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The separation of complexity classes such as P and NP is one of the most fundamental open problems at
the intersection of theoretical computer science and mathematics.

Very few techniques are known that could potentially break the 1994 Razborov-Rudich natural proofs barrier.

In 2001 Mulmuley and Sohoni published [Geometric ComplexityTheory 1] in which they describe a
method that could potentially break the barrier.

I It is built on Valiant’s algebraic complexity theory framework (1979).
I It is inspired by Mulmuley’s geometric result that P 6= NC in an algebraic model (1999).
I It defines border complexity, which is defined independently by Bürgisser (2001)1.
I It proposes to prove border complexity lower bounds using representation theory, which is developed

further in [GCT2] (2008).

1Bürgisser (2001) shows analogies to tensors and matrix multiplication, [Bini 1980] and [Lehmkuhl Lickteig 1989].
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Determinantal Complexity

Valiant (1979) found a close connection between complexity questions and natural questions in algebra:

Theorem (Valiant 1979)

Every multivariate polynomial h can be written as the determinant of a square matrix
whose entries are polynomials of degree ≤ 1.

Example: h := y + 2x+ xz + 2xy − x2z = det

 x y 0
−1 z + y + 2 x
1 z 1


Def.: Required dimension of the matrix is called the determinantal complexity dc(h).

In the example we have dc(h) ≤ 3.

VBP = “easy to compute”.

The class VBP is defined as the set of all sequences of polynomials hm with polynomially bounded dc(hm).
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VBP = “easy to compute”.

The class VBP is defined as the set of all sequences of polynomials hm with polynomially bounded dc(hm).

Examples:

detm =
∑
π∈Sm

sgn(π)
∏m
i=1 xi,π(i) = det

x1,1 · · · x1.m

...
. . .

...
xm,1 · · · xm.m

 ∈ VBP, because dc(detm) = m

x1x2 · · ·xm = det

x1 0
. . .

0 xm

 ∈ VBP, because dc(x1 · · ·xm) = m

xm1 + xm2 + · · ·+ xmm ∈ VBP, because dc(xm1 + xm2 + · · ·+ xmm) ≤ m(m− 1) + 1

For example x3
1 + x3

2 + x3
3 = det



0 0 x1 0 x2 0 x3

x1 1 0 0 0 0 0
0 x1 1 0 0 0 0
x2 0 0 1 0 0 0
0 0 0 x2 1 0 0
x3 0 0 0 0 1 0
0 0 0 0 0 x3 1
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The permanent polynomial and VNP
perm(x1,1, x1,2, . . . , xm,m) :=

∑
π∈Sm

x1,π(1)x2,π(2) · · ·xm,π(m) (determinant, but without the signs)

Set all xi,j to 0 or 1: then perm = number of perfect matchings in bipartite graph.

Set all xi,j to 0 or 1: then perm = number of cycle covers in directed graph.

Applications in theor. physics: Wavefunctions describing identical bosons

#P-complete as a function

Valiant’s universality theorem holds also for the permanent:

Every multivariate polynomial h can be written as the permanent of a matrix
whose entries are polynomials of degree ≤ 1.

Def.: Required size of the matrix is called the permanental complexity pc(h).
The class VNP consists of all sequences of polynomials hm with polynomially bounded pc(hm).
Since pc(detm) is polynomially bounded, it follows VBP ⊆ VNP.

Valiant’s “Determinant vs Permanent” Conjecture (1979)

VBP 6= VNP. Equivalently: dc(perm) is not polynomially bounded.

Remark: perm = detm over characteristic 2, but we can replace perm by the Hamiltonian cycle polynomial.

Christian Ikenmeyer 7



Connections to Boolean complexity

Separating VBP 6= VNP is “easier” than separating classes in Boolean complexity (Bürgisser 1998):

P/poly 6= NP/poly implies VBP 6= VNP over finite fields.

