
REPRESENTATIONS IN COORDINATE RINGS, GLn REPRESENTATIONS

LUKE OEDING

1. Summary

These notes are for a series of lectures for the “gct2022 : School and Conference on Geometric
Complexity Theory,” 17-28 Jan 2022 Chennai (India). https://gct2022.sciencesconf.org

Algebraic geometry could be considered as the science of solving polynomials. Let’s try the
following thought experiment: What is your favorite number? Tell me a random number? How
many of you said “42”? How many chose a whole number? A positive number? A non-trivial
fraction? A non-rational algebraic number? A transcendental number? While the reality is that
almost all numbers are transcendental, we almost never pick those. Algebraic numbers have some
extra aesthetic, being as the roots of polynomials.

It’s reasonable to believe that when nature gives you an algebraic variety, it will have some
symmetry. We need to learn how to exploit this symmetry to better understand the objects that
are given to us. Geometric Complexity Theory (GCT) is no exception – symmetry is everywhere!
The algebraic varieties that GCT gives us have natural symmetry, and being the good algebraic
geometers that we are, we would like to understand the structure of their equations - their coordinate
rings and their ideals, but instead of just using out of the box Gröbner basis techniques, which
surely run out of steam even in the first couple of examples, we will work to exploit the natural
symmetry that is handed to us by the problem.

In these lectures we will study the representation theory of GLn, as this is the most natural
symmetry group that arises in GCT. This is a classical subject, which one can learn about it in
textbooks [FH91,Lan12,GW98]. I will try to give a streamlined approach that focuses on tensors,
and symmetric tensors, and is especially amenable to computational methods.

Lecture 1: Algebraic Geometry and Commutative Algebra with Symmetry

2. Coordinate Rings: Symmetry Imposes its Will

Here’s a motivating question: Suppose you are given an algebraic variety X, perhaps via a
parametrization, you know that it is the zero-set of some polynomials, but which ones?

First consider projective space PV , where we emphasize that it is the projectivization of a partic-
ular (finite dimensional) vector space V , that is PV is the space of all lines in V . The equivalence
classes are [x] ∈ PV defined by [x] = [y] iff ∃λ ∈ C \ {0} such that x = λy. We simultaneously
denote by [x] the punctured line in V with direction vector x and the point in projective space.
This equivalence is a symmetry of projective space, and since the punctured plane is topologically
a circle, we often refer to it as a torus, denoted T = C\{0}, and say that points of projective space
are invariant under the torus action.

The coordinate ring of V is the polynomial ring R = C[V ]. The polynomial ring has a natural
grading by degree, which one can see as a consequence of a torus action.

The torus invariance on projective space causes us to lose the meaning of values of polynomials
on representatives of points in PV , since we should have f(x) = f(λx) in order for the function f
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to be well-defined. Let us apply the T-action to the mapping:

f : V → C
The T-action decomposes V into a set of orbits, which come in two flavors. The origin ~0 is the only
0-dimensional orbit, and rest are the lines [v]. So we can think of V =

⋃
[v]∈PV [v] ∪ ~0 as an orbit

decomposition, where we emphasize the orbit ~0 is contained in the closure of all the other orbits.
Likewise C = [1] ∪ 0. Now we can view f as a mapping between T-orbits:

f : V =
⋃

[v]∈PV

[v] ∪~0→ C = [1] ∪ 0

If we want f to take the same value for every point on the same line, we see that we need the
mapping to be compatible with the T-action. As such, we see that the only thing that makes sense
is whether the value of f(x) is zero or non-zero.

We will re-define this notion later, but for now, given a group G and a vector space A, we will
call A a G-module if it caries a G-action that is compatible with the vector space structure. If A
and B are G-modules, we say that f is G-equivariant if f(g.x) = g.f(x) for all g ∈ G and all x ∈ A.
1 By construction G-equivariant maps take G-modules to G-modules. So we ask: what are the
T-equivariant polynomials?

Given a basis {x0, . . . , xn} of V we can write an element f ∈ C[V ] as a finite linear combination
of monomials: f(x) =

∑
α cαx

α, with multi-indices α = (α0, . . . , αn) ∈ Nn+1, coefficients cα ∈ C,
and monomials xα = xα0

0 · · ·xαnn .
Now consider what happens when we take a different points on the same line and ask under

what conditions we can have equivariance, i.e. we need to solve for a constant µ in the equation
µf(x) = f(λx) =

∑
α cαλ

αxα that works for all λ. We can convert this equation into a system of
equations by noting that the monomials xα form a basis of C[V ]:

µc0 = c0
µc(1,0,...0) = λc(1,0,...0)

...
µc(0,0,...1) = λc(0,0,...1)
µc(2,0,...0) = λ2c(2,0,...0)
µc(1,1,0...0) = λ2c(1,1,0...0)

...

If f is the zero polynomial, then it sends everything to zero, an orbit, and hence is equivariant (and
the parameter µ is free). If f is a non-zero constant polynomial then again it is equivariant since
we can take µ = 1.

If f is non-zero, then some equation µcα = λdcα with d = |α| =
∑

i αi, has cα 6= 0 and hence

µ = λd. If f has more than one term then we must have µcα = λdcα and · · · and µcβ = λecβ.

By induction this is a contradiction unless λe = λd, and in particular e = d. Hence the only
T-equivariant polynomials have all nonzero terms having the same degree, i.e. the homogeneous
polynomials. Note that the induced T-action on degree d polynomials is given on monomials by
λ.(xα) = λαxα. I.e. it still acts by scalar multiplication, but it also records the degree. The
elements for which T acts by the same scalar into T-modules, denoted SdV ∗, the homogeneous
polynomials of degree d on V . Note, we often forget the ∗ for vector space dual, and for these
lectures it causes little harm to assume V ∗ = V . We consider the zero function to have every
degree so that SdV is a vector space. Note that since the T-action on V can be described without
reference to basis (v 7→ λv) this definition is also basis-independent.

1Here we give the definition for both A and B left G-modules. One defines the actions with the inverse g−1 for
right actions.
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Exercise 2.1. Let Tn+1 act on V (after a choice of basis) by re-scaling each variable. Find all
Tn+1-invariant polynomials.

Since equivalence classes of non-zero homogeneous polynomials are fixed by the T-action we see
that C[V ] is a union of 1-dimensional T-modules together with ~0. This is a consequence of the fact
that for abelian groups the only possible dimensions of irreducible modules are 0 and 1.

The degree function deg : C[V ]→ N is defined by deg(xα) = |α| on monomials, and deg(
∑

α cαx
α) =

maxα | cα 6=0 |α|. Degree is finite because polynomials are finite linear combinations of monomials,

and hence the maximum exists. Degree induces a filtration, C[V ] =
⋃
S≤dV , with S≤dV denoting

the polynomials with degree at most d.
One checks that degree is compatible with the ring structure. Namely that deg(f + g) ≤

max{deg(f),deg(g)} for all f, g ∈ S≤dV , and deg(f · g) = deg(f) + deg(g) for all f, g ∈ S≤dV
(since C has characteristic 0). We also obtain a graded ring structure on C[V ] =

⊕
d∈N S

dV since

in addition deg(f + g) = d if f, g ∈ SdV (and deg(0) = d).

Exercise 2.2. Describe an algorithm that a calculus student could come up with to take an element
f ∈ C[V ] and decompose it into is homogeneous pieces. That is, find a computational way to do
the induction step: Given f find and extract all the highest degree piece.

A projective variety, denoted X ⊂ PV , is an algebraic variety defined by the vanishing of homo-
geneous polynomials. Let I(X) denote the ideal of X, that is, the vector space of all polynomials
that vanish on X.

Exercise 2.3. Prove that projective varieties are T-invariant varieties and that a polynomial f ∈
R = C[V ] vanishes on a projective variety X if and only if all its homogeneous pieces vanish.
In particular the ideal of X inherits the grading and we obtain a graded R-module structure
I(X) =

⊕
d∈N I(X)d, with I(X)d := SdV ∩ I(X).

The grading on a commutative ring R invites a measurement defined for any finitely generated
R-module M =

⊕
d∈NMd called the Hilbert Function:

HFM : N → N
d 7→ dimMd

A key observation is that one can collect all these numbers into a series, the Hilbert series HSM =∑
d∈N HFM (d) · td. This series has a rational representation

HSM = PM (t)/QM (t),

and many important properties of M can be read off from the polynomials P and Q such as the
algebraic degree of M , the Krull dimension of M , and the degrees of the generators of M .

