


Q. What is an algebraic group?
A. It’s a group object in the category of varieties.

But what is a group object? = Suppose we have a category---e.g.,
sets and maps (SET); topological spaces and continuous maps (TOP);
varieties and morphisms (VAR) Co

Assume: finite products and final object €Xist in this category.

Product here means: usual Cartesion product of sets;
Y x Z with the product topology, if Y, Z are top. spaces

But this is too loose and not good enough for our A
present purposes. . . We need to understand this better.’
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Given objects Y and Z, bY YxZ we mean an object y

(along with maps YxZ -%> Y and YxZ %, Z in the category,
although usually these are tacitly understood and not always written)

Definition of Product by its Universal Property

such that these maps are "univgrsal" in th% following - sense:
given any object A and maps A-—{Y and A—éZ there exists
a unique map A ‘> YxZ such that 1},0/3 /%/ 5 Z o b =g P

In other words, to give a morphism to YXZ from some object A
is equivalent to giving two morphisms: one from A to Y and
another from A to Z.

Note: Yx7Z = ZxXY



A group object:  an object G equipped with three maps:

& S z . .. 1
GxG --> G "multiplication"; G-->G "inverse"; = {*}-->G "identity"
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Note: An object defined by a universal property is unique up to

unique isomorphism.
Xx Y2 Z % @ existD
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Upshot:

Example: Group objects in SET are precisely groups.
Group objects in TOP are called Topological Groups.
Any topological group is also just a group (forgetting the topology).
GL(m, €), SLm,C) M 4@) are all topological groups.
A,Apl/\ feon



Category of varieties and morphisms (VAR): The precise definition will
take a whilel ~But we can say a few things for now.

Whatever a variety is, it has the following attributes:

an underlying set - of "closed points".

a topology on this set the Zariski topology.
a ring of functions - called the regular functions.

M
Let X € be an affine algebraic variety. That is, X is zero
locus of a set of polynomials (f | i in I) in- (C (_zc.) )7(3

5 Dome
E.g. nxn matrices of determinanat 1 C‘l ,'/;L(di( de
the parabola defined by y=x2’ AP @f \ICZD
Underlying set is the loci of zeros: SL(n, () ) in the first case

Topology is the subspace topology of the Zariski topology on
the ambient affine space (closed sets are zero loci of sets of
polynomials).

Ring of functions ' I\ b anj / (Jﬂj*' ) Cl} ﬂ/ 6")()
Product of two affine algebraic varieties, YC Q Z < @

Y defined by vanishing of f.)'; O( G:C%D gj (/Lé]}

Z, defined by vamshmg of g ?9C (EEZ‘) )Zj (7 (,j
vxz ¢ (4 (0 defined by 8, BV 7 @['d
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Caveat: Underlying set of the variety YXZ is YxZ
The topology of the Variety YxZ is NOT the product topology

Example: @ @ Q: with its Zariski - topology

But the Zariski topology on G: is not the product of -the
Zariski topologies on a .

Morphisms between affine varieties >/ C (L -E C m

o@)w;)c(fl. j{g@)j”@l%} 2 R A ESR )

Morphisms from are just restrictions of morphisms from C

Morphisms to Z are those which have image in Z -

Attributes - of  morphisms: é(: ﬁ
There is an  underlying map of sets. ! ﬁ[zi\

The above map is continuous in the Zariski topology.
Regular functions pull back to regular functions.

Example: (of a morphism that is bijective but not invertible)

Yoo §<\/)Mm&<«9 LA R[] =CL S céjm
7 - elxd




Action of an algebraic group G on a variety X: a morphism
GxX --->X, which at the level of points defines an aciton
that is, = g(hx)=(gh)x and 1x=x

Example: - G on itself in multiple ways: left, right, conjugation,

twisted conjugation, ...

Affine Algebraic Group (= Linear Algebraic Groups, as we will see)
An algebraic group whose underlying variety is affine.

Alternatively, ‘a group object in the category of affine varieties.

Example: (D’;tj) s LCV) :5“‘ W<@§ djnz,(ﬂ: OLUM}

LU o :
& (;(B j - polynomial ring in n variables
zﬁ [S A ﬂﬂV)] — poly. ring in n*vatiables / (det -1)

Recall: If f is a non-constant polynomial (in n variables), then D(f)=
points (in C") where f does not vanish (which is a Z-open set)
is considered as -an affine variety by  the following identification:

X, v> C @n o satisfying f(x)y=1 <-> D(f) (forgetting y)
R[] = CL%,51 /609D =CL5 4
" |

More examples: (q:x g GL(V), ab_sér_act subgroups of GL(V) tl:{at
are defined by vanishing of (regular) functions: diagonal, upper A g



Representation
"Defining Actions” GL(V) x V -——>V

For g in G, v--->gv is a linear map of V

Representation of an algebraic group G: G ---> GL(V) morphism such
that at the level of points it is a group homorphism

Irreducibility; = Points in. a variety. typically display different algebro-
geometric behaviour. E.g. xy=0

lies in two irreducible components
as opposed to other points

Recall: A subset X of a topological space is irreducible if:
C; D closed and X €C{)D =§X§,C or XCD o

Facts: Irreducible implies connected; Singletons are irreducible;
Closure of an irreducible set is irreducible; ~ Continuous image of
irreducible sets are irreducible; - Any two non-emtpy open sets of
an irreducible space meet non-trivially; - - Non-empty open sets of
an - irreducible space are dense.