P/poly 6= NP/poly implies VBP 6= VNP over C, assuming the generalized Riemann hypothesis.
2

P/poly 6= NP/poly is widely believed: If P/poly = NP/poly, then

PH = ΣP
2 (Karp-Lipton, 1980, Sipser) and

AM = MA (Arvind, Köbler, Schöning, 1995).

2also holds for VF or VP instead of VBP, defined on next slides
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Summary: Determinant vs permanent

If PH does not collapse and assuming GRH, then VBP 6= VNP over C.

Valiant’s model replaces Turing machines with determinants.
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Algebraic Circuits and Formulas

2 + x1

x1

x2

3

×

+

× +

×

Algebraic circuit: Directed acyclic graph. Leaves labeled with degree 1
polynomials. Inner nodes (=gates) labeled with + or ×.

Every algebraic circuit computes a polynomial. Example on the left:
((x1x2)2 + 3) · ((x1x2) + 2 + x1) = x3

1x
3
2 + x3

1x
2
2 + 2x2

1x
2
2 + 3x1x2 + 3x1 + 6

Every polynomial can be computed by some algebraic circuit.

size := number of gates
The algebraic circuit complexity L(h) is the size of a smallest algebraic circuit computing h.
The class VP consists of all sequences of polynomials hm with polynomially bounded L(hm) and
polynomially bounded degree.
Example: (detm) ∈ VP.

An algebraic formula is an algebraic circuit whose graph is a tree. For example:

x1

1

x2

1 x1

+

+
×

+

Def.: The algebraic formula complexity Le(h) is defined as the size of a
smallest algebraic formula computing h.
The class VF consists of all sequences of polynomials hm with polynomially
bounded Le(hm).

Classes of efficient algebraic computation

VF ⊆ VBP ⊆ VP
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VF ⊆ VBP ⊆ VP ⊆ VNP

The left three classes are classes of “efficient algebraic computation”.

The left three classes coincide if we allow quasipolynomial complexity instead of only polynomial complexity.

Common other names for these classes in the literature:

VF = VPe

VBP = VPs = VPws = VDET

“Valiant’s conjecture” can mean any one of the three:

VF 6= VNP (The permanent requires superpolynomially large formulas)

VBP 6= VNP (The permanent requires superpolynomially large determinants)

VP 6= VNP (The permanent requires superpolynomially large circuits)
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Complete polynomials

h := y + 2x+ xz + 2xy − x2z = det

 x y 0
−1 z + y + 2 x
1 z 1


This is an evaluation (also called projection) of the determinant polynomial.

detn := det

x1,1 · · · x1,n

...
. . .

...
xn,1 · · · xn,n

 =
∑
π∈Sn

sgn(π)
n∏
i=1

xi,π(i)

h = det3(x, y, 0,−1, z + y + 2, x, 1, z, 1)

In the same way as determinantal complexity and permanental complexity:

For a sequence cn of polynomials we define the c-complexity of h as the smallest n such that h is a
projection of cn.

We obtain a corresponding complexity class: Sequences of polynomials with polynomially bounded
c-complexity.

We say that cn is complete for that class.

detn is VBP-complete.
pern is VNP-complete.
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Models of computation with affine linear inputs

The iterated 3× 3 matrix multiplication (degree n on 9n variables) is VF-complete:

imm
(n)
3 :=


x

(1)
1,1 x

(1)
1,2 x

(1)
1,3

x
(1)
2,1 x

(1)
2,2 x

(1)
2,3

x
(1)
3,1 x

(1)
3,2 x

(1)
3,3

 · · ·
x

(n)
1,1 x

(n)
1,2 x

(n)
1,3

x
(n)
2,1 x

(n)
2,2 x

(n)
2,3

x
(n)
3,1 x

(n)
3,2 x

(n)
3,3




1,1

Instead of the (1,1) entry, one can use the trace of the matrix.

VBP has several complete polynomials
I detn or
I imm

(n)
n ( (1,1) entry or trace ) or

I or

trace


x1,1 · · · x1,n

...
. . .