Exercise 2.4. Show that if dimV = n+ 1 then dimSdV =
(
n+d
d

)
, and find the rational represen-

tation of the Hilbert series for a polynomial ring on n+ 1 variables.

These objets enjoy Hilbert’s namesake because of its connections to the three foundational the-
orems of Hilbert:

Hilbert’s basis theorem: ideals over a polynomial ring on finitely many variables (or any Noethar-
ian ring) are finitely generated.

Hilbert’s Nullstellensatz: a bijective correspondence between affine algebraic varieties and prime
ideals of polynomial rings.

Hilbert’s syzygy theorem: minimal free resolutions of finitely generated R-modules exist and
have finite length at most the number of variables.

Hilbert’s work shocked the invariant theory world because he showed that for most of the groups
G people cared about there exists a finite list of G-invariant polynomials, called fundamental
invariants, that generate all other G-invariants. We’ll see that with the help of computers we can
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give expressions for the Hilbert series for certain rings of invariants, and we can often use this to
show that a given list of known fundamental invariants are complete.

Exercise 2.5. Show that computing any finite number of terms of the Hilbert series reduces to
linear interpolation.

2.0.1. Interpolation. Consider what the grading gives us for the polynomial interpolation, which
simply stated is this: given sufficiently many points xi on an algebraic variety X, find a non-zero
polynomial f ∈ C[V ] that vanishes on all the xi. If X is not known to be projective, we have
to work with inhomogeneous polynomials and we have to go degree by degree computing the null
space of the matrix

(mα(xi))|α|≤s
with mα the monomial function that eats a vector x and produces the monomial xα. The interpo-
lation matrix has

(
n+s
s

)
rows (by homogenization we can imagine the inhomogeneous polynomials

as being homogeneous in one more variable and of the same degree).
If we knew that X were projective, we would do a similar null-space computation for each degree,

but with
(
n−1+s

s

)
rows. Here is an example of how quickly these numbers grow when n = 4. To find

all polynomials that vanish on a variety for degree up to 10, one must construct square matrices of
sizes: The complexity of the linear algebra required to compute a null space of an n× n matrix is
essentially n3 (but it is asymptotically ω, the complexity of matrix multiplication).

Already when s = 10 working with one more variable requires matrices with 3.5 as many rows
(1001 versus 286), and 12.25 as many entries, and roughly 43 times as much computation. This stor-
age and computational space can be the difference between being able to do one more computation
or not.

2.1. Algebraic varieties in GCT and their symmetry.

2.1.1. Bilinear complexity. Consider a bilinear map on vector spaces m : A×B → C, such as matrix
multiplication mp,q,r : Cp×q × Cq×r → Cp×r. A fundamental question is how many multiplications
over C must one do to compute m? A geometric way to state this is the following. It is a standard
exercise to equate such bilinear maps to elements of the tensor space A∗ ⊗ B∗ ⊗ C. In order to
treat each vector space on equal footing, we drop the ∗’s. The Segre product

Seg : PA× PB × PC → P(A⊗B ⊗ C)
([a], [b], [c]) 7→ [a⊗ b⊗ c]

parametrizes all bilinear maps that require exactly one multiplication to compute. These elements
are also known as rank-1 elements, as indecomposable elements, or as separable states, depending
on the context.

Given a variety X ∈ PV its k-th secant variety, denoted σk(X) ⊂ PV , is the Zariski closure of
the elements of X-rank k, i.e. those elements [v] ∈ PV such that v = x1 + · · ·+ xk with [xi] ∈ X.
Secant varieties form a chain X = σ1(X) ⊂ σ2(X) ⊂ · · ·σk(X) ⊂ · · · ⊂ PV whose inclusions are
strict until eventually it reaches the smallest projective space that contains X. We usually assume
that X is linearly non-degenerate so that PV is the smallest dimensional projective space that
contains X.

Given m ∈ A⊗B⊗C, the smallest r such that [m] ∈ σr Seg(PA×PB×PC) is called the border
rank of m, and it is the number of multiplications needed to compute any approximation of m.

Exercise 2.6. Show that X-border rank is semi-continuous, even though X-rank is not generally.

So we have a potential method for determining the approximation complexity of a bilinear
mapping m - just find all the equations of all the secant varieties of triple Segre products, then test
polynomial vanishing on m. Unfortunately this is a difficult proposition, and we don’t know the
generators of I(σk(Seg(Pn × Pn × Pn))) for n ≥ 4.
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Partial information can be gained, however. For instance lower bounds can be obtained by
knowing any non-zero polynomial f ∈ I(σk(Seg(Pn × Pn × Pn))) then f(m) 6= 0 would provide a
lower bound on complexity. For upper bounds one a complete set of set-theoretic defining equations
would suffice, but this is a tall order.

One can start to see how difficult this problem would be to compute polynomials in n3 variables
to find the Hilbert function in low degree since this would involve interpolation with matrices of size(
n3+d−1
d−1

)
×
(
n3+d−1
d−1

)
. In order to make progress we need to understand the representation theory

of GL×3n . Examples of this sort of computation can be found [OS16,HIL13].

2.1.2. VP vs VNP. One major topic of this semester program is to understand the intersection
between two orbit closures: The determinant and the padded permanent. One version of this is
the following:

Consider detn ∈ SnCn
2
, and `n−m perm ∈ SnCm

2+1 respectively the determinant and padded (by
` a linear form) permanent families of polynomials. For what n,m do the orbit closures GLn2 .detn
and GLn2 .(`n−m perm) intersect? One approach is to compute the coordinate rings and compare
them. These coordinate rings have a large group acting on them, which can help to reduce this
computation, however still many interesting questions remain.

2.1.3. Bigger tori. Consider Td and the action on d sets of variables thought of as the columns of
an n× d matrix (xi,j) by right multiplication by a diagonal matrix:

Td × V ⊕d → V ⊕d

(~λ, (~x1, . . . , ~xd)) → (λ1~x1, . . . , λd~xd)

This action induces a grading on C[V ⊕d] by multi-degree or weights. Let us set up notation to
describe this. Let e1, . . . , ed denote the standard basis of Zd. We say that the weight of a monomial
is ω(xα) =

∑
i(
∑

j αij)ej . We say that an element of Se(V ⊕d) is a weight vector if all of its
monomials have the same weight. One checks that weights are additive over products of weight
vectors. We define the weight of an element only when its terms all have the same weight.

One still has the grading by total degree:

C[V ⊕d] =
⊕
s≥0

C[V ⊕d]s

The larger torus provides a finer grading:

C[V ⊕d]s =
⊕
|w|=s

C[V ⊕d]s,w

where the individual pieces are the polynomials with total degree s and weight w.
Just as the single grading changed the search for homogeneous polynomials into a blocked linear

algebra problem, this additional symmetry and it induced grading makes the blocks smaller.
As an example suppose one is looking for an expression of Cayley’s 2× 2× 2 hyperdeterminant

via interpolation. It is known to be a degree 4 polynomial on the 8 variables of tensor space.
The space of inhomogeneous polynomials of degree 4 has dimension 495, and the corresponding
interpolation problem involves a matrix of size 495 × 495. Passing to homogeneous polynomials
reduces to 330. However the number of weight zero monomials, i.e. those with the same number
of 0’s and 1’s in each mode is only 12. This is a significant reduction. We can reduce even further,
however, when we look at SL(2) invariance. In that case we will find that the space of SL(2)×3

invariants is only 2-dimensional, and the space of such invariants that lives in S4(C2 ⊗ C2 ⊗ C2)
is only 1-dimensional. So the interpolation problem drops from size 495 to 1 (just determining
vanishing) by using symmetry.
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2.1.4. Fatter groups. This is all motivation for why we want to know the fundamentals of repre-
sentation theory.

2.1.5. Representations of groups. Suppose G is a group. We care mostly about compact groups,
and finite groups, complex algebraic groups, and Lie groups, but usually we’re thinking of G as
either a symmetric group or a general linear group or special linear group. Classically groups
were only studied when they acted on some space, and later their definition was abstracted to
remove the necessary action on a space, but we can recover an action on a space by considering
representations. Let V be a finite dimensional vector space over C and let GL(V ) denote the
invertible linear transformations V → V .

A representation of a group G is a homomorphism

ρ : G→ GL(V ).

In such a case we say that V is a G-module, or that V carries a G-action. One can check that the
definition of G-action is equivalent to having a representation. We often confuse terms and also
call V a representation.

A sub-representation ρ′ of a representation ρ of G is a vector subspace V ′ of V that is compatible
with the same action on V given by ρ. We call V ′ a G-submodule of V . A sub-representation is
called proper if it is not the zero vector space nor the entire space.

