• • •	Actions on	Varieties.	Representations.	Chevallev's	Theorem
• • •			· · · · · · · · · · · · · · · · · · ·		
• • •					
• • •					
• • •					
• • •					
• • •					
• • •					
• • •					
• • •					
• • •					
• • •		· · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
• • •					
• • •			•••••		
• • •					
• • •					
• • •					
• • •					
• • •					
• • •					
• • •					
• • •			••••••••••		
• • •		· · · · · · · · · ·			
• • •					
•••					
• • •					
• • •					
• • •					
• • •			· · · · · · · · · · · · · · ·		
• • •					
• • •			•••••		
• • •					
• • •					• • • • • • • • • • • • • • • • •
				· · · · · · · · · ·	
• • •					
• • •	· · · · · · · · · ·				
• • •					
• • •				• • • • • • • • •	

Q. What is an algebraic group? A. It's a group object in the category of varieties.
But what is a group object? Suppose we have a categorye.g., sets and maps (SET); topological spaces and continuous maps (TOP); varieties and morphisms (VAR)
Assume: finite products and final object exist in this category.
Product here means: usual Cartesion product of sets; Y x Z with the product topology, if Y, Z are top. spaces
But this is too loose and not good enough for our $3\frac{8}{2}$ present purposes. We need to understand this better.
Definition of Product by its Universal Property
Given objects Y and Z, by YxZ we mean an object $P_{\underline{z}}$ (along with maps $YxZ \xrightarrow{P_{\underline{z}}} Y$ and $YxZ \xrightarrow{P_{\underline{z}}} Z$ in the category, although usually these are tacitly understood and not always written)
such that these maps are "universal" in the following sense: given any object A and maps A>Y and A>Z there exists a unique map A> YxZ such that $T_{1} \circ S = S$ $T_{2} \circ S = S$
In other words, to give a morphism to YxZ from some object A is equivalent to giving two morphisms: one from A to Y and another from A to Z.
Note: $Y_{XZ} = Z_{X}Y$

.

A group object: an object G equipped with three maps:	•
$GxG \rightarrow G$ "multiplication"; $G \rightarrow G$ "inverse"; {*}>G "identity"	•
such that the usual axioms hold	•
$(GxGxG \longrightarrow GxG) \qquad G \simeq \{*\} xG \simeq Gx\{*\}$	•
id × n 1 (n 1xid g= 1g= 91	•
$GxG \rightarrow G$	•
id x 2 Idx1 J	•
$G \xrightarrow{G} G \xrightarrow{G} $	•
$2 \times 10 \sqrt{273} = \sqrt{7}$ inverse $\overline{49} - 9\overline{9} - 1$	•
pe j	•
Note: An object defined by a universal property is unique up to	•
unique isomorphism. $Y_{2} \vee .7 - P_{2}$ if it exists!	•
A / X Z PY S	•
$\mathbf{p}_{\mathbf{y}}$	•
Upshot: $(XxY)xZ \simeq Xx(YxZ) \simeq XxYxZ$	•
Example: Group objects in SET are precisely groups	•
Group objects in TOP are called Topological Groups.	•
Any topological group is also just a group (forgetting the topology).	•
GL(n, (1), SL(n, (1), M ((1)) are all topological groups.	•
addition	•

Category of varieties and morphisms (VAR): The precise definition will
take a while! But we can say a few things for now.
Whatever a variety is, it has the following attributes:
an underlying set of "closed points".
a topology on this set the Zariski topology.
a ring of functions called the regular functions.
Let $X \subseteq C^n$ be an affine algebraic variety. That is, X is zero locus of a set of polynomials (fill i in I) in $(C(X_1, \dots, X_n))$
E.g. nxn matrices of determinanat 1 Some index set
the parabola defined by $y=x^2$ $((x_1, y_2, y_3)/(\beta_i))$
Underlying set is the loci of zeros: $SL(n, \mathbb{C})$ in the first case
Topology is the subspace topology of the Zariski topology on the ambient affine space (closed sets are zero loci of sets of polynomials).
Ring of functions : $\mathbb{C}[x_{1},, x_{m}]/(det - 1)$; $\mathbb{C}[x, y]/(t-x^{2})$
Product of two affine algebraic varieties; $Y \subseteq \bigcup_{i=1}^{n}$; $Z \subseteq \bigcup_{i=1}^{n}$
Y defined by vanishing of f_{2} ; $f_{1} \in \mathbb{C}[\mathcal{Y}_{12}, \mathcal{Y}_{m}]$ (if 1)
Z defined by vanishing of $g_j: g_j \in \mathbb{C}[\mathbb{Z}_1, \mathbb{Z}_n]$ (j \in J)
$YxZ \subseteq \left(\begin{array}{c} x \\ x \end{array}\right) \text{ defined by } f_{\ell}, g_{\ell}; k[YxZ] = \mathbb{C}\left[\begin{array}{c} y \\ y \end{array}\right] = \mathbb{C}\left[\begin{array}{c} y \\ y \end{array}\right] \left(\begin{array}{c} f_{\ell}, g_{\ell} \\ f_{\ell}, g_{\ell} \end{array}\right)$