...
xn,1 · · · xn,n


n 

(or the (1,1) entry instead of the trace)

VP can also be defined via complete polynomials, a graph homomorphism polynomial [Durand Mahajan
Malod de Rugy-Altherre Saurabh 2014], or via stack algebraic branching programs [Mengel 2013, Chaugule
Limaye Pandey 2020]
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Models of computation with homogeneous linear inputs

Homogeneous iterated matrix multiplication complexity 1

Let h be a homogeneous degree d polynomial. The homogeneous iterated matrix multiplication complexity
himmc(h) (or homogeneous algebraic branching program width) is defined as the smallest n such that there

exist homogeneous linear polynomials `
(k)
i,j with

h =



`
(1)
1,1 · · · `

(1)
1,n

...
. . .

...

`
(1)
n,1 · · · `

(1)
n,n

 · · ·

`
(d)
1,1 · · · `

(d)
1,n

...
. . .

...

`
(d)
n,1 · · · `

(d)
n,n




1,1

Theorem (homogenization of VBP)

A sequence h of homogeneous polynomials with polyn. bd. degree is in VBP iff himmc(h) is polyn. bounded.

[Grenet 2012] proved that himmc(perm) ≤
(

m
dm/2e

)
.

Reformulization of Valiant’s VBP 6= VNP conjecture

himmc(perm) is not polynomially bounded.

1One could also use the trace instead of (1,1), but we know that in the noncommutative setting this makes things mildy more
complicated [Bläser, I, Mahajan, Pandey, Saurabh 2020].
Also possible (but polynomial is not defined by its symmetry group): Trace of matrix power or (1,1) entry of matrix power.
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Several advantages of homogeneous settings:

conceptually simpler transition to geometric complexity theory (no “padding”)

not as many “peculiarities”:

I no “useless” types of representations as in [Kadish, Landsberg 2014]
I no strong occurrence obstruction no-go results as in [Bürgisser, I, Panova 2019]

(although even in homogeneous settings multiplicity obstructions are stronger than occurrence
obstructions [Dörfler, I, Panova 2019])

I No surprising computability results as in [Bringmann-I-Zuiddam 2018] or [Kumar 2020]

A classical homogeneous setting: Waring rank
Classically studied in algebraic geometry: homogeneous ΣΛΣ-circuits. Is a useful testbed for some GCT ideas.
Every homogeneous degree d polynomial h can be written as a sum of d-th powers of homogenoeous linear
polynomials `i:

h =

r∑
i=1

(`i)
d.

The smallest r possible is called the Waring rank WR(h) of h.

Example:
6x2y = (x+ y)3 + (y − x)3 − 2y3, hence WR(x2y) ≤ 3. In fact, WR(x2y) = 3.
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Summary: Other algebraic models of computation

Valiant’s conjecture VBP 6= VNP can be phrased homogeneously: himmc(perm) grows superpolynomially

The non-homogeneous settings have some peculiarities

Homogeneous ΣΛΣ-circuits are a classical area of study in algebraic geometry (Waring rank)
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Example:
h = x2y = 1

6
((x+ y)3 + (y − x)3 − 2y3), WR(h) = 3.

WR(h) ≤ 1 WR(h) ≤ 2 WR(h) ≤ 3
x2y

1
3ε

(
(x+ εy)3 − x3

)
= x2y + εxy2 + ε2

3
y3yε→ 0

x2y

This makes determining WR(x2y) subtle!
If a continuous function f vanishes on all h with WR(h) ≤ 2, then f also vanishes on x2y.

Definition (border Waring rank)

The border Waring rank WR(h) is defined as the smallest n such that h can be approximated arbitrarily closely
by polynomials of Waring rank ≤ n. (e.g., WR(x2y) = 2)

Main advantage: Xn := {h |WR(h) ≤ n} = {h |WR(h) ≤ n} is closed, so it is guaranteed that
non-membership p /∈ Xn can be proved by finding a continuous function f that vanishes on Xn, but does not
vanish on p.