A representation is called irreducible if it does not have any proper submodules. The natural
mappings between G-representations are G-module homomorphisms, which may also be called
G-linear maps, or G-maps.

Noting the fact that the image, kernel and co-kernel of G-linear maps are G-modules one arrives
at a key foundational result known as Schur’s lemma, which characterizes maps between irreducible
representations.

Lemma 2.7 (Schur’s lemma). Suppose A and B are irreducible G-modules, and φ : A → B a
G-map. Either φ is an isomorphism or φ = 0. If A = B then φ = λ · I, a scalar times the identity
for some λ ∈ C.

A group G is called completely reducible, reductive or semi-simple if it has the property that any
(finite dimensional) representation of G is a direct sum of irreducible representations.

Proposition 2.8. Suppose G is a finite group or a compact group. Then G is completely reducible.

A standard proof of this fact is to first show for a finite dimensional representation every sub-
representation has a G-invariant complement. This is accomplished in the finite case by averaging,
and in the infinite compact case by integrating over the group.

A common theme in mathematics is to establish a so-called fundamental theorem. In arithmetic
the fundamental theorem is that every integer can be factored as a product of prime powers and the
factorization is unique up to changing the order. The classification of modules over a PID is similar.
In representation theory the first half of our fundamental theorem is the previous proposition that
says that for compact groups we can factor, and the next step for a given semi-simple group G
be to identify all of its irreducible G-modules. The cases that interest us the most are when G is
a symmetric group or a general linear group. We will study the symmetric group first, and then
show how this work actually also answers the general linear group case.

2.2. Representations of Sd, Young tableaux, Young symmetrizers, colored directed
graphs. The permutations on a finite set of size d is the group denoted Sd. In a first course on
Algebra one encounters the following homework problems:

Exercise 2.9. (1) Show that conjugation σ 7→ xσx−1 is an equivalence on Sd, and hence
equivalence classes partition Sd.
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(2) Show that conjugation preserves cycle type, and hence these equivalence classes are deter-
mined by their cycle type.

(3) Show that disjoint cycles commute, so that cycle type does not depend on the order of the
cycles, only the number of cycles of each length.

From these exercises one can deduce that the elements of Sd are classified by cycle type, which
in turn is indexed by partitions of d. It turns out that the irreducible representations of Sd are
indexed by the partitions of d.

We denote the set of partitions of d by {π ` d}. We list partitions in non-increasing order. So a
partition may be denoted π = (π1, . . . , πd), and we frequently drop the zero-parts in our notation,
so the partition (d, 0, . . . , 0) is denoted more compactly by (d). Likewise we indicate repetition in
a partition by exponent, so (1, . . . , 1) ` d is also denoted (1d). The number of parts of a partition
#π is the number of non-zero parts πi and we define | · | by |π| =

∑
i πi.

We won’t prove this here, but we will show out to construct these representations and how to
compute with them, i.e. we will show how to construct bases of these representations.

2.2.1. Young diagrams, tableaux. Partitions are depicted by Young diagrams, which we consider a
diagram of boxes that are upper left justified. For example, the partition (3, 1) is associated with

the diagram , and the partitions of 4, for instance, are given with their diagrams below:

(4) (3, 1) (2, 2) (2, 1, 1) (1, 1, 1, 1)

A filing of a Young diagram (or Young tableau) is an assignment of a collection of (not necessarily
distinct) letters or numbers (its content) to each of the boxes in the diagram. A tableau is said to be
semi-standard if it is strictly increasing in the columns and weakly increasing in the rows. A tableau
is said to be standard if it is strictly increasing in both rows and columns and each letter occurs
once. The set of Standard Tableaux of shape π and content {1, . . . n} is denoted SYTπ{1, . . . , n},
and repetitions are allowed. For standard tableaux of shape π ` the content is determined by the
partition, so we drop it from the notation. For example, SYT(3,1){

1 2 3
4

, 1 2 4
3

, 1 3 4
2

}
.

We also note that the standard Young tableaux are in one-to-one correspondence with
Similarly we denote the set of Semi-Standard Tableaux by SSYTπ{0, . . . , n}. Following are re-

spectively all semi-standard tableaux of shape (3, 1) and content from {0, 1, 2}: SSYT(3,1){0, 1, 2} ={
0 0 0
1

, 0 0 0
2

, 0 0 1
1

, 0 0 1
2

, 0 0 2
1

, 0 0 2
2

, 0 1 1
1

, 0 1 1
2

, 0 1 2
1

, 0 1 2
2

, 0 2 2
1

, 0 2 2
2

, 1 1 1
2

, 1 1 2
2

, 1 2 2
2

}
Note that in Macaulay2 one can use the package PieriMaps and the command standardTableaux

to produce sets of semi-standard tableaux.
There are combinatorial formulas, known as hook-length formulas for counting the numbers of

semi-standard and standard tableaux.
To each box in a Young diagram we assign the hook length by counting that box together with

the number of boxes directly to the right (the arm) and directly below (the leg). If the pair (i, j)
denotes the location of a box in row i and column j in Yπ write (i, j) ∈ Yπ and let hi,j denote the
hook length of the hook cornered at box (i, j). It is convenient to record the hook lengths in a
filling of the tableaux. For example, the hook lengths of the Young diagram of shape (4, 3, 2, 1) are

7 5 3 1
5 3 1
3 1
1

.
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The number of semi-standard tableaux of shape π ` d filled with numbers {0, 1, . . . , n} is given
by

(1) # SSYTπ{0, . . . , n} =
∏

(i,j)∈Yπ

n+ 1 + j − i
hi,j

.

It is convenient to write this dimension as a ratio of tableaux, taking the product of the contents
of each of the tableaux. For instance,

# SSYT(3,2,1){0, 1, 2} =
3 4 5
2 3
1

/
5 3 1
3 1
1

= 8.

Similarly, the number of standard tableaux of shape π ` d is given by a hook-length formula:

(2) # SYTπ =
d!∏

(i,j)∈Yπ hi,j
.

Again using ratio of tableaux, taking the product of the contents of each of the tableaux we have
for (3, 2, 1) ` 6 = d:

# SYT(3,2,1) = 6 5 4 3 2 1

/
5 3 1
3 1
1

= 16,

and for (3, 1) ` 4 = d:

# SYT(3,1) = 4 3 2 1

/
4 2 1
1

= 3.

Exercise 2.10. Show that for the staircase diagram π = (n, n−1, . . . , 1, 0) we have # SSYTπ{0, . . . n} =

2(n+1
2 ).

We will show in the following sections the computational aspects of the following facts that we
now take for granted:

(1) The dimension of the irreducible Sd module indexed by π is equal to # SYTπ, and hence
we can use the standard Young tableaux as a basis of an abstract vector space of the same
dimension.

(2) The dimension of the irreducible SL(V ) module indexed by π, with V ∼= Cn+1 , is equal to
# SSYTπ{0, . . . , n}, and hence we can use the semi-standard Young tableaux as a basis of
an abstract vector space of the same dimension. We denote this irreducible module using
the Schur functor notation: SπV .

2.2.2. Young symmetrizers. Young symmetrizers associated with a partition π ` d depend on the
choice of a filling Tπ, and are constructed as operators cπ (typically denoted without reference to
the filling) on V ⊗d, the d-th tensor power of a vector space V . Typically one does this in two steps,
a skew-symmetrization bπ and a symmetrization aπ, and the tableau gives the recipe for how to
construct these maps. Further, one notes that tableaux of the same shape produce isomorphic, but
not-necessarily equal, images. The equivalence class of Young symmetrizers associated with shape
π is an irreducible representation of Sd. Note that non-zero scalar multiples of linear mappings
produce equivalent mappings, so it makes sense to look at the group algebra CSd formed by formal
complex linear combinations of permutations, and then consider the image of one such cπ under
the action of the group algebra. This is the C-span of the orbit of Sd of a particular cπ. It’s clear
that this is spanned by the Young symmetrizers associated with all fillings (with no repetitions),
but what is less clear, but is perhaps evident from the straightening laws on tableaux, is that the
symmetrizers associated with standard fillings form a basis of this space.

The image in V ⊗d of a Young symmetrizer cπ is (a copy of) an irreducible SL(V ) module, the
Schur module SπV , and in fact all such irreps of SL(V ) arise in this way.
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Let us elaborate. Let
∧kV and SkV respectively denote the alternating and symmetric powers

of V inside V ⊗k. They are respectively the images of the Young symmetrizers associated with
partitions (1k) and (k). The Young symmetrizer c(1k) consists of only the skew-symmetrization
map b(1k), the symmetrization map a(1k) being trivial. The reverse is true for the symmetrizer c(k).

