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Orientation

The overall goal is to see how geometry can serve needs of complexity theory.
(Item 4 of first lecture, serving first 3 items)

Today: how representation theory can be useful to study the relevant geometry.
(Item 5 of first lecture)

If you are new to this, please focus on definitions and EXAMPLES.
(Work out small examples for the symmetric and general linear groups.)

It is all very concrete, “just” linear and multilinear algebra.
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Overview

Action of a group on a set

Linear action of a group on a vector space = “Group representation”

Reductive algebraic groups, complete reducibility

Reductive group acting on an affine variety, linearization

Idea of a quotient, ring of invariants, finite generation
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Group action on a set

Group G acting on a set S means

Action map currying Group homomorphism
G × S → S  G → permutations of S

Both ways of thinking are useful. Action map is used more often, with the “dot” notation:

(g , x) 7→ g ·x By definition it satisfies g ·(h·x) = (gh)·x and 1·x = x

This gives the equivalence relation x ∼ g ·x , leading to partition of S into equivalence classes

S =
∐

orbits where orbit of x ∈ S is G ·x
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Examples of group action on a set

Recall definition: G × S → S such that g ·(h·x) = (gh)·x and 1·x = x .

Trivial action of any G on any S . This means g ·x = x for all g ∈ G and x ∈ S .

Defining action of the symmetric group: Sn acts naturally on {v1, . . . , vn}.

New actions from old: suppose G acts on S . Then G also acts on

S × S , S × S × S , . . . , i.e. on lists of elements from S (of a fixed length)

subsets of S (of fixed cardinality)

multisets made of elements of S (of fixed cardinality)

Exercise: apply this to the natural Sn action and work out orbits for small length/cardinality.
Formulate graph isomorphism question in this language.
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Group representations

“G acts linearly on vector space V or V is a representation of G or V is a G-module” means

Linear action map currying Group homomorphism
G × V → V  G → GL(V )

Blanket assumption for us: V will be a C-vector space and (almost always) finite dimensional.

For now take on faith that group representations are useful! How to analyze them?

We again have orbit decomposition of V . Often this is of great interest.

But we are also interested in a linear decomposition of V into smaller representations.

Subrepresentation or G -submodule of V = subspace of V that is stable under action of G .

Let’s first look at some examples of representations . . .
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Examples of representations

Trivial action: g ·v = v for all g ∈ G and v ∈ V (any group G and any vector space V )

Can linearize action of G on any set S . For example

Sn action on set {v1, . . . , vn}  Linear Sn action on V = {
∑n

i=1 civi | ci ∈ C}.

Can think of linearization = functions on the set S . This idea will be useful again later!

New representations from old

Direct sum: linear action of G on V and W  action on V ⊕W by block diagonal matrices.

Subrepresentations of a representation: a subspace stable under action of G

Exercise: The Sn-module V = {
∑

civi} has exactly two (proper nonzero) subrepresentations
and V is their direct sum. General result of this nature?
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Decomposing representations into irreducibles

A representation V is called irreducible or simple if it has no proper nonzero subrepresentation.

Desirable situation for a group G

1 We can classify its irreps (even better if we can construct them and compute explicitly)

2 Every representation is a direct sum of irreps (called completely reducible or semisimple)

Semisimplicity is equivalent to saying that every subrepresentation has a complement.

Theorem: desirable situation is always true for a finite group G . For G = Sn, we have an
explicit story. Irreps are in bijection with partitions of n and one can construct them.

The simple submodules in the decomposition are not unique but the isotypic components
(= sum of all isomorphic irreducible subreps) are (like eigenspaces of a matrix)

Need more examples to see this in action . . .
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More representations using multilinear algebra

If G acts linearly on V , then G also acts linearly on a vector space whose basis is

ordered pairs (or triples, . . . ) of a basis of V , i.e., tensor powers V ⊗ V , V ⊗ V ⊗ V , . . .

degree d monomials using basis vectors of V as variables, i.e., symmetric powers SymdV

dual to that of V , i.e. dual space V ∗. Check that g ·f (v) := f (g−1 ·v) is an action.

Exercise: decompose second tensor/symmetric powers of the defining representation Cn of Sn.

Representations built out of this machinery are very relevant for symbolic computation (so I
am told). They will feature prominently when we go the representations of the general linear
group. Now back to algebraic groups . . .
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Back to varieties and algebraic groups

Affine variety X = common zeros of a set of polynomials in C[t1, . . . tn]

This set can be taken to be a radical ideal I .

Coordinate ring of X or ring of regular functions on X is C[X ] = C[t1, . . . tn]/I .

