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THE SCENARIO

W:=C"
P e C[W] =CI[X;, ..., Xu]
a € GL(W) C End(W)

COMPOSITION AS RIGHT ACTION

W—— W

SN

POLYNOMIALS AND ORBIT MAPS

ORBIT & BOUNDARY

GL(W) acts on C[W]4
Qp :=PoGL(W) C PoEnd(W)
0Qp = Qp \ Qp

GOAL

We would like to understand 0Qp.
P o End(W) # Qp in general.
Something is missing!



. ORBIT CLOSURES IN GCT LINEAR APPROXIMATIONS OF POLYNOMIALS

EXAMPLE
Polynomials P, Q € C[X,Y, Z]:

P=X.-Y>_2Z°
Q=Y-(YZ-X?

1 /9e3 1 2766
ag == = oF —e2 0
3 3¢ e2 0
Poa, =Q —&3X3.

Therefore: Q € Qp \ PoEnd(C?)

e =1.00
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NOTATION

w=CcH

P € C[Wl4q = CN where
a-1

N=("5")

Qp = PoGL(W)

0Qp = Qp \ Qp

NOTE

0Qp is the interesting part.

THE BOUNDARY OF AN ORBIT CLOSURE

EXAMPLE

W:(CdXd

P :detd

End(W) =

{a: Cdxd _, cdxd Iinear}

0Qp not well understood

THEOREM

0Q g, is a union of two orbit closures.
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THE RATIONAL ORBIT MAP

Transitioning from affine cones to projective space



. ORBIT CLOSURES IN GCT THE POWER OF PROJECTIVE SPACE

PROBLEM

Recall P € C[W] and let d0p: End(W) — Qp be defined by a ++ P o a. We usually
view Qp through this morphism, but it is not surjective.

PROPOSITION

Lety: ' — Y be a projective morphism, i.e. ' is a projective variety. Then,
v(Z) C Yis a subvariety for every subvariety Z C T..

MAIN IDEA

If dOp was projective, it would also be surjective. Let’s try to make it projective!



. ORBIT CLOSURES IN GCT THE POWER OF PROJECTIVE SPACE

MUSINGS

Let P € C[Wlg4,and a € End(W). For A € C, we get dp(Aa) = A4 - dp(a). In other
words, dp maps lines to lines.

ﬁp is an affine cone, so ]P’ﬁp is well-defined.
DEFINITION ATTEMPT

Let wp: PEnd(W) — PQp, [a] — [Poal.
PROBLEM

Say P = X;X; € C[Xy,X;] and take a = ((‘)8).Then,Poa:0.

The definition wp([a]) = [P o a] breaks down: The zero polynomial does not
correspond to a point in the projective variety PQp.



. ORBIT CLOSURES IN GCT RATIONAL MAPS

DEFINITION

Let X and Y be varieties, with X irreducible. A rational map from X to Y, denoted
w: X --» Y, is a morphism that may be undefined on a closed set.

EXAMPLE

Consider w: P? — P2, mapping [x : Y : z] — [xy :yz: zx]. The map is not defined
at any of the points [0:0:1],[0:1:0],and [1:0:0].

THE RATIONAL ORBIT MAP

wp: PEnd(W) --» PQp, [a] — [P o a]. Undefined on the annihilator of P:
Ap ={la] e PEnd(W)|Poa = 0}
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ORBIT MAP
Set E := End(W) and
Wp: E— Qp
a—Poa
After projectivization:
wp: PE --s PQyp
[a] — [Pod]
Has indeterminacy:

Ap ={la][Poa =0}

THE ORBIT MAP

RESOLVING INDETERMINACY
Define the graph of wp:
I={(lal,[Poal)|[al € Ap} C PE x PQp

This projective variety has two morphisms induced
by the projections to each cartesian factor:

The morphism yp: I' — PQp is projective.
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ORBIT MAP
Set E := End(W) and
wWp: PE --» Pﬁp

la] — [Pod]

Resolved by its graph:

PE - L = ]P)ﬁp

\O/
Br Yp
r

THE ORBIT MAP

BLOWING UP

The morphism PBp: I' — PE is a so-called blow-up. It
is defined by the ideal I C CIE] that is generated by
the equations P o a = 0. Note that

Ap ={la]|Poa=0}=Z(I)

but I # /T in general; T is not defined Ap, but by the
ideal I itself. The ideal I is equivalent to a closed sub-
scheme flp C IPE, called the center of 3p. Ifflp is a
variety, then flp = Ap.



. ORBIT CLOSURES IN GCT QUICK STRATEGY RECAP

THEOREM

0Q e, is a union of two orbit closures.

PROOF STRATEGY

Identify two components, both of which are orbit closures.

Study the map w : PEnd(W) --» PQp, [a] — [Poal.

Understand the geometry offlp.

Deduce from this the changes introduced by the blow-up p : ' — P End(W).
A blow-up introduces new hypersurfaces;

This yields a bound on the number of components of 0Qp.



. ORBIT CLOSURES IN GCT BLOW-UP TOY EXAMPLE

Consider w: P2 --» {[{! 2] } tits = totz}, defined by w([x : y: 2]) = [’;’Z‘ ’;ﬂ The
map is not defined ata; :=[0:0:1]andaz == [0:1:0].

L, =:{[2$] ’ [s: t] E]Pﬂ} ¢ im(w)
Let ps,¢(e) = [es : et : 1], the line through a; in the direction [s : t] € P'.