Specifically, we describe the linear mapping (it’s actually a projection) on a basis of indecomposable
elements as follows:

c(1k) = b(1k) : V ⊗k →
∧kV

v1 ⊗ · · · ⊗ vk 7→ v1 ∧ · · · ∧ vk,
and

c(k) = a(k) : V ⊗k → SkV
v1 ⊗ · · · ⊗ vk 7→ v1 ◦ · · · ◦ vk.

One checks that each of these mappings is in fact a projection by using the wedge ∧ and symmetric
◦ products of elements in the tensor product space:

(3)

v1 ∧ · · · ∧ vk := 1
k!

∑
σ∈Sk sgn(σ)vσ(1) ⊗ · · · ⊗ vσ(k),

v1 ◦ · · · ◦ vk := 1
k!

∑
σ∈Sk vσ(1) ⊗ · · · ⊗ vσ(k).

Note that since there is only one standard filling of each of the tableaux (1k) and (k) there is no
ambiguity in defining c(1k) and c(k).

Now, for concreteness, we arbitrarily decide to work with the standard filling of a tableau that
fills by columns first, and we might be tempted to call this the canonical filling, but this is an abuse
of language because there is no reason this choice should be, in fact, canonical, however we will see
that any choice will do. When working with multiple tensor factors we will need greater flexibility
and this requirement will slightly overcomplicate what follows.

The recipe for producing the Young symmetrizer, denoted cTπ associated with a filling Tπ of
shape π ` d is as follows. Set p := #π. Let λ = π′ be the transpose partition whose entries count
the number of boxes in each column of π, and let ` := #λ. Construct bTπ and aTπ by the following.

Add indices 1, . . . d to d distinct copies of V , and denote them Vi, and let
∧kVI , respectively SdVI ,

with |I| = k denote the skew-symmetrization (respectively symmetrization) of the copies indexed
by I. Let RiTπ denote the content of row i of Tπ and similarly let CiTπ denote the content of
column i.

bTπ : V1 ⊗ · · · ⊗ Vd →
∧λ1VC1Tπ ⊗

∧λ2VC2Tπ ⊗ · · · ⊗
∧λ`VC`Tπ

and
aTπ : V1 ⊗ · · · ⊗ Vd → Sπ1VR1Tπ ⊗ Sπ2VR2Tπ ⊗ · · · ⊗ SπpVRpTπ

Erasing the indices for each gives tensor products of exterior, respectively symmetric, powers of
V , but it forgets which copies of V were used in that construction. This information is important
for the construction of irreducible representations of products of several SL(V )’s. At any rate, the
concise description of the images is the same for any filling so we drop the reference to the filling
and write

Im(bπ) ∼=
∧λ1V ⊗∧λ2V ⊗ · · · ⊗∧λ`V ⊂ V ⊗d

and respectively
Im(aπ) ∼= Sπ1V ⊗ Sπ2V ⊗ · · · ⊗ SπpV ⊂ V ⊗d.

Note that (3) implies that the images of these maps are subspaces of V ⊗d so that they can be
composed to form the the Young symmetrizer cπ = aπ ◦ bπ. The image of cπ is (a copy of)
the irreducible SL(V )-representation, which is called a Schur module, is denoted SπV ⊂ V ⊗d. In
addition, the claim from representation theory is that the equivalence class CSdcTπ is an irreducible
Sd-module. This module, which is often called a Spect module, is sometimes denoted [π]. As
mentioned above, we can take the standard Young tableaux to be a formal basis for [π] but this
discussion shows how one obtains elements in the space of linear operators V ⊗d → V ⊗d to realize
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these elements. However, it is clear that not every tableau produces a distinct mapping - at least
one ambiguity can be seen by re-ordering columns that have the same height - this operation fixes
both bπ and aπ. The complete set of such rules is called a straightening law, which allows one to
take any tableau and move it to a linear combination of standard tableaux. We don’t have time to
discuss this in detail. The claim that we’re not going to prove is that one can use a straightening
law to show that the operators associated with standard Tableaux form a basis of the space spanned
by all Young symmetrizers associated with shape π (i.e. for any filling, not just the standard ones).
We summarize this (without proof) as follows.

Theorem 2.11. The irreducible Sd-modules are all of the form [pi] = CSd.cTπ , with Tπ any filling
of shape π, in particular, [π] is spanned by the set of Young symmetrizers as the fillings of shape π
run over all possibilities. Moreover [π] has a basis {cTπ | Tπ ∈ SYTπ}.

2.3. Weight bases of Schur modules. In what follows we will construct bases of Schur modules
utilizing Young symmetrizers. Moreover, these bases respect the wights induced by the natural torus
action Tn ⊂ SL(V ). For ease of notation, however, we choose to expand our scope just slightly
to consider the natural torus action Tn+1 ⊂ GL(V ), and we view GL(V ) as being isomorphic to
the product SL(V ) × T1, where in the later case the torus is multiplication by the determinant,
specifically, the isomorphism is A 7→ (A/det(A),det(A)).

The choice of a basis of V that is compatible with the torus action is essentially equivalent
to choosing a torus in GL(V ). We denote this basis x0, . . . , xn and we insist that Tn+1 acts by
re-scaling these vectors, i.e. Tn+1 is the diagonal matrices in GLn+1. Let ei denote a basis of
Zn+1. We define a weight function ω by a multi-step process as follows. Set ω(xi) = ei. Later,
we may want to define the dual vector space, denoted V ∗ of linear operators to the ground field,
with corresponding dual basis denoted xi, with correspondence xj(xi) = δi,j , the Kronecker delta.
In that case we also have weight ω(xi) = −ei. We declare that weights are additive over tensor
products (and hence over wedge and symmetric products as well). We say that an element of V ⊗d

is a weight vector if every term in an expansion in the standard basis has the same weight.
This definition of weight is compatible with the induced action of SL(V ) and GL(V ) on V ⊗d.

Moreover, it is straightforward to check that the Young symmetrizers preserve weight, and hence are
Tn+1-equivariant. Because of this we can obtain a weight basis of the Schur module SπV by feeding
a Young Symmetrizer an appropriate set of weight vectors. The magic here is that “appropriate”
is entirely captured by the notion of Semi-Standard Young Tableaux. Let Tπ be a tableau of shape
π with content exactly {1, . . . , d} (no repetitions). Then just as Tπ gives a recipe for constructing
(a copy of) the symmetrizer cπ, it also gives a way to assign a tensor product of basis vectors to
any filling of a tableau, which we call the reading order. Given any filling Yπ with content from

{0, . . . , n} replace box i with vector xi and send Yπ to the tensor product of its content placed in
order given by the reading order.

For example, given T(3,1) =
1 2 4
3 , one associates to Y(3,1) =

0 2 2
1 the tensor x0 ⊗ x2 ⊗ x1 ⊗ x2,

which has weight e0 + e2 + e1 + e2 = (1, 1, 2).
The content of a tableau is the same information as the weight of the associated tensor, and the

reading tableau does not change the weight.

Theorem 2.12. The set of tableaux of shape π form a spanning set for the Schur module SπV ,
and SSYTπ{0, . . . , n} forms a weight basis of SπV .

One can put a partial order on the set of weights, and then declare a highest weight that occurs
with non-zero coefficient in SπV . With the standard lex partial order on Zn+1 the highest weight
is associated with what one may call the canonical filling of shape π, which is the filling that has
πi i ’s in the i-th row for all i. Hence the highest weight for SπV is π, thought of as an integer
vector in Zn+1.
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Remark 2.13. As a caution, this notion of weight, which could be thought of as a tensor multi-degree,
does not match with the common notion of fundamental weights. For SL(V ) the fundamental

representations are the wedge powers
∧kV , and the highest weight of such representation is denoted

ωk. The irreducible representation with highest weight a1ω1 + · · · anωn is denoted Γa1,...an . By
comparing weights, the representation Γλ must be the Schur module SπV with π = λ′.

Remark 2.14. A word on duality. One can check that the duality of vector spaces induces the
following isomorphisms of SL(V )-modules (SπV )∗ ∼= SπV

∗ ∼= Sπ∗V , where π∗ is the contragradient
partition, which can be formed by taking a (n + 1) × #π box, placing π in the upper left corner
and removing those boxes, then take the remaining boxes and rotate 180 degrees. Equivalently
π∗ = ((n+ 1)#π)−←−π , with ←−π := (π#π, . . . , π1), the reverse. On the level of fundamental weights,
the contragradient reverses the order up to a twist by the trivial weight.