Caveat: Underlying set of the variety YxZ is YxZ The topology of the variety YxZ is NOT the product topology Example: $(\int x (\int 2 (\int 2^2 with its Zariski topology))$ But the Zariski topology on \prod^{L} is not the product of the Zariski topologies on T Morphisms between affine varieties $\bigvee \subseteq (1)$ $\neq \subseteq (2)$ $(\underbrace{y_{1}, y_{n}}_{Y, y_{n}}) \underbrace{z_{1}}_{(z_{1}, y_{n}, z_{n})}^{n} \underbrace{z_{j}}_{j} \underbrace{\xi_{j}(y_{1})}_{j} \text{ in a } \rho dy \text{ in } y + 1 \le j \le n$ Morphisms from Y are just restrictions of morphisms from \mathbb{C}^{m} Morphisms to Z are those which have image in Z. Attributes of morphisms: RY - RZ There is an underlying map of sets. The above map is continuous in the Zariski topology. Regular functions pull back to regular functions. Example: (of a morphism that is bijective but not invertible)) g(y) is a radical ideal $k[y] = C[y_{y_y} y_m]$ C[x, y] $\rightarrow (t^2, t^3)$

Action of an algebraic group G on a variety X: a morphism
GxX>X, which at the level of points defines an aciton
that is, $g(hx)=(gh)x$ and $1x=x$
Example: G on itself in multiple ways: left, right, conjugation,
twisted conjugation,
Affine Algebraic Group (= Linear Algebraic Groups, as we will see)
An algebraic group whose underlying variety is affine.
Alternatively, a group object in the category of affine varieties. $\sqrt{2}$
Example: \mathbb{O}_{12}^{M+} $SL(V) = SL_m(V) \subseteq \mathbb{O}_{12}^{m}$ ($n = dimV$)
$k(\mathbb{C}^n)$ = polynomial ring in n variables
$k[SL_n(V)] = poly. ring in n2 variables / (det -1)$
Recall: If f is a non-constant polynomial (in n variables), then $D(f)$ = points (in \mathbb{C}^n) where f does not vanish (which is a Z-open set) is considered as an affine variety by the following identification:
$\begin{pmatrix} \times & & \end{pmatrix} \subseteq (f^{n+1}) \text{ satisfying } f(x)y=1 \iff D(f) \text{ (forgetting } y)$ $k(D(g)) = C[\chi, g]/(k(x)g-1) \simeq C[\chi, \frac{1}{g}]$
More examples: $(f_{X})^{\prime}$, $GL(V)$, abstract subgroups of $GL(V)$ that are defined by vanishing of (regular) functions: diagonal, upper Δ_{γ}^{\prime} ,

.

"Defining Actions" GL(V) x V> V Representation
For g in G, v>gv is a linear map of V
Representation of an algebraic group G: G> GL(V) morphism such that at the level of points it is a group homorphism
Irreducibility: Points in a variety typically display different algebro- geometric behaviour. E.g. xy=0
lies in two irreducible components as opposed to other points
Recall: A subset X of a topological space is irreducible if: C, D closed and $X \subseteq C \lor D \Longrightarrow X \subseteq C$ or $X \subseteq D$.
Facts: Irreducible implies connected; Singletons are irreducible; Closure of an irreducible set is irreducible; Continuous image of irreducible sets are irreducible; Any two non-emtpy open sets of an irreducible space meet non-trivially; Non-empty open sets of an irreducible space are dense.
FACT: Let X be a variety. There are fintiely many maximal irreducible subsets of X. These are closed and cover X. These maximal irreducible (closed) subsets are the irreducible components