Example: Consider the 3-dim vector space C[x, y]2. Let
X1 := {h |WR(h) ≤ 1} = {h | ∃α, β ∈ C : h = (αx+ βy)2} = {ax2 + bxy + cy2 | b2 − 4ac = 0}
A lower bound: WR(xy) ≥ 2, because 12 − 4 · 0 · 0 = 1 6= 0.

Such f = b2 − 4ac is sometimes called a polynomial obstruction or a separating polynomial.
Xk has more structure and we can obtain more information about polynomial obstructions.Christian Ikenmeyer 20



Approximations also help in most other computational models.

If c is a complexity measure, then we can define the border complexity measure c via:
c(h) is the smallest n such that h can be approximated arbitrarily closely by polynomials hε with c(hε) ≤ n.

dc(h) ≤ 1 dc(h) ≤ 2 dc(h) ≤ 3 dc(h) ≤ 4
p

Landsberg (further studied by Hüttenhain and Lairez):
For p = x2

1y1 + x2
2y2 + x2

3y3 + x1x2z3 + x1z2x3 + z1x2x3 we have dc(p) = 3 < dc(p).

[Allender Wang 2016] and [Bringmann I Zuiddam 2018]: For h = x39
0 (x1x2 + x3x4 + · · ·+ x15x16) we have

himmc(h) = 2 < himmc(h).

Trace instead of (1,1)-entry:

tr

((
x1

1
ε
x2

1
ε
x3 x4

)(
εx5 x6

x7 εx8

)(
εx9 x10

x11 εx12

))
ε→0−→ x3x6x12 + x2x7x9 + (x3x5 + x4x7)x10 + (x1x6 + x2x8)x11

cannot be written as a trace of a prod. of three 2× 2 matrices, but as a trace of a prod. of 3 larger matrices.

The main reason of doing this:

For all these measures, each set {h | c(h) ≤ n} is closed.

We will actually see that each set is an algebraic variety with an action of the general linear group.
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If c is a complexity measure, then we can define the border complexity measure c via:
c(h) is the smallest n such that h can be approximated arbitrarily closely by polynomials hε with c(hε) ≤ n.

VF = {polynomially bounded formula complexity} VF = {polynomially bounded border formula complexity}

VBP = {polynomially bounded dc} VBP = {polynomially bounded dc}

VP = {polynomially bounded circuit complexity} VP = {polynomially bounded border circuit complexity}

Strenghtening of Valiant’s conjecture (Mulmuley Sohoni 2001, Bürgisser 2001)

VNP 6⊆ VF, VNP 6⊆ VBP, VNP 6⊆ VP.

The conj. “VNP 6⊆ VBP” is equivalent to the conj. “himmc(perm) is not polynomially bounded.”
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Strenghtening of Valiant’s conjecture (Mulmuley Sohoni 2001, Bürgisser 2001)

VNP 6⊆ VF, VNP 6⊆ VBP, VNP 6⊆ VP.

Major open problems ([Mulmuley Sohoni 2001] and [Bürgisser 2001]):

VF
?
= VF, VBP

?
= VBP, VP

?
= VP,

because this would mean that the strenghtened conj. is equivalent to Valiant’s original conj., so we could work
with the closed sets (which are algebraic varieties with a group action).
We do not even know if VF ⊆ VNP.

“Toy model”: Let VWaring be the set of sequences of polynomials whose Waring rank is polynomially bounded.

Open question: VWaring
?
= VWaring.

Results:
[Nisan 1991] showed that himmc = himmc is the noncommutative world, hence VBPnon-comm = VBPnon-comm.

[Bläser Dörfler I 2020] prove WR(h) ≤ himmc(h). Hence VWaring ⊆ VBP (which was discovered earlier by
Forbes via ROABPs).

[Dutta Dwivedi Saxena 2021] prove ΣkΠΣ ⊆ VBP

Many recent papers study the power and limitations of border complexity, but it is still a mystery (Bläser,
Bringmann, Dutta, Dwivedi, Forbes, Grochow, Kumar, Mahajan, Medini, Mulmuley, Pandey, Sanyal, Saxena,
Saurabh, Shpilka, Quiao, Zuiddam).
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Summary: Algebraic Models of Computation and Border Complexity

The conj. “VNP 6⊆ VBP” is equivalent to the conj. “himmc(perm) is not polynomially bounded.”