2.3.1. Representations of GL(V ) from SL(V ). Since GL(V ) and SL(V ) differ by a torus T1 their
representations are essentially the same, up to a twist by a trivial (1-dimensional) representation.

We can imagine the trivial representation C as a Schur module such as
∧n+1V , which is also 1-

dimensional. This representation is a preferable choice since the extra torus action is multiplication
by the determinant, and that is how GL(V ) acts on

∧n+1V . However, since all representations of

a torus (which is abelian) are 1-dimensional, the inverse (
∧n+1V )−1 also makes sense, and from

the point of view of the contragradient we have a vector space isomorphism
∧kV ∗ ∼= ∧n+1−kV ∗,

however the degree of this isomorphism is wrong. So we twist it and get∧kV ∗ ∼= ∧n+1−kV ⊗
∧n+1V ∗.

So, we can take any integer power of the trivial representation (
∧n+1V )t and get a different copy of

the trivial representation for each integer s, which we call the degree. So we arrive at the following
(which we don’t prove here):

Theorem 2.15. For V ∼= Cn+1, all the irreducible representations of GL(V ) are of the form

SπV (−t) ∼= SπV ⊗ (
∧n+1V )t,

with π ` d and t ∈ Z.

2.3.2. Schur - Weyl Duality, the double commutant theorem. We have already seen that the rep-
resentations of Sd (Spect modules) and representations of GL(V ) (Schur modules) are connected
(via Young symmetrizers). This can be made more formal. Note that V ⊗d has an action of Sd

(permuting the factors) as well an action of GL(V ) (simultaneous change of coordinates in each
factor). Hence both groups can be embedded in GL(V ⊗d). It’s easy to see that the two actions
commute, what’s more is that they are actually the commutants of each other, due to theorem of
Schur. A consequence of this is that we can consider the joint action of Sd ×GL(V ) on V ⊗d, and
obtain the following decomposition.

Theorem 2.16 (Schur-Weyl duality). As Sd ×GL(V )-modules

(4) V ⊗d =
⊕
π`d

[π]⊗ SπV.

We note that this decomposition is multiplicity-free, and that the Spect module [π] uniquely
determines the Schur module, and vice versa. So this statement also includes a 1-1 correspondence
between the representations of Sd and SL(V ).

Exercise 2.17. Set n = 2 and d = 3. Check that the dimensions of the representations on both
sides of the equation in the theorem add up.
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2.4. Construction of irreducible SL(V1)×· · ·×SL(Vd) modules. Suppose V1, . . . Vd are C-vector
spaces of respective dimensions n1, . . . , nd (all finite).

Proposition 2.18 (4.2.5 [GW98]). Suppose G1 and G2 are reductive linear algebraic groups. The
irreducible representations of G1 × G2 are all of the form E1 ⊗ E2 for E1 and E2 respectively
irreducible representations of G1 and G2.

From this we immediately obtain the following

Proposition 2.19. The irreducible representations of SL(V1)× · · · × SL(Vd) are all of the form

S~π~V := Sπ1V1 ⊗ · · · ⊗ SπdVd.

The notation ~π is to indicate a multi-partition ~π = (π1, . . . , πd) with each πi itself a partition of
a non-negative integer |πi|. So as an abuse of notation, before πi was a part of a partition, now it
is a partition itself.

Since the difference between SL(V1)× · · · × SL(Vd) and GL(V1)× · · · ×GL(Vd) is the torus Td,
so we also obtain the same representations up to a twist:

Proposition 2.20. The irreducible representations of GL(V1)× · · · ×GL(Vd) are all of the form

S~π~V (−~t ) := Sπ1V1 ⊗ · · · ⊗ SπdVd ⊗
(
(
∧n1V1)

t1 ⊗ · · · ⊗ (
∧ndVd)td) .

Note that each S~π~V (−~t ) is a sub-representation of V ⊗d, and is constructed simply by the tensor
product of Young symmetrizers.

2.5. Decomposition and computation for irreducible SL(V ) modules inside C[V1⊗· · ·⊗Vd].
Now that we know the representations of SL(V ), GL(V ) and products of such we can finally begin to
describe the representations that occur in the coordinate ring of a tensor product C[V1⊗· · ·⊗Vd]. As
before, we have grading by degree (and we omit ∗’s for duals at this point for notational simplicity):

C[V1 ⊗ · · · ⊗ Vd] =
⊕
e≥0

Se(V1 ⊗ · · · ⊗ Vd)

The following classical formulas are called the Cauchy formulas, and tell how to decompose symmet-
ric and exterior powers of sums and tensor products of vector spaces V1 and V2 as SL(V1)×SL(V2)-
modules.

Proposition 2.21 (Cauchy Formulas).

(5)
Sd(V1 ⊕ V2) =

⊕d
e=0 S

d−eV1 ⊗ SeV2, Sd(V1 ⊗ V2) =
⊕

π`d SπV1 ⊗ SπV2,∧d(V1 ⊕ V2) =
⊕d

e=0

∧d−eV1 ⊗∧eV2, ∧d(V1 ⊗ V2) =
⊕

π`d SπV1 ⊗ Sπ′V2.

Attempting to apply the Cauchy formulas to the coordinate ring of a tensor product we see that
we also need to consider compositions of Schur functors. This can be done via character theory
for small partitions and for special cases, but in general these problems can be just as hard as
the complexity theory questions of relevance for this semester. So for now we just state the result
and then we will explain a method for computing bases of these modules which would imply the
character theory results, but is arguably not the best way to compute characters.

Proposition 2.22 (Landsberg-Manivel, [Lan12, Prop. 6.5.1.2]).

(6) C[V1 ⊗ · · · ⊗ Vd] =
⊕
e≥0

⊕
~π`e

S~π~V
⊕N~π ,

with ~π ` e a multi-partition with partitions πi ` e for 1 ≤ i ≤ d, and the multiplicity N~π is the
dimension of the space of Sd-invariants ([π1]⊗ · · · ⊗ [πd])

S
d .
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This decomposition is an example of an isotypic decomposition, and the numbers N~π are known
as multiplicities. In the case d = 2 we may use the Cauchy formulas to compute N~π, however,
when d = 3 the N~π are the Kronecker coefficients. And for d > 3 the N~π can be computed from
the Kronecker coefficients.

We may also consider the multiplicity as a vector space with a module structure, which is known
as the highest weight space:

S~π~V
⊕N~π = S~π~V ⊗M~π

with M~π a Sd module with dimension N~π. An advantage of this approach is that one may attempt
to find a basis of M~π, which also will compute the number N~π. In addition, one may compute may
be able to compute a non-zero vector in M~π without even knowing N~π.

2.5.1. Weaving. One approach to the following is bird tracks which have their advantage as being
quite visual, but the disadvantage is that they may require a lot of typesetting for notes. We choose
to continue with the non-pictorial exposition.

Our starting observation is that up to isomorphism tensor product is commutative on the level
of vector spaces, so V1 ⊗ V2 ∼= V2 ⊗ V1. We’re interested in computing irreducible representations

in Se(~V ), which is the Sd-invariant space inside (~V )⊗e. When we expand the tensor power we get:

(~V )⊗e = ~V ⊗ ~V ⊗ · · · ~V = (V1 ⊗ · · ·Vd)⊗ · · · ⊗ (V1 ⊗ · · ·Vd)

We notice that the vector spaces are not in the correct order to apply Schur-Weyl duality, but by
the commutativity on the level of vector spaces we can weave the vector spaces to obtain

(~V )⊗e ∼= (V1)
⊗e ⊗ · · · ⊗ (Vd)

⊗e.

Now one can apply Schur-Weyl duality (4) to each vector space to obtain

(~V )⊗e ∼=
⊕
π1`e

[π1]⊗ Sπ1V1 ⊗ · · · ⊗
⊕
πd`e

[πd]⊗ SπdVd.

Then collecting the Sd modules we obtain

(~V )⊗e ∼=
⊕
~π`e

([π1]⊗ · · · ⊗ [πd])⊗ S~π~V .

The decomposition of Se(~V ) arises by taking Se invariants. The above discussion is Landsberg
and Manivel’s proof of Proposition 2.22. However, we can turn the last step into a computational
method by computing the projection operator on the tensor product of Young symmetrizers. We
can do this (for small enough partitions) and simultaneously obtain a basis of the highest weight

space of the S~π~V . The most naive way to compute the projection onto Se-invariants is to apply
the averaging operator, which is, for any finite group G acting on v ∈ V is ΩG(v) = 1

|G|
∑

g∈G g.v.