Homogeneity: Every point of an algebraic group (more generally every point of a variety on which such a group acts morphically
and transitively) displays the same algebro-geometric (hence topological) behaviour.
Because g: X>X given by x>gx is an isomorphism
g-inverse would be its inverse. $\{g\}$
5435
Example of the usage of this: $y = 0$ is connected but not irreducible
A connected algebraic group is irreducible
Proof: Suppose there is more than one irreducible component. If no two of them intersect, we would get a disconnection. If two of themsay X and Yintersect, then a point in the intersection would be contained in more than one irreducible component. But there is also a point contained in precisely one component, eg., any in $X \ (union of the other components)$.
Proposition: The (finitely many) irreducible components of an algebaic group G are pairwise disjoint. The identity component is a normal subgroup of finite index.
Proof: Pleasant exercise.

$X_o \in X_1 \in X_2 \subseteq X_n$ Dimension of a variety: Maximum length of a chain of proper
inclusions of irreducible closed subsets. (one of many eqv. defns.)
Corollary: A proper closed set of an irreducible variety has smaller dim.
Theorem: Supose that an algebraic group G acts on a variety X. Let Y be the closure of an orbit Gx (x in X). Then: (i) Y is irreducible if G is connected (ii) Gx is open in Y (iii) Y contains a closed orbit of G. (iv) Y is also the usual closure of Gx.
Proof: Let us assume G is connected (eq. irreducible). The general case is easily deduced from the special case using the Proposition.
(i) Gx is irreducible (continuous image), Y is the closure of Gx hevelowing meeting
 FACT: The image of a morphism contains a open subset of its closure. Move the open set around in the orbit Gx to see it is open in Y. (iii) Y is a union of orbits. Y\Gx has smaller dimension. Choose an orbit in Y and keep going. Eventually (since the dimension keeps going down) we will get an orbit that is closed.
(iv) Follows from FACT: Suppose we have a not needed open set U of a Zariski closed set in \mathbb{C}^{n} . Then the usual clossure of U equals the Zariski closure of U.

Example: Gl_{η} acts on M_{η} by left multiplication
Orbits are determined by row reduced echelon forms
The zero matrix forms a closed orbit.
Example: GL_n acts on M_n by conjugation
Orbits are indexed by Jordan Canonical Forms
Scalar matrices form singleton orbits, hence closed.
The orbit of any matrix M with distinct eigenvalues is closed
Because N belongs to this orbit if and only if it has the same characteristic polynomial as M.
Example: $GL_n \times GL_n$ acts on M_n , why? $(g, k) \cdot X = gXh^{-1} \times b$ make it a left action
Orbits are indexed by: rank
The zero matrix is an orbit by itself, hence closed

Notation G O X means G acts on X Suppose $G \mathcal{O} X$. Then G acts on all objects associated with X Suppose $G \not\in X$ and $G \not\in Y$. Then G acts on anything constructed naturally from X and Y. $GUX \Longrightarrow GUR[X]: (gg)(x) = f(gx)$ Why is f in k[X]? (for g in G and f in k[X]) $X \rightarrow X$ is a morphism and \mathcal{F} is the pull back of f under this. ストラダン g acts on k[X] as an algebra automorphism: $\Im(f+h) = f+ \mathcal{H}$. $\mathcal{I}_{\lambda} = \lambda$ (for scalar functions λ) $\mathcal{I}_{\beta}(\mathcal{J}_{h}) = \mathcal{I}_{h}^{\beta}(\mathcal{J}_{h})$ In particular it acts as a linear automorphism: g is the inverse. Theorem: Each f in k[X] is contained in. a finite dimensional G-invariant subspace V of k[X]. For such a V, the resulting group homomorphism $G \rightarrow GL(V)$ is a morphism. Proof: GxX to X morphism. Pull back of functions: k[G] & k[x] <- k[x] finite sum Let's compute 9_f. $g_{f}(x) = f(g'x) = g^{*}(g',x) = \sum_{i=1}^{n} \chi_{i}(g') \beta_{i}(x)$ ${}^{9}f = \sum (a, (g')) \beta$. So f is in the linear span of β_{2}

