Representations, Reductive Groups, Invariants

Upendra Kulkarni

Chennai Mathematical Institute

September 3, 2021

Orientation

- The overall goal is to see how geometry can serve needs of complexity theory. (Item 4 of first lecture, serving first 3 items)
- Today: how representation theory can be useful to study the relevant geometry. (Item 5 of first lecture)
- If you are new to this, please focus on definitions and EXAMPLES. (Work out small examples for the symmetric and general linear groups.)
- It is all very concrete, "just" linear and multilinear algebra.

Overview

- Action of a group on a set
- Linear action of a group on a vector space $=$ "Group representation"
- Reductive algebraic groups, complete reducibility
- Reductive group acting on an affine variety, linearization
- Idea of a quotient, ring of invariants, finite generation

Group action on a set

Group G acting on a set S means
Action map
currying
Group homomorphism
$G \times S \rightarrow S$
\leadsto $G \rightarrow$ permutations of S

Both ways of thinking are useful. Action map is used more often, with the "dot" notation:

$$
(g, x) \mapsto g \cdot x \quad \text { By definition it satisfies } \quad g \cdot(h \cdot x)=(g h) \cdot x \quad \text { and } \quad 1 \cdot x=x
$$

This gives the equivalence relation $x \sim g \cdot x$, leading to partition of S into equivalence classes

$$
S=\coprod \text { orbits } \quad \text { where orbit of } x \in S \text { is } G \cdot x
$$

Examples of group action on a set

Recall definition: $G \times S \rightarrow S$ such that $g \cdot(h \cdot x)=(g h) \cdot x$ and $1 \cdot x=x$.

- Trivial action of any G on any S. This means $g \cdot x=x$ for all $g \in G$ and $x \in S$.
- Defining action of the symmetric group: S_{n} acts naturally on $\left\{v_{1}, \ldots, v_{n}\right\}$.

New actions from old: suppose G acts on S. Then G also acts on

- $S \times S, S \times S \times S, \ldots$, i.e. on lists of elements from S (of a fixed length)
- subsets of S (of fixed cardinality)
- multisets made of elements of S (of fixed cardinality)

Exercise: apply this to the natural S_{n} action and work out orbits for small length/cardinality. Formulate graph isomorphism question in this language.

Group representations

" \underline{G} acts linearly on vector space V or $\underline{\mathrm{V}}$ is a representation of G or $\underline{\mathrm{V} \text { is a } \mathrm{G} \text {-module" means }}$

Linear action map	currying	Group homomorphism
$G \times V \rightarrow V$	$G \rightarrow G L(V)$	

Blanket assumption for us: V will be a \mathbb{C}-vector space and (almost always) finite dimensional.
For now take on faith that group representations are useful! How to analyze them?

- We again have orbit decomposition of V. Often this is of great interest.
- But we are also interested in a linear decomposition of V into smaller representations.

Subrepresentation or G-submodule of $V=$ subspace of V that is stable under action of G.
Let's first look at some examples of representations

Examples of representations

- Trivial action: $g \cdot v=v$ for all $g \in G$ and $v \in V$ (any group G and any vector space V)
- Can linearize action of G on any set S. For example
S_{n} action on set $\left\{v_{1}, \ldots, v_{n}\right\} \quad \rightsquigarrow \quad$ Linear S_{n} action on $V=\left\{\sum_{i=1}^{n} c_{i} v_{i} \mid c_{i} \in \mathbb{C}\right\}$.
Can think of linearization $=$ functions on the set S. This idea will be useful again later!
- New representations from old
- Direct sum: linear action of G on V and $W \rightsquigarrow$ action on $V \oplus W$ by block diagonal matrices.
- Subrepresentations of a representation: a subspace stable under action of G

Exercise: The S_{n}-module $V=\left\{\sum c_{i} v_{i}\right\}$ has exactly two (proper nonzero) subrepresentations and V is their direct sum. General result of this nature?