One additional trick we can employ is that the averaging operator in our situation is essentially
changing ⊗-products for ◦-products. Symmetrizing v1⊗· · ·⊗vn produces v1◦· · ·◦vn. The challenge
is to be able to do this in the weaved setting. This is perhaps best seen by example.

2.5.2. degree 4 binary invariants. There is a 1-dimensional space of GL(2)×3 invariants in C[C2 ⊗
C2⊗C2] in degree 4, which could be computed by character theory. Let us see how to discover this
from Young symmetrizers.

The tableau associated to the partition (2, 2) has 2 standard fillings:

T1 = 1 3
2 4

, T2 = 1 2
3 4

This means that the representation S2,2C2 occurs with multiplicity 2 inside (C2)⊗4. Quickly one
sees that it is important to distinguish different copies of C2, so we set A = B = C = C2.
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The space S2,2A ⊗ S2,2B ⊗ S2,2C occurs with multiplicity 23 inside (A ⊗ B ⊗ C)⊗4, and the
multiplicity space has basis {Ti ⊗ Tj ⊗ Tk | i, j, k ∈ {1, 2}. Because globally re-naming the content
of tableau is just an action of S4, when computing the projection to the space of invariants we
only need to consider 2 types: T1 ⊗ T1 ⊗ T1 and T1 ⊗ T1 ⊗ T2. Applying shuffling rules like in
[Rai12, OR14] one could find out that only the second of these projects to a nonzero invariant
as the first is simultaneously symmetric and skew-symmetric and must project to zero. But we
can compute it directly as well. We present an algorithm that we have used several times, see
[BO11, OS16] for instance. This algorithm has the feature that it can be used to produce the
expression of the polynomial in the image and it can be used to evaluate this polynomial without
first finding its expression (which is much more efficient).

First compute CT1 on A, which is the mapping

A⊗4
bT1 //

∧2A1,2 ⊗
∧2A3,4

ι // A⊗4
aT1 // S2A1,3 ⊗ S2A2,4

ι // A⊗4.

Evaluate this on a simple tensor a1 ⊗ a2 ⊗ a3 ⊗ a4:
a1 ⊗ a2 ⊗ a3 ⊗ a4 7→ (a1 ∧ a2)⊗ (a3 ∧ a4) = (a1,1 ⊗ a2,2 − a1,2 ⊗ a2,1)⊗ (a3,1 ⊗ a4,2 − a3,2 ⊗ a4,1).

We can also view this action as eating a filled tableau T =
a1 a3
a2 a4

and skew-symmetrizing its

columns. The standard tableau

1 3
2 4 tells the order in which to read things to make a tensor in

A⊗4, which in this case puts the content of the filling in order as a tensor.
Computationally if we have an index that unambiguously records the order of terms one can use

the usual (commutative) product in place of the tensor product with no loss of information. So we
can view the result as

bT1(a1 ⊗ a2 ⊗ a3 ⊗ a4) = (a1,1a2,2 − a1,2a2,1)(a3,1a4,2 − a3,2a4,1)
= a1,2a2,1a3,2a4,1 − a1,1a2,2a3,2a4,1 − a1,2a2,1a3,1a4,2 + a1,1a2,2a3,1a4,2

which is an element of
∧2A1,2⊗

∧2A3,4. It is no coincidence that the expression of bTπ is a product of
determinants. The general procedure is to take the vectors to be skew-symmetrized and put them in
the rows of a matrix. The reason for this convention is our tradition of appending indices to the right
when writing the entries of a vector that already has a subscript, for instance a1 = (a1,1, . . . , a1,n)
looks like a row vector. So we can also write

bT1(a1 ⊗ a2 ⊗ a3 ⊗ a4) =

∣∣∣∣a1,1 a1,2
a2,1 a2,2

∣∣∣∣ ∣∣∣∣a3,1 a3,2
a4,1 a4,2

∣∣∣∣ .
Similarly,

bT2(a1 ⊗ a2 ⊗ a3 ⊗ a4) =

∣∣∣∣a1,1 a1,2
a3,1 a3,2

∣∣∣∣ ∣∣∣∣a2,1 a2,2
a4,1 a4,2

∣∣∣∣ .
Next, we weave the terms so that the indices we want to symmetrize over are adjacent.

bT1(a1 ⊗ a2 ⊗ a3 ⊗ a4) = a1,2a3,2a2,1a4,1 − a1,1a3,2a2,2a4,1 − a1,2a3,1a2,1a4,2 + a1,1a3,1a2,2a4,2

Applying the symmetrization produces:

aT1◦bT1(a1⊗a2⊗a3⊗a4) = a1,2◦a3,2⊗a2,1◦a4,1−a1,1◦a3,2⊗a2,2◦a4,1−a1,2◦a3,1⊗a2,1◦a4,2+a1,1◦a3,1⊗a2,2◦a4,2
Now one could change notation to indicate that the variables with first index 1 or 3 are in the

same space, and similarly that variables with first index 2 or 4 are in the same space.

aT1 ◦ bT1(a1 ⊗ a2 ⊗ a3 ⊗ a4) =

a13,2a13,2a24,1a24,1 − a13,1a13,2a24,2a24,1 − a13,2a13,1a24,1a24,2 + a13,1a13,1a24,2a24,2

= (a13,2a24,1 − a13,1a24,2)2.
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The final simplification fits with the idea that this representation is essentially the product of two
determinants. However, for what comes next we will want to remember, again, where these factors
came from in the Young symmetrizer, so we prefer to write

aT1 ◦ bT1(a1 ⊗ a2 ⊗ a3 ⊗ a4) = a1,2a2,1a3,2a4,1 − a1,1a2,2a3,2a4,1 − a1,2a2,1a3,1a4,2 + a1,1a2,2a3,1a4,2,

which is a slight abuse of notation, but still no loss of information since the first index of every
variable in any given monomial is distinct, the indexing keeps track of the order, so symmetric,
wedge, or tensor product all record the same thing.

A similar computation gives cT2(a1 ⊗ a2 ⊗ a3 ⊗ a4)

aT2 ◦ bT2(a1 ⊗ a2 ⊗ a3 ⊗ a4) = (a1,1a3,2 − a1,2a3,1)(a2,1a4,2 − a2,2a4,1)

= a1,2a2,2a3,1a4,1 − a1,1a2,2a3,2a4,1 − a1,2a2,1a3,1a4,2 + a1,1a2,1a3,2a4,2.

Next one computes the same expressions for the other two factors and multiplies (tensor product,
but disjoint symbols) to obtain cT1(a1⊗a2⊗a3⊗a4)⊗cT1(b1⊗b2⊗b3⊗b4)⊗cT1(c1⊗c2⊗c3⊗c4) =

(a1,1a2,2−a1,2a2,1)(a3,1a4,2−a3,2a4,1)(b1,1b2,2−b1,2b2,1)(b3,1b4,2−b3,2b4,1)(c1,1c2,2−c1,2c2,1)(c3,1c4,2−c3,2c4,1)

which has 43 = 64 terms in its expansion, that we will not write explicitly.
The next step is to un-weave the terms. To do this we take the each monomial a1,ib1,jc1,k and

replace it with the tensor variable xijk, keeping the same coefficient. This operation can be seen as
the operator f 7→ xi,j,k(a1,ib1,jc1,k)

∗(f), where ∗ indicates contraction. This produces 64 terms like

a2,1a3,2a4,1b2,1b3,2b4,1c2,1c3,2c4,1x2,2,2

Then we do the same with each a2,ib2,jc2,k, which happens to produce 0, indicating that the
polynomial we are trying to find is just the zero polynomial. If instead we use cT1(a1 ⊗ a2 ⊗ a3 ⊗
a4)⊗ cT1(b1 ⊗ b2 ⊗ b3 ⊗ b4)⊗ cT2(c1 ⊗ c2 ⊗ c3 ⊗ c4), and cary out the same procedure, at the first
step we obtain 64 terms, then the next step produces 48 terms like

−2a3,2a4,1b3,2b4,1c3,1c4,1x1,2,2x2,1,2

The third step produces 40 terms like

−2a4,1b4,1c4,1x1,2,2x2,1,2x2,2,1

and the final step with a4,ib4,jc4,k one obtains (up to a factor of 12) the polynomial

x2122x
2
211 − 2x121x122x211x212 + x2121x

2
212 − 2x112x122x211x221

−2x112x121x212x221 + 4x111x122x212x221 + x2112x
2
221

+4x112x121x211x222 − 2x111x122x211x222 − 2x111x121x212x222
−2x111x112x221x222 + x2111x

2
222.