FACT: Let X be a variety.. There are fintiely many maximal
irreducible ‘subsets of X. - These ‘are closed ‘and - cover X.

These maximal irreducible (closed) subsets are the irreducible components



Homogeneity: Every point of an algebraic group (more generally
every point of a variety on which such a group acts morphically
and transitively) displays the same algebro-geometric (hence topological)

behaviour. Gf\x SN

Because g: X --->X given by x--->gx is an isomorphism Ul
g-inverse would be its inverse. { 357‘\?(
S S — X
Example of the usage of this: X'Z] =0 is connected but not
— irreducible —

|
A connected algebraic group is irreducible

PE—
Proof: Suppose there is more than one irreducible component. |
If no two of them intersect, we would get a disconnection. (
x /)

———
C———

If two of them--say X and ‘' Y---intersect, then a point in the
intersection - would  be contained in more than one irreducible
component. - But there is also a point contained in precisely
one component, €g., any in X \ (union of the other components). gé

Proposition: - - The (finitely many) irreducible .components -of - an
algebaic group G are pairwise -disjoint. The identity component
is.a normal subgroup of finite index. -

Proof: Pleasant exercise. /—/
/%
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Dimension of a variety: =~ Maximum length of a chain of proper
inclusions of irreducible closed subsets. (one of many eqv. defns.)

Corollary: A proper closed set of an irreducible variety has smaller dim.

Theorem: Supose that an algebraic group G acts on a variety X.
Let Y be the closure of an orbit Gx (x in X). Then:

(i) Y is irreducible if G is connected ,~ \ Gl
(ii) Gx is open in Y q “‘7X G*’G\\
(iii) Y contains a closed orbit of G. > A @ 7’
(iv) Y is also the usual closure of Gx. 9

Proof: Let us assume G is connected (eq. irreducible). The general case
is easily deduced from the special case using the Proposition.

(1) Gx is irreducible (continuous image),” Y is the closure of Gx

~/.. (i) Uses homogeneity and the following W
FACT: 9 The image of a morphism contains a ‘Oopen subset of its closure.

Move the open set around in the orbit GX to see it is open in Y.

(1i1) Y is a union of orbits. . Y\GX. has smaller dimension.. . Choose
an orbit in Y1%hd keep going. = Eventually (since the dimension Kkeeps
going down) we will get an orbit that is closed.

ol nosdsd

(iv) Follows from FACT: Suppose we have a -nén-empty Zariski

open set U of a Zariski closed set in (BJN Then the usual clossure
of U equals the Zariski closure of U. @ E_D



Example: G,‘ [ 7 acts on M - by left multiplication
Orbits are determined by: row reduced echelon forms

The zero matrix forms a closed orbit.

Example: 6[ " acts on M"V by conjugation
Orbits are indexed by { Jordan Canonical Forms

Scalar matrices form singleton orbits, hence closed.

The orbit of any matrix M with distinct eigenvalues is closed

Because N belongs to this orbit if and only if it has the same
characteristic polynomial as M.

?
Example: q L\o X (; L') acts on /Vl " ,J— "
(3,#>-X = g XA M’”@’,‘“@W
Orbits are indexed by:  rank

The zero matrix 1is an orbit by itself, hence closed



Notation q {} X means G acts on X
Suppose 6 J )( . Then G acts on all objects associated with X

Suppose G (/‘)(and G) U. .y . Then G acts on anything constructed
naturally from X and Y.

Gox = Gu kK" @p(o- (52
Why is?](‘in kiX]? (for g in G and f in kiX])

X ——7 x, is a morphism andglﬁis the pull back of f under this.
A 9n

g acts on k[X] as an algebra automorphism: J ( f g #,): }f ¥ )’A_,
_9/\ - >\ (for scalar functions )\)7 9(54’)_; )}ﬂ 9,{‘ ;

In particular it acts as a linear automorphismn: g is the inverse.

Theorem: Each f in k{X] is contained in, a finite dimensional
G-invariant subspace V of k[X]. For such a V, the resulting
group homomorphism G-->GL(V) is a morphism.

%ogf: GxX to X morphism. = Pull back of functions:

GI®REA<—R[X) ‘O, = &

Let’s compute 9 f,’ . ;idlm‘ le. Auw : (
9f = 2@ ¥ ,: (j ) PL So- f 1s in the linear span of /3 7:



LY "
finite dimensional

Second ‘Assertion: - We will write GL(V) as GL(n) (where n = dim V)
for an appropriate choice of basis of V. Each element x of X defines

a linear functional gxon V: 870 ( ;> = fc,,) )

As x varies over X, these functionals span V*. Suppose not. Then
there exists non-zero f in V such that 5(%>= f(x)=0 for all x.
&

S:tO:(SC X 1, 12’ ) )2,, in X suc.h that they form a basis for V*.
(39 S be the dual basis.

Identify GL(V) with GL(n) using this basis. A simple calculation
shows that the ijAth entry of the image of g under G-->GL(n) is

f(j ';(9 which is regular on G.
5



