simple elements in K of ℓ-weight zero! Or more generally:

ku ∈ Ku(⇝ Ku
0) → Hu

b → H

Closure of affine forms

Let g be a projective limit of codimension 1 of f under λ as above.
Then at least one of the following conditions hold:

1 K0 is nilpotent and H = K0 ⊕ Cℓ is a Levi factorization of H.

2 There are unipotent elements u ∈ U(λ) and elements k ∈ K
such that uku−1 stabilizes g , f u and ℓf u, and g is the limit of
f u under λ.
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3× 3-determinant

det3(X ) = det

 x1 x2 x3
x4 x5 x6
x7 x8 x9


1− PS forms dim((K0)i ) ℓf dim(Kℓf )

dim((H)i )

(f , g) 1 0 −1

ℓ1 det3 0 8 8 −
Q1 0 8 + 1 8 Q ′

1 0 + 4 + 0

ℓ2 det3 0 8 8 −
Q2 0 8 + 1 8 Q3 0 + 8 + 0

ℓ4 det3 1 10 5 −
Q4 1 13 + 1 7 Q ′

4 1 + 6 + 1
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Matrices under Conjugation
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Conjugation action..

Jordan Form

Affine closures well understood, both inside and outside the
null-cone. How do points y outside the null-cone interact with x
inside?

Projective orbit closures

Let x be a nilpotent matrix completely characterized by its
nilpotent-block partition.

Let y be any matrix described by its Jordan canonical form.

When does x belong to the projective orbit closure of y?

When y itself is nilpotent, this is determined by the dominance
ordering on the nilpotent-block partitions.

The Krull-Schmidt Dimensions

The dimensions of Krull-Schmidt sequence determines projective
closures.
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Spectrum block-partition

Let y be in Jordan canonical form with s eigenvalues µ1, . . . , µs .
For µi , we define the block-partition λi = (λi1 ≥ λi2 ≥ . . .) which
records the sizes of Jordan blocks of type µi

The spectrum block-partition λ of y is the sum λ = λ1 + . . .+ λs

y =



−1 1 0 0 0 0
0 −1 0 0 0 0
0 0 −1 0 0 0
0 0 0 −1 0 0
0 0 0 0 3 1
0 0 0 0 0 3


The block-partitions are (2, 1, 1), (2) for eigenvalues −1 and 3
The spectrum block-partition of y is (2, 1, 1) + (2) = (4, 1, 1)

If y has m distinct eigenvalues, its spectrum block-partition is (m).
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Projective orbit closure theorem

Main Theorem

Let x be a nilpotent matrix whose nilpotent block-partition is θ.
and y be a matrix whose spectrum block-partition is λ
The projective orbit closure of y contains x iff θ ⊴ λ.

y =

 1 0 0
0 1 0
0 0 −1

 y ′ =

 1 1 0
0 1 0
0 0 −1

 x =

 0 1 0
0 0 1
0 0 0


The spectrum block-partition of y is (1, 1) + (1) = (2, 1)
The spectrum block-partition of y ′ is (2) + (1) = (3).
The nilpotent block-partition of x is (3)

We conclude that

y ∈ O(y ′) (classical)

[x ] ̸∈ O([y ]) (our theorem)

[x ] ∈ O([y ′]) (our theorem)
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Computability of local model at Jm

The induced Lie algebra G-action g.A = [g,A] = gA− Ag
We fix Jm and apply the local model at Jm

Jm =


0 1 0 . . .
0 0 1 0 . . .

...
...

0 0 . . . 0 1
0 0 . . . 0 0


The relevant data for J4 is as follows

H =


α β γ δ
0 α β γ
0 0 α β
0 0 0 α

S =


0 0 0 0
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

N =


∗ 0 0 0
∗ 0 0 0
∗ 0 0 0
∗ 0 0 0


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Stabilizers in the neighborhood of Jm
We fix x + n = Jm + n where n ∈ N. Say

x + n =


−c3 1 0 0
−c2 0 1 0
−c1 0 0 1
−c0 0 0 0


This is the familiar companion form. Next, for g = h+ s

g.(x + n) = (s+ λS ◦ (1 + θ(n))−1(h · n), λN ◦ (1 + θ(n))−1(h · n))

Calculations:

θi (n) = 0 ∀i ≥ 2 and λN ◦ (1− θ(n))(h · n)) = 0

So, the stabilizer condition is: s = −λS ◦ (1− θ(n))(h · n)

In other words, the stabilizer is the S-completion of the whole
subspace H and has dimension m.
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Diagonalizable matrices with Jm in the projective closure

Let y be a polystable point of the form x + n whose projective
closure contains x = Jm

y = x + n =


−c3 1 0 0
−c2 0 1 0
−c1 0 0 1
−c0 0 0 0



As y is diagonalizable and has stabilizer dimension m, this forces
that y has distinct eigenvalues!