The set {h | himmc(h) ≤ n} is closed, so proving himmc(perm) > n can be done with continuous functions
f that vanish on {h | himmc(h) ≤ n} and not on perm.

We will now see that these closed sets are actually algebraic varieties.
This will allow us to impose more restrictions on f .
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X ⊆ Cη is called an algebraic variety if there exist polynomials f1, . . . , fN such that

X = {h | f1(h) = f2(h) = · · · = fN (h) = 0}.

Example (η = 3): {h ∈ C[x, y]2 |WR(h) ≤ 1} = {ax2 + bxy + cy2 | b2 − 4ac︸ ︷︷ ︸
=:f1

= 0}

Polynomial obstructions must exist

If Xn = {h | c(h) ≤ n} is an algebraic variety and p /∈ Xn, then there exists a polynomial f with f(Xn) = {0}
and f(p) 6= 0.

Himm3
2 = {h hom deg 3 | himmc(h) ≤ 2}Himm3

2

per3

Remark: The method of partial derivatives, shifted partial derivatives, and any “rank based method” prove the
existence of polynomial obstructions: determinants of minors of certain matrices.
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Meta-Theorem (over C)

Let c be an algeb. compl. measure given by a syntactic circuit class with homogeneous linear inputs. Then
{h | c(h) ≤ n} is an algebraic variety.

Proof approach:

First observation: {h | c(h) ≤ n} = {h | c(h) ≤ n}

The Zariski closure Y
Z

of any subset Y ⊆ Cη is the smallest algebraic variety containing Y . In general

Y ⊆ Y ⊆ Y Z . We want Y = Y
Z

, because then {h | c(h) ≤ n} = {h | c(h) ≤ n}
Z

is an algebraic variety.
This is not always true over R:

The way around this problem over C can be concisely stated in the language of orbit closures.
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Orbit closures

x2y = lim
ε→0

1
3ε

(
(x+ εy)3 − x3

)
= lim
ε→0

(
(sεx+ εsεy)3 + (ωsεx)3

)
with s3

ε = 1
3ε

and ω3 = −1.

(sεx+ εsεy)3 + (ωsεx)3 = (x3 + y3)(sεx+ εsεy, ωsεx) = (x3 + y3)

(
(x y)

(
sε ωsε
εsε 0

))
=:

(
sε ωsε
εsε 0

)
· (x3 + y3)

C2×2(x3 + y3) := {g(x3 + y3) | g ∈ C2×2} = {h ∈ C[x, y]2 |WR(h) ≤ 2} is a monoid orbit.

x2y /∈ C2×2(x3 + y3)

x2y ∈ C2×2(x3 + y3) = {h ∈ C[x, y]2 |WR(h) ≤ 2}

Since GL2 ⊂ C2×2 is dense: C2×2(x3 + y3) = GL2(x3 + y3). This is called a group orbit closure.

Formally, (gp)(x) = p(xg).

For complexity classes given by syntactic circuit class with homogeneous linear inputs: {h | c(h) ≤ n} is a linear
space intersected with a finite union of orbit closures.
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Meta-Theorem (over C)

Let c be an algeb. compl. measure given by a syntactic circuit class. Then {h | c(h) ≤ n} is an algebraic variety.

Proof sketch:

First observation: {h | c(h) ≤ n} = {h | c(h) ≤ n}

The Zariski closure Y
Z

of any subset Y ⊆ Cη is the smallest algebraic variety containing Y . In general

Y ⊆ Y ⊆ Y Z . We want Y = Y
Z

, because then {h | c(h) ≤ n} = {h | c(h) ≤ n}
Z

is an algebraic variety.

A set is constructible if it is a finite union/intersection/complement of algebraic varieties.

Chevalley’s theorem implies: Orbit closures are constructible.

