
Actions on Varieties,  Representations, Chevalley's Theorem



Assume:

Q. What is an algebraic group?

A. It's a group object in the category of varieties.

Product here means:  usual Cartesion product of sets;

Y x Z with the product topology, if Y, Z are top. spaces

 

But this is too loose and not good enough for our
present purposes.   We need to understand this better.

Definition of Product by its Universal Property

Given objects Y and Z,   by YxZ we mean an object

such that these maps are "universal" in the following sense:

(along with maps YxZ --> Y and YxZ --> Z in the category,
although usually these are tacitly understood and not always written) 

given any object A and maps A-->Y and A-->Z there exists

a unique map A --> YxZ such that 

YxZ = ZxYNote:

In other words,  to give a morphism to YxZ from some object A
is equivalent to giving two morphisms: one from A to Y and
another from A to Z.

But what is a group object?   Suppose we have a category---e.g.,
sets and maps (SET);  topological spaces and continuous maps (TOP); 
varieties and morphisms (VAR)

and final object exist in this category.finite products



A group object:

such that the usual axioms hold

GxGxG---------> GxG

GxG---------> G

G ------------> GxG

GxG------------> G

Note:

Upshot:

≃

Xx(YxZ)(XxY)xZ

Example: Group objects in SET are precisely groups.

Group objects in TOP are called Topological Groups.

Any topological group is also just a group (forgetting the topology). 

GL(n,  ),  SL(n,  ),  M (  ) are all topological groups.

An object defined by a universal property is unique up to
unique isomorphism.

if it exists!

XxYxZ

an object G equipped with three maps:

GxG --> G "multiplication"; G-->G "inverse"; {*}-->G "identity"

G ---> GxG

GxG ---> G

G  {*}xG  Gx{*}



The precise definition will

take a while! But we can say a few things for now.

Whatever a variety is,  it has the following attributes:

an underlying set of "closed points".

a topology on this set the Zariski topology.

a ring of functions called the regular functions.

Let X     be an affine algebraic variety. That is, X is zero

locus of a set of polynomials (f | i in I) in

E.g.  nxn matrices of determinanat 1

the parabola defined by y=x

Underlying set is the loci of zeros:  SL(n,  ) in the first case

Ring of functions

Product of two affine algebraic varieties Y    ;  Z

Y defined by vanishing of f  ;

 Z defined by vanishing of g : 

YxZ         defined by f , g 

Category of varieties and morphisms (VAR):

Topology is the subspace topology of the Zariski topology on
the ambient affine space (closed sets are zero loci of sets of
polynomials).



Caveat: Underlying set of the variety YxZ is YxZ

The topology of the variety YxZ is NOT the product topology

Example:   x       with its Zariski topology

But the Zariski topology on    is not the product of the 
Zariski topologies on 

Morphisms between affine varieties

Morphisms from Y are just restrictions of morphisms from

Morphisms to Z are those which have image in Z

Attributes of morphisms:

There is an underlying map of sets.

The above map is continuous in the Zariski topology.

Regular functions pull back to regular functions.

Example: (of a morphism that is bijective but not invertible)



Action of an algebraic group G on a variety X: a morphism

GxX --->X,  which at the level of points defines an aciton

Example:   G on itself in multiple ways: left, right, conjugation,

twisted conjugation, ...

that is,  g(hx)=(gh)x and 1x=x

Affine Algebraic Group (= Linear Algebraic Groups, as we will see)

Example:

An algebraic group whose underlying variety is affine.

Alternatively, a group object in the category of affine varieties.

polynomial ring in n variables

poly. ring in n variables / (det -1)

Recall: If f is a non-constant polynomial (in n variables),  then D(f)=
points (in   ) where f does not vanish (which is a Z-open set)
is considered as an affine variety by the following identification: 

satisfying f(x)y=1 <--> D(f) (forgetting y)

More examples: GL(V),  abstract subgroups of GL(V) that

are defined by vanishing of (regular) functions:  diagonal, upper 



"Defining Actions" GL(V) x V ---> V

For g in G,  v--->gv is a linear map of V

Representation

Representation of an algebraic group G:  G ---> GL(V) morphism such 
that at the level of points it is a group homorphism

Points in a variety typically display different algebro-

lies in two irreducible components

geometric behaviour.  E.g. xy=0

as opposed to other points

 
Recall: A subset X of a topological space is irreducible if: 
C, D closed and X  C  D ==  X   C  or  X  D

Facts:  Irreducible implies connected;  Singletons are irreducible;
Closure of an irreducible set is irreducible;   Continuous image of
irreducible sets are irreducible;  Any two non-emtpy open sets of
an irreducible space meet non-trivially;   Non-empty open sets of 
an irreducible space are dense.

