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Videos of lectures of a first course on linear algebraic groups
(from Springer)

Categorical Quotient (affine case)
G be reductive (affine) algebraic group
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X affine variety on which G acts morphically
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Then the invaring ring %K}K} is finitely generated/.\ (Hilbert)

B

We have an inclusion of affine algebras:

The corresponding map of varieties is constant on orbits.

What is the description of the variety corresponding to the
invariant ring ?

What is the morphism of varieties corresponding to the
above inclusion of algebras?
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Proposition: G reductive, X affine G-variety

Let Y and Z be closed G-invariant disjoint subsets of X. yqzzemf,

Then there exists function f on X, ‘invariant under G,

with f(Y)=0 and f(Z)=1. L—————:‘— (% ’l
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Propn: G reductive, X affine G-variety

Every G-orbit closure has a unique closed orbit.
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The multiplicity of any given simple (=irreducible) mo(glle
in a semisimple module is uniquely defined (independent of
the decomposition). Cf
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Matsushima’s theorem (a variant) G reductive,
X affine G-variety on which the action of G is transitive

Then the stabiliser of any point of X is reductive
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Homogeneous spaces and their structure:
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Proposition: G affine algebraic group, H closed subgroup
Then there exists a finite dimensional (rational) representation V
of G and a vector v in V such that H={g in G | gv \in <v>}
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(At the level of varieties.)






More Examples from Classical Invariant Theory
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