https://www.imsc.res.in/~knr/past/lag13/index.html Videos of lectures of a first course on linear algebraic groups (from Springer)
Categorical Quotient (affine case)
G be reductive (affine) algebraic group
e.g. $GL_n(\mathbb{C}), SL_n(\mathbb{C})$ $\forall X \land \neg \land$
X affine variety on which G acts morphically Then the invaring ring $R[X]$ is finitely generated. (Hilbert)
We have an inclusion of affine algebras:
The corresponding map of varieties is constant on orbits.
What is the description of the variety corresponding to the invariant ring?
What is the morphism of varieties corresponding to the above inclusion of algebras?
$M_{ax}Spec(kB) \leftarrow X$

Affine alg group. Group stjet in The category of affine varieties. Over C: reductive => linearly reductive Every (f.d) représentation is a direct sur of irreducible représentation. Every surrepresentation has a complement. [WSV is invariant Then I W'Ginvariant s/t WOW=V.] $GVX; GVR[X] (J_f)(x) = f(g'x)$ affire algebras Efekes/=: k[x] = k[x] I = 53 1-1 correspondence between affine vaneties and reduced affine algebre

 $\partial R[X] := B[X_1, ..., X_n]$ $I(\times)$ () () () Maxideals of R[X] -1 k[x] $f(gz) = (\tilde{g}f)(z) = f(z)$ f(z) = f(z)Max Spec (K[X]) = Set of X closed G-orbits in X GIN < A contains a dosed for that closed for whigher or the contains a dosed for the contains a

Example: $GL_n(C)$ arting on C^n Max spectro GL(C) $f = R[X] \subseteq R[X]$ (1,0,...,0) Max-Spec (k) = -{x} GUX = single point GIX = G-orbits of X

C'acting on P1=Cu3003 [x;y] $\mathbb{C}^{\times}\mathbb{P}^{'}\longrightarrow\mathbb{P}^{'}$ $t \cdot ([x; y]) = [f_x; y] = [x; ty]$ { [x=y] x=o, y=o} is an objet 0 [0:1] $\infty - [1:0]$ X = 0C'aiting on C²=X t'(z,y) = (tx, ty) $(0,0) \gamma = 0$ C[4] R[X] $\mathbb{C}[xy] \subseteq \mathbb{C}[xy]$

GL(C) acting by conjugation on Mn(C) Aut of agenvolues $R[X] \subseteq R[X_{12}, X_{2n}]$ R[Coeffs of the chan.polynomialE [Aymmetric firs in The cigenvalues]
Gelem symm] ⊆ C[A₁, A₁] Gn
Gelem firs

V->Vis tinean HgEG Some representation theory: G-linear map V J>W G-map Schur's Lemma $V \rightarrow W$ ined f.d. G-repus; φ G-map Schur's Lemma Then φ is an isomorphism or $\varphi = 0$ 1/ J.d. imed G-rep. Then End (V) = C Q:V->V Sq:V->V & Sq:V->V & Shen Gibinears The multiplicity of any given simple (=irreducible) module in a semisimple module is uniquely defined (independent of the decomposition). $End_{G}(v) = End(v)$ V=direct sum of irreps Then the's decomposition is unique $V = S \oplus S, \oplus S_2 \oplus S_2 \oplus S_2$ SFEDS JS2 JS2

Example: $G_{2}(\mathbb{C})$ acting on $M_{2}(\mathbb{C})$ by bringation. Nilpstent matrices 1903 is an orbit It is not an affine space. Closed orbits are those containing diagonal matrices $\begin{bmatrix} \lambda \\ 0 \\ \lambda \end{bmatrix}$ GL2 VNilpstent matrices 2 Moits [0], [0] Stab (N) $\left\{ \begin{bmatrix} a \\ a \\ a \end{bmatrix} \right\}$ Ň $a, b \in \mathbb{C}_{7}$ $a \neq 0$

Homogeneous spaces and their structure:

 $G/G_{x} \simeq G_{x}$ (At the level of varieties.) Gaffine alg gp, Hclosed subgp G/H is a variety Proposition: G affine algebraic group, H closed subgroup Then there exists a finite dimensional (rational) representation V of G and a vector v in V such that $H=\{g \text{ in } G \mid gv \setminus in <v\}$ gueCu

At the level of sets: GOX Fransilve xeX Go /Gx G-set $ah_1 \leq n_2 \leq n_r$ VEWC Grassmannians, flag varieties Examples: Projective space, GLUC GL, UCh sut in C 2-dim spaces in C GLDUP Fransihire GLn ~ Growsmannian Stat. GLn _ Pn-) Statof sme print

More Examples from Classical Invariant Theory GL(V) V V DV DV $G = \mathcal{V}_{12}, \mathcal{V}_{m} \neq f_{12}, \mathcal{J}_{2}$ $k[x] \in k[x]$ n=dimV $\mathbb{C}\left[\langle v_i, f_j \rangle | \leq i \leq m, i \leq 2 \right]$ Šp(V) U VOM $S(V) UV^{Dm}$

 $V \oplus M \oplus V \star \oplus \mathcal{E}$ SL(V) V G k[x] = C[<vi, bi7] | si < m 1<j < 2 $M = dim V = \begin{bmatrix} v_i & v_i \\ v_i & y_i \end{bmatrix} \begin{bmatrix} k_i & k_i \\ k_i & y_i \end{bmatrix}$ $dut = \left[f_{j}, \dots, f_{j} \right] | \leq j < \dots < j_{n} \leq j$