Observation: The minimal polynomial of x + n is also its
characteristic polynomial, namely zm + cm−1z

m−1 + . . .+ c0
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Advanced topics
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Motivating the infinitesimal analysis

Understanding limt→0K(t) = K0.

O(g)

f(t)

g

(h.n)λ
S

fb

The asymmetry in the degree of f

For any element g = tb0 s+ h ∈ K(t0) we have:

s+ λS((1 + θ(f +(t0)))
−1((h · f +(t0))) = 0. (1)
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Formulating the local stabilizer

h+ ϵs stabilizes p = g + ϵfb, with ϵ2 = 0!

G[ϵ] = G ⊗ C[ϵ], similarly H[ϵ]

Let Hp ⊆ G[ϵ] is the stabilizer of p. Model for K(t)?

Given any h ∈ Hb, h · fb is a tangent vector TOg . Define:
db : Hb → G/H. db is a derivation.

The stabilizer Hp ⊆ G[ϵ] is given by the set h0 + ϵg such that
(i) h0 ∈ Hb, and (ii) g ∈ d−1

b (−h0fb).

ϵH ⊆ Hp. Hp is too big. C[ϵ]-dimension > k .

The extension question

Is there an K of C[ϵ]- dimension k which stabilizes p and such that

K ϵ=0−→ K0
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The extension problem

The existence of K is equivalent to the existence of a derivation db
extending db.

G/K0 −→ G/Hxdb
xdb

K0 −→ Hb

Theorem: Let g be a regular limit of f via A(t) and f (t) and fb
be as above. Let K(t) be the stabilizing Lie algebra of f (t) and H
that of g . Moreover, let K0 ⊆ Hb be the limit of K(t), as t → 0.
Let db : K0 → G/H be the derivation as above. Then there is a
derivation db : K0 → G/K0 which extends db.
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Lie algebra Cohomology

We have the exact sequence of K0-modules:

0 −→ H/K0 −→ G/K0 −→ G/H −→ 0

and the corresponding long exact sequence of cohomology
modules:

0 −→ H0(K0,H/K0) −→ H0(K0,G/K0) −→ H0(K0,G/H)
−→ H1(K0,H/K0) −→ H1(K0,G/K0) −→ H1(K0,G/H)
−→ H2(K0,H/K0) −→ . . .

Since both db and db are derivations, they belong to the spaces
H1(K0,G/H) and H1(K0,G/K0) respectively (but they may be 0).

Variation of the ideas of Nijenhuis and Richardson where the
2-cocyles are the infinitesimal directions of deformations.

Likely that K0 is not rigid while K(t0) are, for generic t0 ∈ C.
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Optimization, Paths and Differential Geometry of Orbits

Already a close connection
between Π, i.e., local curvature
form and Θ, the local model.

This generalizes to higher forms
as well. The curvature at y is
easily expressed in terms of ρ.

Different starting directions lead
to different limit points. Kempf
gives us one optimization
function.

Are their other local functions
at y?

y

x1

x1’

x0

x0’
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Conclusion, open questions

1 What is the ”null cone” in the local model. For Luna, it is the
null cone for the H action on N.

2 Is there an algebraic geometry-analogue of the local model?

3 Can we classify ”generic” limits and their nilpotent algebras
K0?

4 What limits do nilpotent families eAt give rise to? How do
limit points accumulate stabilizing elements?

5 Can ”generic” co-dimension-1 boundary forms exist for the
determinant?

6 Are the cohomological conditions effective and salient?
Especially, in the co-dimension 1 case?

7 The non-uniqueness of the optimization problem seem to be
the core of the projective closure problem. Is there a
unification of the Kempf’s 1-PS theory and “optimal” paths?
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Thank You!
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