For constructible sets, Euclidean and Zariski closures coincide (over C) �

Fundamental Conclusion: All border complexity lower bounds can be proved via polynomials

All lower bounds on any border complexity measure (defined by a syntactic circuit class)

can be phrased as p /∈ X for some algebraic variety X

can be proved by a polynomial f with f(X) = {0} and f(p) 6= 0. (analogous to the discriminant)
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All border complexity lower bounds can be proved via polynomials

Conclusion: All lower bounds on any border complexity measure

can be phrased as p /∈ X for some algebraic variety X

can be proved by a polynomial f with f(X) = {0} and f(p) 6= 0. (analogous to the discriminant)

What is the complexity of these f? This is a question about algebraic natural proofs.

Several recent results: [Forbes, Shpilka, Volk 2017], [Grochow, Kumar, Saks, Saraf 2017], [Bläser, I, Jindal,
Lysikov 2018], [Bläser, I, Lysikov, Pandey, Schreyer 2019], [Chatterjee, Kumar, Ramya, Saptharishi, Tengse
2021], [Kumar, Ramya, Saptharishi, Tengse 2021]

Mulmuley and Sohoni:
We should use the fact that {h | c(h) ≤ n} is not only an algebraic variety, but also carries an

action of the general linear group.
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Summary: Algebraic geometry

{h ∈ C[x1, . . . , xn2m]m | himmc(h) ≤ n} = GLn2mimm
(m)
n is an orbit closure, in particular an algebraic

variety.

himmc(perm) > n iff perm /∈ GLn2mimm
(m)
n

himmc(perm) > n iff there exists a polynomial f with f(GLn2mimm
(m)
n ) = {0} and f(perm) 6= 0.

We want to study these f using representation theory.
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Consider what happens in the 3-dimensional vector space C[x, y]2 when we exchange the roles of x and y.

This operation is a linear endomorphism τ : C[x, y]2 → C[x, y]2, τ(p) =

(
0 1
1 0

)
p

We say that C[x, y]2 is a representation of S2.

A pair (V , %) of a fin. dim. vector space V and a group homom. % : G→ GL(V ) is called a representation.

τ(xy) = xy is an invariant. τ(x2 + y2) = x2 + y2 is an invariant. τ(x2 − y2) = y2 − x2 is a skew-invariant.
C[x, y]2 = 〈xy, x2 + y2〉︸ ︷︷ ︸

=:C[x,y]inv2

⊕ 〈x2 − y2〉︸ ︷︷ ︸
=:C[x,y]skew-inv

2

.

A subrepresentation of a representation is a linear subspace that is closed under the group action.

We write multinv(C[x, y]2) = dimC[x, y]inv
2 = 2 multskew-inv(C[x, y]2) = dimC[x, y]skew-inv

2 = 1

Let W := C[x, y]2 with basis {x2, xy, y2}. Rename the basis vectors a := x2, b := xy, c := y2.

Let C[W ]2 with basis {a2, ab, ac, b2, bc, c2}. (τf)(p) := f(τp)

τ(a) = c, τ(b) = b, τ(c) = a. τ(a2) = c2, τ(ab) = bc, . . ., τ(c2) = a2.

C[W ]2 = 〈ac, b2, a2 + c2, ab+ bc〉︸ ︷︷ ︸
isotypic component of invariants

⊕ 〈a2 − c2, ab− bc〉︸ ︷︷ ︸
isotypic component of skew-invariants

multinv(C[W ]2) := dim{f | τf = f} = 4 multskew-inv(C[W ]2) := dim{f | τf = −f} = 2
Note that b2 − 4ac lies in an isotypic component.
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Let C[W ]2 with basis {a2, ab, ac, b2, bc, c2}.