∂fe < βi>7 + geG
$\frac{\mathcal{J}_{hus}}{\mathcal{J}_{finite}} \leq \frac{\mathcal{J}_{g}}{\mathcal{J}_{finite}} \leq \frac{\mathcal{J}_{g}}{\mathcal{J}_{finite}}$
Second Assertion: We will write GL(V) as GL(n) (where $n = \dim V$) for an appropriate choice of basis of V. Each element x of X defines a linear functional $\int_{X} \operatorname{on} V$: $\int_{X} \langle f \rangle = f(x)$
As x varies over X, these functionals span V [*] . Suppose not. Then there exists non-zero f in V such that $\xi(x) = f(x)=0$ for all x.
Choose $\chi_1, \chi_2, \dots, \chi_\eta$ in X such that they form a basis for V*. Let f_1, \dots, f_η be the dual basis.
Choose $\chi_1, \chi_2, \dots, \chi_\eta$ in X such that they form a basis for V*. Let $\int_{1}^{1} \int_{N}^{1} \int_{N}^{1}$ be the dual basis. Identify GL(V) with GL(n) using this basis. A simple calculation
Choose $\chi_1, \chi_2, \ldots, \chi_\eta$ in X such that they form a basis for V*. Let $\int_{1}^{1} \int_{1}^{1} \int_$
Choose $\chi_1, \chi_2, \chi_{\eta}$ in X such that they form a basis for V*. Let f_{1}, χ_{η} be the dual basis. Identify GL(V) with GL(n) using this basis. A simple calculation shows that the ij^th entry of the image of g under G>GL(n) is $P(\bar{q}, \chi_{1})$ which is regular on G.
Choose $\chi_1, \chi_2, \ldots, \chi_\eta$ in X such that they form a basis for V*. Let f_1, \ldots, f_η be the dual basis. Identify GL(V) with GL(n) using this basis. A simple calculation shows that the ij^th entry of the image of g under G>GL(n) is $f(\bar{g}\chi_i)$ which is regular on G.
Choose $\chi_1, \chi_2, \ldots, \chi_\eta$ in X such that they form a basis for V*. Let $f_{1,j}$ be the dual basis. Identify GL(V) with GL(n) using this basis. A simple calculation shows that the ij^th entry of the image of g under G>GL(n) is $f_{1,j}(g_{1,j})$ which is regular on G.
Choose $\chi_1, \chi_2, \dots, \chi_n$ in X such that they form a basis for V*. Let $\int_{1}^{1} \int_{1}^{1} \int_$
Choose $\chi_1, \chi_2, \dots, \chi_n$ in X such that they form a basis for V*. Let $\int_{1}^{1} \int_{\infty}^{1} \int_$
Choose $\chi_1, \chi_2, \ldots, \chi_\eta$ in X such that they form a basis for V*. Let $f_{1,1}, \ldots, f_{\eta}$ be the dual basis. Identify GL(V) with GL(n) using this basis. A simple calculation shows that the ij^th entry of the image of g under G>GL(n) is $f_{1,1}(\sqrt{2}x_{1})$ which is regular on G.
Choose $\chi_1, \chi_2, \dots, \chi_\eta$ in X such that they form a basis for V*. Let f_1, \dots, f_{η} be the dual basis. Identify GL(V) with GL(n) using this basis. A simple calculation shows that the ij^th entry of the image of g under G>GL(n) is $f_1(\bar{g}\chi_1)$ which is regular on G.
Choose $\chi_1, \chi_2, \dots, \chi_n$ in X such that they form a basis for V*. Let $\int_{1}^{1} \int_{2}^{1} \int_$
Choose $\chi_1, \chi_2, \dots, \chi_n$ in X such that they form a basis for V*. Let f_1, \dots, f_n be the dual basis. Identify GL(V) with GL(n) using this basis. A simple calculation shows that the ij^th entry of the image of g under G>GL(n) is $f_1(\overline{f_1}, \overline{f_1})$ which is regular on G.
Choose $\chi_1, \chi_2, \dots, \chi_n$ in X such that they form a basis for V*. Let f_1, \dots, f_n be the dual basis. Identify GL(V) with GL(n) using this basis. A simple calculation shows that the ij^th entry of the image of g under G>GL(n) is $f_j(\bar{g}\chi_j)$ which is regular on G.
Choose $\chi_1, \chi_2, \dots, \chi_n$ in X such that they form a basis for V*. Let f_1, \dots, f_m be the dual basis. Identify GL(V) with GL(n) using this basis. A simple calculation shows that the ij^th entry of the image of g under G>GL(n) is $f_1(\overline{g}, \chi_1)$ which is regular on G.