The shuffling laws can be understood via graphs, and there is a pictorial computation that one
can do to see which of these triples of tableaux will produce a zero symmetrizer or not.

For the curious, the graphs are

1

���� ��

3

���� ��

T = 1 3
2 4

⊗ 1 3
2 4

⊗ 1 3
2 4

associated to

2 4
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(one condition to be non-zero from [Rai12] is that there should be no triangles when erasing arrow
directions, which this graph fails, and hence is zero) and

1

����

//
3

����

T = 1 3
2 4

⊗ 1 3
2 4

⊗ 1 2
3 4

associated to

2
//
4

2.6. Decomposition and computation for irreducible SL(V ) modules inside C[Sd(V )].
Computing the GL(V ) module description for C[Sd(V )] is similar to what we have done before, with
a few notational changes. At first all we need to understand in order to know the representations
is to compute the composition of Schur functors Se(SdV ), which can be done via characters for
instance. But to do comptuations we would like to have a realization of the copies of these modules
as modules of polynomials.

One approach to this is to use the concept of tabloids introduced by Raicu [Rai12]. We prefer
to use fillings of tableau with indexed letters. We will say that a Young tableau Tπ is d-standard if
it is filled with the ordered alphabet {a1, . . . , ad, b1, . . . ,bd, · · · , c1, . . . , cd} with no repetitions, and
such that every column is strictly increasing and every row is strictly increasing. For example the

following tableau is not d-standard T =
a1 c1 a2 c2 a3 b3

b1 d1 b2 d2 c3 d3
but after permuting the entries in each

row one obtains T =
a1 a2 a3 b3 c1 c2
b1 b2 c3 d1 d2 d3

, which is d-standard.

Now we describe how to compute the Young symmetrizer associated with such tableaux using
this example, which will produce an invariant for S4(S3C2). As before, skew-symmetrize each
column:

b(6,6)(T ) = (a1 ∧ b1)⊗ (a2 ∧ b2)⊗ (a3 ∧ c3)⊗ (b3 ∧ d1)⊗ (c1 ∧ d2)⊗ (c2 ∧ d3)

We compute the skew-symmetrizations via determinants:

(a1 ∧ b1) =

∣∣∣∣a1,1 a1,2
b1,1 b1,2

∣∣∣∣ = (a1,1b1,2 − a1,2b1,1)

So

b(6,6)(T ) =

∣∣∣∣a1,1 a1,2
b1,1 b1,2

∣∣∣∣ ∣∣∣∣a2,1 a2,2
b2,1 b2,2

∣∣∣∣ ∣∣∣∣a3,1 a3,2
c3,1 c3,2

∣∣∣∣ ∣∣∣∣b3,1 b3,2

d1,1 d1,2

∣∣∣∣ ∣∣∣∣c1,1 c1,2
d2,1 d2,2

∣∣∣∣ ∣∣∣∣c2,1 c2,2
d3,1 d3,2

∣∣∣∣ ,
which has 26 = 64 terms when expanded. We consider the letters ai to be commuting with each
other, likewise for bi, etc. We are interested in turning this expression into an expression using
variables xI with unordered indices I with |I| = 3 that represent the coefficients of a binary cubic.
We do this in 4 steps, taking first every instance of a1,ia2,ja3,k and replacing it with xsort(i,j,k).
Doing this for each letter produces

3x21,1,2x
2
1,2,2 − 4x1,1,1x

3
1,2,2 − 4x31,1,2x2,2,2 + 6x1,1,1x1,1,2x1,2,2x2,2,2 − x21,1,1x22,2,2,

which is recognizable as the discriminant of the binary cubic, especially when one replaces xI with
s#|, where by #I we mean counting the number of 2’s occurring:

3s21s
2
2 − 4s0s

3
2 − 4s31s3 + 6s0s1s2s3 − s20s23.

is the discriminant of the form
∑3

k=0 skx
k.
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2.7. Decomposition and computation for irreducible SL(V ) modules inside C[
∧d(V )]. The

key to computing these modules, essentially we take the previous section and just transpose all the
partitions, and many of the notations.

Again we will say that a Young tableau Tπ is d-standard if it is filled with the ordered alphabet
{a1, . . . , ad,b1, . . . ,bd, · · · , c1, . . . , cd} with no repetitions, and such that every column is strictly
increasing and every row is strictly increasing. For example the following tableau is not d-standard

T =

a1 b1

c1 d1

a2 b2

c2 d2

a3 c3
b3 d3

but after permuting the entries in each column one obtains T =

a1 b1

a2 b2

a3 c3
b3 d1

c1 d2

c2 d3

, which is

d-standard.
Now we describe how to compute the Young symmetrizer associated with such tableaux using

this example, which will produce an invariant for S4(
∧3C6). As before, skew-symmetrize each

column by taking an associated determinant whose rows are given by the entries in the columns:

bT =

∣∣∣∣∣∣∣∣∣∣∣∣

a1,1 a1,2 a1,3 a1,4 a1,5 a1,6
a2,1 a2,2 a2,3 a2,4 a2,5 a2,6
a3,1 a3,2 a3,3 a3,4 a3,5 a3,6
b3,1 b3,2 b3,3 b3,4 b3,5 b3,6

c1,1 c1,2 c1,3 c1,4 c1,5 c1,6
c2,1 c2,2 c2,3 c2,4 c2,5 c2,6

∣∣∣∣∣∣∣∣∣∣∣∣
·

∣∣∣∣∣∣∣∣∣∣∣∣

b1,1 b1,2 b1,3 b1,4 b1,5 b1,6

b2,1 b2,2 b2,3 b2,4 b2,5 b2,6

c3,1 c3,2 c3,3 c3,4 c3,5 c3,6
d1,1 d1,2 d1,3 d1,4 d1,5 d1,6

d2,1 d2,2 d2,3 d2,4 d2,5 d2,6

d3,1 d3,2 d3,3 d3,4 d3,5 d3,6

∣∣∣∣∣∣∣∣∣∣∣∣
.

In this situation we view the variables ai to be skew-commuting with each other, likewise for bi, etc.
This allows for one additional trick to be used, namely block Laplace expansion. In this example,
let us use upper indices to indicate the columns we use for a determinant and the letters to indicate
the row: For example

(a1 ∧ a2 ∧ a3)
1,2,3 =

∣∣∣∣∣∣
a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3

∣∣∣∣∣∣ and (a1 ∧ a2 ∧ a3)
4,5,6 =

∣∣∣∣∣∣
a1,4 a1,5 a1,6
a2,4 a2,5 a2,6
a3,4 a3,5 a3,6

∣∣∣∣∣∣ .
So here is a hybrid expression for the first determinant in bT has 18 terms:

(a1 ∧ a2 ∧ a3)
1,2,3(b3 ∧ c1 ∧ c2)

4,5,6 ± · · · ± (a1 ∧ a2 ∧ a3)
4,5,6(b3 ∧ c1 ∧ c2)

1,2,3,

where the signs come from the Laplace transform as the indices run over 3 element subsets of
{1, . . . , 6}. We can do another (block) Laplace expansion to handle the inner expressions:

(b3 ∧ c1 ∧ c2)
1,2,3 = (b3)

1(c1 ∧ c2)
2,3 − (b3)

2(c1 ∧ c2)
1,3 + (b3)

3(c1 ∧ c2)
1,2,

= b3,1

∣∣∣∣c1,2 c1,2
c2,3 c2,3

∣∣∣∣− b3,2 ∣∣∣∣c1,1 c1,3
c2,1 c2,3

∣∣∣∣+ b3,3

∣∣∣∣c1,1 c1,2
c2,1 c2,2

∣∣∣∣ .
For another example

(b3 ∧ c1 ∧ c2)
4,5,6 = (b3)

4(c1 ∧ c2)
5,6 − (b3)

5(c1 ∧ c2)
4.6 + (b3)

6(c1 ∧ c2)
4,5

= b3,4

∣∣∣∣c1,5 c1,6
c2,5 c2,6

∣∣∣∣− b3,5 ∣∣∣∣c1,4 c1,6
c2,4 c2,6

∣∣∣∣+ b3,6

∣∣∣∣c1,4 c1,5
c2,4 c2,5

∣∣∣∣ .
Similarly the second determinant in the expression of bT can be written as:

(b1 ∧ b2 ∧ c3)
1,2,3(d1 ∧ d2 ∧ d3)

4,5,6 ± · · · ± (b1 ∧ b2 ∧ c3)
4,5,6(d1 ∧ d2 ∧ d3)

1,2,3.