Decomposing representations into irreducibles

A representation V is called irreducible or simple if it has no proper nonzero subrepresentation.

Desirable situation for a group G

(1) We can classify its irreps (even better if we can construct them and compute explicitly)
(2) Every representation is a direct sum of irreps (called completely reducible or semisimple)

- Semisimplicity is equivalent to saying that every subrepresentation has a complement.
- Theorem: desirable situation is always true for a finite group G. For $G=S_{n}$, we have an explicit story. Irreps are in bijection with partitions of n and one can construct them.
- The simple submodules in the decomposition are not unique but the isotypic components ($=$ sum of all isomorphic irreducible subreps) are (like eigenspaces of a matrix)

Need more examples to see this in action...

More representations using multilinear algebra

If G acts linearly on V, then G also acts linearly on a vector space whose basis is

- ordered pairs (or triples, ...) of a basis of V, i.e., tensor powers $V \otimes V, V \otimes V \otimes V, \ldots$
- degree d monomials using basis vectors of V as variables, i.e., symmetric powers Sym ${ }^{d} V$
- dual to that of V, i.e. dual space V^{*}. Check that $g \cdot f(v):=f\left(g^{-1} \cdot v\right)$ is an action.

Exercise: decompose second tensor/symmetric powers of the defining representation \mathbb{C}^{n} of S_{n}.
Representations built out of this machinery are very relevant for symbolic computation (so I am told). They will feature prominently when we go the representations of the general linear group. Now back to algebraic groups ...

Back to varieties and algebraic groups

Affine variety $X=$ common zeros of a set of polynomials in $\mathbb{C}\left[t_{1}, \ldots t_{n}\right]$

- This set can be taken to be a radical ideal I.
- Coordinate ring of X or ring of regular functions on X is $\mathbb{C}[X]=\mathbb{C}\left[t_{1}, \ldots t_{n}\right] / I$.
- The geometry of X is completely determined by the ring $C[X]$.
- Morphism $X \rightarrow Y$ of affine varieties is determined by the ring map $\mathbb{C}[Y] \rightarrow \mathbb{C}[X]$.

Affine algebraic group G is a group and an affine variety in a compatible way.

- Multiplication $G \times G \rightarrow G$ and inverse $G \rightarrow G$ maps are morphisms of varieties.
- We want to consider only rational representations V, which means: the action map $G \times V \rightarrow V$ is also a morphism of varieties.

A lot of words to digest the first time around, but I was told a secret ...

Groups of interest

For us algebraic groups of interest are mostly $G L_{n}(\mathbb{C})$ and its relatives: closed subgroups like

- $S L_{n}(\mathbb{C})$
- $D_{n}=$ the diagonal matrices $\mathbb{C}^{*} \times \mathbb{C}^{*} \times \cdots \times \mathbb{C}^{*}(n$ times $)$
- $B_{n}=$ Upper triangular matrices, $U_{n}=$ only those with 1 's on the diagonal, and
- Products of such groups

Exercise: show these are affine algebraic groups and find their coordinate rings.
Note: $G L_{n}(\mathbb{C})$ is already a group of matrices, with its defining representation on \mathbb{C}^{n}. We still very much want to study its rational representations in other linear spaces i.e. group homomorphisms $G L_{n}(\mathbb{C}) \rightarrow G L_{m}(\mathbb{C})$ where entries in the latter matrix are polynomials in entries of the source matrix (possibly multiplied by negative powers of the determinant).

Reductive algebraic groups

There is a structural definition of reductive group, but we are happy to accept these theorems:

- Rational representations of reductive groups are completely reducible.
- $G L_{n}(\mathbb{C}), S L_{n}(\mathbb{C})$ and their products are reductive.
- We know their irreps explicitly. They are classified by their highest weight.

Exercise: show that D_{n} is reductive and find its irreps. (You may use that D_{n} acts diagonally on every rational representation.) Show that U_{n} is not reductive. (For a matrix with a repeated eigenvalue, the vector space need not have an eigenbasis.)