The geometry of X is completely determined by the ring C [X ].

Morphism X → Y of affine varieties is determined by the ring map C[Y ]→ C[X ].

Affine algebraic group G is a group and an affine variety in a compatible way.

Multiplication G × G → G and inverse G → G maps are morphisms of varieties.

We want to consider only rational representations V , which means:
the action map G × V → V is also a morphism of varieties.

A lot of words to digest the first time around, but I was told a secret . . .
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Groups of interest

For us algebraic groups of interest are mostly GLn(C) and its relatives: closed subgroups like

SLn(C)

Dn = the diagonal matrices C∗ × C∗ × · · · × C∗ (n times)

Bn = Upper triangular matrices , Un = only those with 1’s on the diagonal, and

Products of such groups

Exercise: show these are affine algebraic groups and find their coordinate rings.

Note: GLn(C) is already a group of matrices, with its defining representation on Cn. We still
very much want to study its rational representations in other linear spaces i.e. group
homomorphisms GLn(C)→ GLm(C) where entries in the latter matrix are polynomials in
entries of the source matrix (possibly multiplied by negative powers of the determinant).

September 3, 2021 11 / 16



Reductive algebraic groups

There is a structural definition of reductive group, but we are happy to accept these theorems:

Rational representations of reductive groups are completely reducible.

GLn(C), SLn(C) and their products are reductive.

We know their irreps explicitly. They are classified by their highest weight.

Exercise: show that Dn is reductive and find its irreps. (You may use that Dn acts diagonally
on every rational representation.) Show that Un is not reductive. (For a matrix with a
repeated eigenvalue, the vector space need not have an eigenbasis.)

Longer exercise: Show that Sym2(V ) is an irrep for GL(V ). What about Sym3(V )?
Decompose the SL(V )-module V ⊗ V into a direct sum of irreps. Can you do the same for
Sym2(Sym2(C2))? This is the plethysm representation from lecture 1. (Strictly speaking it
was Sym2(Sym2(C2)∗): with x , y a basis of C2, so that x2, xy , y2 is a basis of Sym2(C2),
these latter basis vectors were identified with their coefficients in a general linear combination.)
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Back to orbits

Now suppose a reductive G acts on an affine variety X . We want to study G -orbits and
their closures.

Note that this could even be a linear action on a vector space X (e.g. C∗ acting on C by
multiplication). But now we want to focus on the geometry of orbits (in the example the
representation C is irreducible, but there are two orbits.)

Orbit closures are affine varieties too. How do representations help? One can linearize the
situation by considering regular functions on X :

G acts linearly on C[X ] by g ·f (x) = f (g−1 ·x)

Easy check: For any regular function f on X , the linear span of {g ·f | g ∈ G} is a finite
dimensional rational representation of G . Use this to linearize the G -action on X : by
taking finitely many of these G -stable subspaces generating C[X ] as a ring, embed X as a
closed subset of the span of these subspaces (embedding is compatible with G -actions).
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Invariant ring of a group action

For a G -module V , the invariants are V G = {v ∈ V | gv = v for all g ∈ G}.

For G acting on an affine variety X , the invariants C[X ]G form a subring of C[X ].

It is good to study the ring of invariants! Why?

We want to study set of orbits as a geometric object (notation: X//G ). We hope that
that this will be an affine variety. How to look for it?

What should be regular functions on X//G? Any function on X//G is a function on X
that is constant on each orbit. So hope is that regular functions on X//G = C[X ]G .

Since the ring of regular functions on an affine variety characterizes that variety, we could
define X//G to be the affine variety associated to the ring of invariants.

X → set of orbits as a map of affine varieties will then be associated to the inclusion
C[X ]G ↪→ C[X ]. We have to hold our horses. There are subtle issues, but for now . . .
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Finite generation of invariants

First question: is C[X ]G finitely generated as a ring? Then it will be a quotient of a polynomial
ring by an ideal, which is generated by finitely many polynomials. We can do geometry with it!

Theorem: For a reductive G acting on affine X , the ring of invariants is finitely generated.

1 Reynolds operator R: we get a unique G -linear projection R : C[X ]→ C[X ]G . We have
this by complete reducibility on each finite dimensional G -stable subspace and they all
patch to give a single operator R on all of C[X ].

2 Observe that R commutes with multiplication by invariants i.e. it is C[X ]G -linear.

3 Reduce to the case of a rational linear action by linearizing G -action on X as before.

4 Now the ring of functions C[x1, . . . , xm] is graded. There is a clever argument by induction
on degree, using the fact that every ideal in a polynomial ring is finitely generated.
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Thank you.
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