FACT:  Let X be a variety.  There are fintiely many maximal
irreducible subsets of X.  These are closed and cover X.

These maximal irreducible (closed) subsets are the irreducible components

Irreducibility:



Homogeneity: Every point of an algebraic group (more generally

every point of a variety on which such a group acts morphically

Example of the usage of this:

and transitively) displays the same algebro-geometric (hence topological)
behaviour.

is connected but not
irreducible

A connected algebraic group is irreducible

Because g: X --->X given by x--->gx is an isomorphism

g-inverse would be its inverse.

Proof:  Suppose there is more than one irreducible component.
If no two of them intersect,  we would get a disconnection.
If two of them--say X and Y---intersect, then a point in the 
intersection would be contained in more than one irreducible 
component.   But there is also a point contained in precisely 
one component, eg., any in X \ (union of the other components). 

Proposition: The (finitely many) irreducible components of an 
The identity component 

is a normal subgroup of finite index.
 algebaic group G are pairwise disjoint.

Proof:  Pleasant exercise.



Dimension of a variety: 

inclusions of irreducible closed subsets. (one of many eqv. defns.)

Maximum length of a chain of proper

Corollary: A proper closed set of an irreducible variety has smaller dim.

Theorem: Supose that an algebraic group G acts on a variety X.
Let Y be the closure of an orbit Gx (x in X). Then:
(i) Y is irreducible if G is connected
(ii) Gx is open in Y
(iii) Y contains a closed orbit of G.
(iv) Y is also the usual closure of Gx.

Proof:  Let us assume G is connected (eq. irreducible).  The general case
is easily deduced from the special case using the Proposition.

(i) Gx is irreducible (continuous image), Y is the closure of Gx

(ii) Uses homogeneity and the following

Move the open set around in the orbit Gx to see it is open in Y.

(iii) Y is a union of orbits.  Y\Gx has smaller dimension.  Choose
an orbit in Y and keep going.  Eventually (since the dimension keeps
going down) we will get an orbit that is closed.

(iv) Follows from FACT:

FACT:  The image of a morphism contains a open subset of its closure.

Suppose we have a non-empty Zariski 

open set U of a Zariski closed set in    .   Then the usual clossure
of U equals the Zariski closure of U.



   acts on     by left multiplication

Orbits are determined by row reduced echelon forms

The zero matrix forms a closed orbit.

Example:

Example:        acts on     by conjugation

Orbits are indexed by Jordan Canonical Forms

Scalar matrices form singleton orbits,  hence closed.

The orbit of any matrix M with distinct eigenvalues is closed

Because N belongs to this orbit if and only if it has the same
characteristic polynomial as M.

Example: acts on

Orbits are indexed by: rank

The zero matrix is an orbit by itself,  hence closed



Notation       means G acts on X

Suppose      .   Then G acts on all objects associated with X

Suppose       and     .   Then G acts on anything constructed
naturally from X and Y.   

Why is   in k[X]? (for g in G and f in k[X])

is a morphism and   is the pull back of f under this.

g acts on k[X] as an algebra automorphism:

(for scalar functions   )

In particular it acts as a linear automorphism:    is the inverse.

Theorem:   Each f in k[X] is contained in a finite dimensional
G-invariant subspace V of k[X].   For such a V,  the resulting
group homomorphism G-->GL(V) is a morphism.

Proof:  GxX to X morphism.  Pull back of functions:

Let's compute 

So f is in the linear span of



finite dimensional

Second Assertion:  We will write GL(V) as GL(n) (where n = dim V)
for an appropriate choice of basis of V.  Each element x of X defines
a linear functional   on V:     

As x varies over X,  these functionals span V*.  Suppose not.  Then
there exists non-zero f in V such that     = f(x)=0 for all x.

Choose in X such that they form a basis for V*.

Let be the dual basis.   

Identify GL(V) with GL(n) using this basis.  A simple calculation
shows that the ij^th entry of the image of g under G-->GL(n) is
     which is regular on G.