Longer exercise: Show that $\operatorname{Sym}^{2}(V)$ is an irrep for $G L(V)$. What about $\operatorname{Sym}^{3}(V)$? Decompose the $S L(V)$-module $V \otimes V$ into a direct sum of irreps. Can you do the same for $\operatorname{Sym}^{2}\left(\operatorname{Sym}^{2}\left(\mathbb{C}^{2}\right)\right)$? This is the plethysm representation from lecture 1. (Strictly speaking it was $\operatorname{Sym}^{2}\left(\operatorname{Sym}^{2}\left(\mathbb{C}^{2}\right)^{*}\right)$: with x, y a basis of \mathbb{C}^{2}, so that $x^{2}, x y, y^{2}$ is a basis of $\operatorname{Sym}^{2}\left(\mathbb{C}^{2}\right)$, these latter basis vectors were identified with their coefficients in a general linear combination.)

Back to orbits

- Now suppose a reductive G acts on an affine variety X. We want to study G-orbits and their closures.
Note that this could even be a linear action on a vector space X (e.g. \mathbb{C}^{*} acting on \mathbb{C} by multiplication). But now we want to focus on the geometry of orbits (in the example the representation \mathbb{C} is irreducible, but there are two orbits.)
- Orbit closures are affine varieties too. How do representations help? One can linearize the situation by considering regular functions on X :

$$
G \text { acts linearly on } \mathbb{C}[X] \text { by } g \cdot f(x)=f\left(g^{-1} \cdot x\right)
$$

- Easy check: For any regular function f on X, the linear span of $\{g \cdot f \mid g \in G\}$ is a finite dimensional rational representation of G. Use this to linearize the G-action on X : by taking finitely many of these G-stable subspaces generating $\mathbb{C}[X]$ as a ring, embed X as a closed subset of the span of these subspaces (embedding is compatible with G-actions).

Invariant ring of a group action

For a G-module V, the invariants are $V^{G}=\{v \in V \mid g v=v$ for all $g \in G\}$.
For G acting on an affine variety X, the invariants $\mathbb{C}[X]^{G}$ form a subring of $\mathbb{C}[X]$.
It is good to study the ring of invariants! Why?

- We want to study set of orbits as a geometric object (notation: $X / / G$). We hope that that this will be an affine variety. How to look for it?
- What should be regular functions on $X / / G$? Any function on $X / / G$ is a function on X that is constant on each orbit. So hope is that regular functions on $X / / G=\mathbb{C}[X]^{G}$.
- Since the ring of regular functions on an affine variety characterizes that variety, we could define $X / / G$ to be the affine variety associated to the ring of invariants.
- $X \rightarrow$ set of orbits as a map of affine varieties will then be associated to the inclusion $\mathbb{C}[X]^{G} \hookrightarrow \mathbb{C}[X]$. We have to hold our horses. There are subtle issues, but for now ...

Finite generation of invariants

First question: is $\mathbb{C}[X]^{G}$ finitely generated as a ring? Then it will be a quotient of a polynomial ring by an ideal, which is generated by finitely many polynomials. We can do geometry with it!

Theorem: For a reductive G acting on affine X, the ring of invariants is finitely generated.
(1) Reynolds operator R : we get a unique G-linear projection $R: \mathbb{C}[X] \rightarrow \mathbb{C}[X]^{G}$. We have this by complete reducibility on each finite dimensional G-stable subspace and they all patch to give a single operator R on all of $\mathbb{C}[X]$.
(2) Observe that R commutes with multiplication by invariants i.e. it is $\mathbb{C}[X]^{G}$-linear.
(3) Reduce to the case of a rational linear action by linearizing G-action on X as before.
(9) Now the ring of functions $\mathbb{C}\left[x_{1}, \ldots, x_{m}\right]$ is graded. There is a clever argument by induction on degree, using the fact that every ideal in a polynomial ring is finitely generated.

Thank you.