On the previous slide: τ : C[x, y]2 → C[x, y]2, τ(p) =

(
0 1
1 0

)
p

Now: Instead of

(
0 1
1 0

)
we can use every g ∈ GL2 (formally, gf is defined via (gf)(p) := f(gtp))

For example:

(
1 0
1 1

)
x2 = (x+ y)2 = x2 + 2xy + y2

(
1 0
1 1

)
a = a+ 2b+ c

I

(
1 0
1 1

)
a2 = (a+ 2b+ c)2 = a2 + 4ab+ 2ac+ 4b2 + 4bc+ c2

I

(
1 ∗
0 1

)
a2 = a2

I g(b2 − 4ac) = (det(g))2(b2 − 4ac)

C[W ]2 = 〈b2 − 4ac〉︸ ︷︷ ︸
irreducible

⊕ 〈a2, ab, b2 + 4ac, bc, c2〉︸ ︷︷ ︸
irreducible

A representation V is called irreducible if 0 and V are the only subrepresentations.

Theorem: GLN is reductive

Every GLN -representation can be decomposed into a direct sum of irreducibles.
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The vanishing ideal

Theorem: GLN is reductive

Every GLN -representation can be decomposed into a direct sum of irreducibles.

Recall

W = C[x, y]2

C[W ] = C[a, b, c].

Let X ⊆W be a Zariski-closed cone, for example the set of polynomials of Waring rank ≤ 1.

Vanishing ideal

The ideal I(X) = {f ∈ C[W ] | f(X) = {0}} is called the vanishing ideal of X. Define I(X)d := I(X)∩C[W ]d.

I(X)d ⊆ C[W ] is a subrepresentation (because X is an orbit closure)!
Example:

C[W ]2 = 〈b2 − 4ac〉 ⊕ 〈a2, ab, b2 + 4ac, bc, c2〉 I(X)2 = 〈b2 − 4ac〉
Conclusion (decompose the vanishing ideal into irreducibles)

All lower bounds on any border complexity measure with hom. lin. inputs can be proved by a polynomial f in an
irreducible subrepresentation of I(X) (in particular f(X) = {0}), and f(p) 6= 0.
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Highest weight vectors
Observation: g(b2 − 4ac) = det(g)2(b2 − 4ac)

Theorem (highest weight vectors)

Every irreducible GLN -representation contains (up to scale) exactly one highest weight vector (HWV):

diag(α1, . . . , αN )f = αλ1
1 · · ·α

λN
N f1 ∗

. . .

0 1

f = f

The exponent vector λ is called the weight of f .
Two irreducible GLN -representations are called isomorphic if the weights of their HWVs coincide.

b2 − 4ac is a HWV of weight (2, 2). a2 is a HWV of weight (4, 0).

C[W ]2 = 〈b2 − 4ac〉︸ ︷︷ ︸
irreducible of type (2,2)

⊕ 〈a2, ab, b2 + 4ac, bc, c2〉︸ ︷︷ ︸
irreducible of type (4,0)

I(X)2 = 〈b2 − 4ac〉︸ ︷︷ ︸
irreducible of type (2,2)

Conclusion

If h /∈ X, then there exists a HWV f such that gf vanishes on X and (gf)(h) 6= 0 for a generic matrix g.
This means, all border complexity lower bounds with homog. linear inputs can be proved via HWVs.
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Mulmuley and Sohoni propose to circumvent HWVs:

Theorem

The number of isomorphic copies of irreducibles in a decomposition is independent of the decomposition.
This number is called the multiplicity.

C[W ]2 = 〈b2 − 4ac〉︸ ︷︷ ︸
irreducible of type (2,2)

⊕ 〈a2, ab, b2 + 4ac, bc, c2〉︸ ︷︷ ︸
irreducible of type(4,0)

I(X)2 = 〈b2 − 4ac〉︸ ︷︷ ︸
irreducible of type (2,2)

mult(2,2)(C[W ]2) = 1 mult(4,0)(C[W ]2) = 1 mult(3,1)(C[W ]2) = 0 mult(2,2)(I(X)2) = 1 mult(4,0)(I(X)2) = 0 3

Fix n, m. Let v = max(m2, 2n+ n2(m− 2)). We want to show perm /∈ GLv imm
(m)
n .

h ∈ GLv imm
(m)
n ⇐⇒ GLvh ⊆ GLv imm

(m)
n

Multiplicity obstruction

If there exists λ with multλ(I
(
GLv imm

(m)
n

)
d
) > multλ(I

(
GLvperm

)
d
), then there exists a HWV proving

perm /∈ GLv imm
(m)
n . We call such λ multiplicity obstructions.