Vis:tl €P': wilps,ele)) =[5 igt] = [e5" et] —=2— [99]
Hence, L1 C im(w). Equivalently for L, = LI by switchingy and z.
The ideal defining this blow-up is I = (x?,xy, Xz, yz).
However, its saturation is (x,yz) = [({a;, az}).
because of this', the center of this blow-up is {a7, az}.

This blow-up replaces each a; by a copy of P! = L;.

! Gathmann Lecture Notes 2003, Lemma 5.5.9


https://www.mathematik.uni-kl.de/~gathmann/de/alggeom.php

. ORBIT CLOSURES IN GCT BLOWING UP

THE BLOW-UP PROPOSITION

Assume that the blow-up Bp : I' — PE can be written as a sequence of blowups

B

M=Y, Br Yo Bio1 B2 Y, /PE

\VP /wP//
\7 k/
Qp

where the center of each 3; is smooth, then dQp has at most k + 1 components.

PROOF SKETCH

A blowup with smooth center creates only one new hypersurface.

Since yp is surjective, k new hypersurfaces were enough to completely cover 0Qp.
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MAXIMAL LINEAR SUBSPACES

Dissecting the indeterminacy of the rational orbit map



. ORBIT CLOSURES IN GCT MAXIMAL VANISHING LINEAR SUBSPACES

WHAT IS THIS ABOUT

Recall that P € C[W]. To understand the blow-up 3: I' — P End(W), we have to
understand the annihilator of P:

Ap ={la] € PEnd(W) |Poa =0} ={[a] € PEnd(W) |im(a) C Z(P)}
DEFINITION: MAXIMAL VANISHING LINEAR SUBSPACES
End(W,L) = {a € End(W) |im(a) C L}
Lp ={LC Z(P) C W|Llinear}
Lp the inclusion-wise maximal elements of Lp

Ap = {la] |im(a) € Lp} = | PEnd(W,L)

LELy



. ORBIT CLOSURES IN GCT MAXIMAL VANISHING LINEAR SUBSPACES

EXAMPLE: MAXIMAL VANISHING LINEAR SPACES FOR DET3

Let W = C3*3 and P = dets. Then, £p = {L,L,, L3, L4} where:

I * k0 00 * 0 a-—b
L]Z * ok X LZZ * % 0 Lg,: 00 * L4: —a 0 ¢
000 * % 0 * ok ok b—c O

Hence:

Ap =PEnd(W,L;) UPEnd(W, L) UPEnd(W, L3) UPEnd(W, Ls)

GOOD NEWS BAD NEWS

We will be able to ignore all but L4 to For d > 5, the set Ly, is no longer
understand dets. finite and not entirely understood.



. ORBIT CLOSURES IN GCT EXPLOITING SEMISTABILITY

Recall the maximal linear subspaces of Z(det3):

* ok Kk * % 0 00 * 0 a-b
L]: EE LZZ * % 0 ]_3: 00 * L4: —a 0 ¢
000 * % 0 * ok k b—c 0
The space L is unstable:
e 0 O X1 X2 X3 £X1 €°X) €°X3 X1 X2 X3 £—0
0 ¢ O | x4 X5 %6 = £:X4 €'X5 £'Xg =€ | x4 x5 X¢ ——0
0 0 ¢e? 0 00 0o 0 o0 0 00
because T, = diag(e, ¢, ¢?) satisfies the following conditions:

Gp={g € GL(W)|Pog =P}
Since det(T;) = 1, we have det(T.X) = det(X).
Define t¢ (X) = T.X, then t, € Gp.

Similar maps exist for L, and L3; but not for L.



. ORBIT CLOSURES IN GCT EXPLOITING SEMISTABILITY

DEFINITION: SEMISTABLE POINTS

Gp = {g € GL(W | Pog = P} the stabilizer of P
Np = {a € End(W ‘ 0eG a} the null cone of Gp acting on End(W)

We then define E* := End(W) \ Np and PE® := P(E*).

APPLICATION

We can replace PE by IPE* for the following reasons:
There is a quotient 7t : PE* — PE*/Gp and the variety PE*/Gp is projective.

The rational map wp : PE® --» PQp is Gp-invariant.



. ORBIT CLOSURES IN GCT INDETERMINACIES OF RATIONAL MAPS

DEFINITION ILLUSTRATION
Gp ={g € GL(W)|Pog =P} PE------2 5 PQp
Np_{aeEnd )|0eGpal \ /

= End(W) \ Np . Yo

PE* = P(E®) \ /

For P = dets, we have: r

%= Ap NPE® C PEnd(W, Ly)

In this case, A‘g = A} is a smooth variety, and the center of the blow-up Bp. With the
Blow-Up Proposition, this proves that 0(Q 4., has at most two irreducible components.
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STRATEGY AND READING SUGGESTIONS



. ORBIT CLOSURES IN GCT STRATEGY AND READING SUGGESTIONS

READING SUGGESTIONS (MAYBE DATED)

Gathmann Lecture Notes 2003

Hanspeter Kraft - Geometrische Methoden in der Invariantentheorie
Hanspeter Kraft - Geometric methods in representation theory
Patrice Tauvel & Rupert W.T. Yu - Lie Algebras and Algebraic Groups
Harm Derksen and Gregor Kemper - Computational Invariant Theory
My Dissertation

Don Rosa - The Life and Times of Scrooge McDuck


https://www.mathematik.uni-kl.de/~gathmann/de/alggeom.php
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