We keep track of the symmetrizations in the same way as before - we do this with indices so we
can keep track of where each variable and each term has come from.
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An advantage of block Laplace expansion is that we are going to replace (a1 ∧ a2 ∧ a3)
I with

the tensor variable xI which form a basis of
∧3C6, similarly for (d1 ∧ d2 ∧ d3)

I . It’s a bit trickier
to do this with the split forms like the b’s and c’s. However, after changing aI ’s and dI ’s to xI ’s
we get (

x1,2,3(b3 ∧ c1 ∧ c2)
4,5,6 ± · · · ± x4,5,6(b3 ∧ c1 ∧ c2)

1,2,3
)

·
(
(b1 ∧ b2 ∧ c3)

1,2,3x4,5,6 ± · · · ± (b1 ∧ b2 ∧ c3)
4,5,6x1,2,3

)
.

For the terms that are split between different coefficients, we replace, for instance, we take for
i < j < k each expression (b3)

i(b1 ∧ b2)
j,k − (b3)

j(b1 ∧ b2)
i,k + (b3)

k(b1 ∧ b2)
i,j (which re-combines

to (b1 ∧ b2 ∧ b3)
i,j,k) with xi,j,k. We do the same with c’s. Finally we produce the polynomial:

−x21,2,3x24,5,6+2x1,2,3x1,2,4x3,5,6x4,5,6−2x1,2,3x1,2,5x3,4,6x4,5,6+2x1,2,3x1,2,6x3,4,5x4,5,6−2x1,2,3x1,3,4x2,5,6x4,5,6
+2x1,2,3x1,3,5x2,4,6x4,5,6−2x1,2,3x1,3,6x2,4,5x4,5,6+2x1,2,3x1,4,5x2,3,6x4,5,6−4x1,2,3x1,4,5x2,4,6x3,5,6+4x1,2,3x1,4,5x2,5,6x3,4,6
−2x1,2,3x1,4,6x2,3,5x4,5,6+4x1,2,3x1,4,6x2,4,5x3,5,6−4x1,2,3x1,4,6x2,5,6x3,4,5+2x1,2,3x1,5,6x2,3,4x4,5,6−4x1,2,3x1,5,6x2,4,5x3,4,6

+4x1,2,3x1,5,6x2,4,6x3,4,5−x21,2,4x23,5,6+2x1,2,4x1,2,5x3,4,6x3,5,6−2x1,2,4x1,2,6x3,4,5x3,5,6+2x1,2,4x1,3,4x2,5,6x3,5,6
−4x1,2,4x1,3,5x2,3,6x4,5,6+2x1,2,4x1,3,5x2,4,6x3,5,6−4x1,2,4x1,3,5x2,5,6x3,4,6+4x1,2,4x1,3,6x2,3,5x4,5,6−2x1,2,4x1,3,6x2,4,5x3,5,6
+4x1,2,4x1,3,6x2,5,6x3,4,5+2x1,2,4x1,4,5x2,3,6x3,5,6−2x1,2,4x1,4,6x2,3,5x3,5,6−2x1,2,4x1,5,6x2,3,4x3,5,6+4x1,2,4x1,5,6x2,3,5x3,4,6

−4x1,2,4x1,5,6x2,3,6x3,4,5−x21,2,5x23,4,6+2x1,2,5x1,2,6x3,4,5x3,4,6+4x1,2,5x1,3,4x2,3,6x4,5,6−4x1,2,5x1,3,4x2,4,6x3,5,6
+2x1,2,5x1,3,4x2,5,6x3,4,6+2x1,2,5x1,3,5x2,4,6x3,4,6−4x1,2,5x1,3,6x2,3,4x4,5,6+2x1,2,5x1,3,6x2,4,5x3,4,6−4x1,2,5x1,3,6x2,4,6x3,4,5
−2x1,2,5x1,4,5x2,3,6x3,4,6+4x1,2,5x1,4,6x2,3,4x3,5,6−2x1,2,5x1,4,6x2,3,5x3,4,6+4x1,2,5x1,4,6x2,3,6x3,4,5−2x1,2,5x1,5,6x2,3,4x3,4,6

−x21,2,6x23,4,5−4x1,2,6x1,3,4x2,3,5x4,5,6+4x1,2,6x1,3,4x2,4,5x3,5,6−2x1,2,6x1,3,4x2,5,6x3,4,5+4x1,2,6x1,3,5x2,3,4x4,5,6
−4x1,2,6x1,3,5x2,4,5x3,4,6+2x1,2,6x1,3,5x2,4,6x3,4,5+2x1,2,6x1,3,6x2,4,5x3,4,5−4x1,2,6x1,4,5x2,3,4x3,5,6+4x1,2,6x1,4,5x2,3,5x3,4,6

−2x1,2,6x1,4,5x2,3,6x3,4,5−2x1,2,6x1,4,6x2,3,5x3,4,5+2x1,2,6x1,5,6x2,3,4x3,4,5−x21,3,4x22,5,6+2x1,3,4x1,3,5x2,4,6x2,5,6
−2x1,3,4x1,3,6x2,4,5x2,5,6−2x1,3,4x1,4,5x2,3,6x2,5,6+2x1,3,4x1,4,6x2,3,5x2,5,6+2x1,3,4x1,5,6x2,3,4x2,5,6−4x1,3,4x1,5,6x2,3,5x2,4,6

+4x1,3,4x1,5,6x2,3,6x2,4,5−x21,3,5x22,4,6+2x1,3,5x1,3,6x2,4,5x2,4,6+2x1,3,5x1,4,5x2,3,6x2,4,6−4x1,3,5x1,4,6x2,3,4x2,5,6
+2x1,3,5x1,4,6x2,3,5x2,4,6−4x1,3,5x1,4,6x2,3,6x2,4,5+2x1,3,5x1,5,6x2,3,4x2,4,6−x21,3,6x22,4,5+4x1,3,6x1,4,5x2,3,4x2,5,6

−4x1,3,6x1,4,5x2,3,5x2,4,6+2x1,3,6x1,4,5x2,3,6x2,4,5+2x1,3,6x1,4,6x2,3,5x2,4,5−2x1,3,6x1,5,6x2,3,4x2,4,5−x21,4,5x22,3,6
+2x1,4,5x1,4,6x2,3,5x2,3,6−2x1,4,5x1,5,6x2,3,4x2,3,6−x21,4,6x22,3,5+2x1,4,6x1,5,6x2,3,4x2,3,5−x21,5,6x22,3,4

.

3. degree 6 binary invariants and graphs

There is a 4 dimensional space of GL(2)×4 invariants in degree 6. In this note we compute a
basis of this space.

The tableaux associated to the partition (3, 3) has 5 standard fillings:

1 3 5
2 4 6 ,

1 2 5
3 4 6 ,

1 2 3
4 5 6 ,

1 3 4
2 5 6 ,

1 2 4
3 5 6

A basis of the highest weight space for S3,3C2 ⊗ S3,3C2 ⊗ S3,3C2 ⊗ S3,3C2 is constructed by
considering the images of the Young Symmetrizers prescribed by 4 tableau. One way to select a
good 4-tuple of tableau so that the images are linearly independent is by fixing the first tableau,
and choosing 3 of the remaining 4 (in 4 different ways). Moreover, to each 4-tuple of tableau we
may associate a colored graph (see Raicu GSS), where color 1 corresponds to // , color 2 to

// , color 3 to // and color 4 to // .
A choice of 4 basis elements is described by
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We can refine this discussion even more by realizing that the multiplicity space [(3, 3)]⊗4 is a
representation of §4 also. So inside the 54-dimensional space spanned by the tensor products of
standard tableaux of shape (3, 3) there is this special 4-dimensional subspace that is spanned by
taking tensor products of distinct tableaux. We would like to understand this better.

4. Other ways to compute equations

The methods we described up to now allow us to do interpolation and find all equations of low
degree vanishing on an algebraic variety with the kinds of symmetry we’re interested in. There are
other methods that present as ad hoc, but nonetheless can be useful because they either have a
geometric interpretation that we can exploit, or they are easy to compute, or both.

One such method is that of Young flattenings, which was invented by Landsberg and Ottaviani
in [LO11].

4.0.1. Kostant’s Theorem for I(G/P ) in the Segre, Veronese, and Grassmann cases, and conjecture
/ question about I(σ2(G/P )).
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