Major open question: Are multiplicity obstructions fine enough to prove strong lower bounds?

3The multiplicities in C[W ] are called plethysm coefficients. Vectors λ with positive plethysm coefficient give points in a moment cone.
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Multiplicity obstruction

If multλ(I
(
GLv imm

(m)
n

)
d
) > multλ(I

(
GLvperm

)
d
), then GL9per3 6⊆ GLv imm

(m)
n .

It could be that GL9per3 6⊆ GL9imm
(3)
2 , but ∀λ we have multλ(I

(
GLv imm

(m)
n

)
d
) ≤ multλ(I

(
GLvperm

)
d
).

These two situations look the same from the viewpoint of multiplicities:

GL9imm
(3)
2

GL9per3 GL9imm
(3)
2

GL9per3

multλ(I
(
GL9imm

(3)
2

)
d
) = 1 ≤ 2 = multλ(I

(
GL9per3

)
d
).

This problem cannot occur for λ for which all HWVs of weight λ vanish on GLv imm
(m)
n . In other words:

multλ(C[W ]
)
d
) = multλ(I

(
GLv imm

(m)
n

)
d
) > multλ(I

(
GLvperm

)
d
)

Such λ are called occurrence obstructions. These are a special case of multiplicity obstructions.
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The occurrence obstruction approach for determinant vs permanent does not give superpolynomial lower
bounds [Bürgisser I Panova 2016]. But that is not a homogeneous setting.
Occurrence obstructions can prove lower bounds on the border rank of the matrix multiplication tensor
[Bürgisser I 2011, 2013].
There are settings in which multiplicity obstructions are provably stronger than occurrence obstructions
[Dörfler, I, Panova 2019].
Hope that multiplicities might be fine enough comes from [Larsen Pink 1990] and [Yu 2016].
There are situations where multiplicity obstructions can be constructed just from the symmetry groups
(=stabilizers) of the two points [I-Kandasamy 2018]

Coordinate ring

C[X] = C[W ]/I(X) and in each degree d: C[X]d = C[W ]d/I(X)d.
For all λ: multλ(C[X]d) = multλ(C[W ]d)−multλ(I(X)d)

In many cases the coordinate ring of an orbit closure C[GLvp] has a localization that can be studied via the
algebraic Peter-Weyl theorem and representation theoretic branching rules:

C[GLvp]Φ = C[GLvp] = C[GLv/stab(p)] = C[GLv]stab(p)-inv =
⊕
λ

Sλ∗ ⊗ Sstab(p)-inv
λ

Here Φ is the so-called fundamental invariant [Bürgisser I 2017] and Sλ is the irreducible repr. of type λ.
Hence determining the multiplicity reduces to determining the dimension of an invariant space:
multλ∗C[GLvp]Φ = dim(S

stab(p)-inv
λ )
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Summary

There are several definitions of algebraic complexity, some affine and some homogeneous. The VBP vs VNP
question can naturally be phrased in a homogeneous way via himmc(perm). This simplifies the transition to
GCT.

When studying border complexity over C a rich set of tools from algebraic geometry and representation
theory becomes available. It also raises questions:

I Is VBP = VBP? In other words, are himmc and himmc polynomially related?
I VNP 6⊆ VBP is a question about the containment of orbit closures.

All border complexity (with hom. lin. input) lower bounds can be proved via HWVs.

Multiplicity obstructions can be used to circumvent having to compute HWVs. They can sometimes be
obtained from the symmetry groups of the two points.

Multiplicity obstructions are provably stronger than occurrence obstructions, but even occurrence
obstructions work in some cases.

Thank you!
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