ORBIT CLOSURES IN GCT

TECHNIQUES FROM PROJECTIVE GEOMETRY

Jesko Hüttenhain

NOVEMBER 5, 2021

1 Introduction And Notation

2 The Rational Orbit Map

3 Maximal Linear Subspaces
$4 \quad$ Strategy And Reading Suggestions

INTRODUCTION AND NOTATION

THE SCENARIO

- $W:=\mathbb{C}^{n}$
- $P \in \mathbb{C}[W]=\mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$
- $a \in G L(W) \subseteq \operatorname{End}(W)$

COMPOSITION AS RIGHT ACTION

ORBIT \& BOUNDARY

- GL(W) acts on $\mathbb{C}[W]_{d}$
- $\Omega_{P}:=P \circ G L(W) \subseteq P \circ E n d(W)$
- $\partial \Omega_{P}:=\bar{\Omega}_{P} \backslash \Omega_{P}$

GOAL

- We would like to understand $\partial \Omega_{p}$.
- $\mathrm{P} \circ \operatorname{End}(\mathrm{W}) \neq \bar{\Omega}_{\mathrm{P}}$ in general.
- Something is missing!

LINEAR APPROXIMATIONS OF POLYNOMIALS

EXAMPLE

Polynomials $P, Q \in \mathbb{C}[X, Y, Z]$:

$$
\begin{aligned}
\mathrm{P} & :=\mathrm{X} \cdot \mathrm{Y}^{2}-\mathrm{Z}^{3} \\
\mathrm{Q} & :=\mathrm{Y} \cdot\left(\mathrm{YZ}-\mathrm{X}^{2}\right) \\
\mathrm{a}_{\varepsilon} & :=\frac{1}{3}\left(\begin{array}{ccc}
9 \varepsilon^{3} & 1 & 27 \varepsilon^{6} \\
0 & -\varepsilon^{-3} & 0 \\
3 \varepsilon & \varepsilon^{-2} & 0
\end{array}\right) \\
\mathrm{P} \circ \mathrm{a}_{\varepsilon} & =\mathrm{Q}-\varepsilon^{3} \mathrm{X}^{3} .
\end{aligned}
$$

Therefore: $\mathrm{Q} \in \bar{\Omega}_{P} \backslash \mathrm{P} \circ \operatorname{End}\left(\mathbb{C}^{3}\right)$

THE BOUNDARY OF AN ORBIT CLOSURE

NOTATION

- $\mathrm{W} \cong \mathbb{C}^{\mathrm{n}}$
- $\mathrm{P} \in \mathbb{C}[\mathrm{W}]_{\mathrm{d}} \cong \mathbb{C}^{\mathrm{N}}$ where $N=\binom{n+d-1}{d}$
- $\Omega_{P}:=\mathrm{P} \circ \mathrm{GL}(\mathrm{W})$
- $\partial \Omega_{P}:=\bar{\Omega}_{P} \backslash \Omega_{P}$

NOTE

$\partial \Omega_{p}$ is the interesting part.

EXAMPLE

- $W=\mathbb{C}^{\mathrm{d} \times \mathrm{d}}$
- $P=\operatorname{det}_{\mathrm{d}}$
- $\operatorname{End}(W)=$ $\left\{a: \mathbb{C}^{d \times d} \rightarrow \mathbb{C}^{d \times d}\right.$ linear $\}$
- $\partial \Omega_{p}$ not well understood

THEOREM

$\partial \Omega_{\operatorname{det}_{3}}$ is a union of two orbit closures.

1 Introduction And Notation

2 The Rational Orbit Map

3 Maximal Linear Subspaces
$4 \quad$ Strategy And Reading Suggestions

THE RATIONAL ORBIT MAP

Transitioning from affine cones to projective space

the Power of projective space

PROBLEM

Recall $P \in \mathbb{C}[W]$ and let $\breve{\omega}_{P}: \operatorname{End}(W) \rightarrow \bar{\Omega}_{P}$ be defined by $a \mapsto P \circ a$. We usually view $\bar{\Omega}_{P}$ through this morphism, but it is not surjective.

PROPOSITION

Let $\gamma: \Gamma \rightarrow \mathrm{Y}$ be a projective morphism, i.e. Γ is a projective variety. Then, $\gamma(\mathrm{Z}) \subseteq \mathrm{Y}$ is a subvariety for every subvariety $\mathrm{Z} \subseteq \Gamma$.

MAIN IDEA

If $\check{\omega}_{P}$ was projective, it would also be surjective. Let's try to make it projective!

THE POWER OF PROJECTIVE SPACE

MUSINGS

- Let $P \in \mathbb{C}[W]_{d}$, and $a \in \operatorname{End}(W)$. For $\lambda \in \mathbb{C}$, we get $\check{\omega}_{p}(\lambda a)=\lambda^{d} \cdot \check{\omega}_{p}(a)$. In other words, ǔ $_{P}$ maps lines to lines.
- $\bar{\Omega}_{P}$ is an affine cone, so $\mathbb{P} \bar{\Omega}_{P}$ is well-defined.

DEFINITION ATTEMPT

Let $\omega_{P}: \mathbb{P} \operatorname{End}(W) \longrightarrow \mathbb{P} \bar{\Omega}_{P},[\mathrm{a}] \mapsto[\mathrm{P} \circ \mathrm{a}]$.

PROBLEM

- Say $P=X_{1} X_{2} \in \mathbb{C}\left[X_{1}, X_{2}\right]$ and take $a=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$. Then, $P \circ a=0$.
- The definition $\omega_{P}([a])=[\mathrm{P} \circ \mathrm{a}]$ breaks down: The zero polynomial does not correspond to a point in the projective variety $\mathbb{P} \bar{\Omega}_{p}$.

DEFINITION

Let X and Y be varieties, with X irreducible. A rational map from X to Y, denoted $\omega: X \rightarrow Y$, is a morphism that may be undefined on a closed set.

EXAMPLE

Consider $\omega: \mathbb{P}^{2} \rightarrow \mathbb{P}^{2}$, mapping $[x: y: z] \mapsto[x y: y z: z x]$. The map is not defined at any of the points $[0: 0: 1],[0: 1: 0]$, and $[1: 0: 0]$.

THE RATIONAL ORBIT MAP

$\omega_{P}: \mathbb{P} \operatorname{End}(W) \rightarrow \mathbb{P} \bar{\Omega}_{P},[a] \mapsto[\mathrm{P} \circ \mathrm{a}]$. Undefined on the annihilator of P :

$$
\mathcal{A}_{P}:=\{[a] \in \mathbb{P} \operatorname{End}(W) \mid P \circ a=0\}
$$

ORBIT MAP

Set $E:=\operatorname{End}(W)$ and

$$
\begin{aligned}
\check{\omega}_{P}: E & \longrightarrow \bar{\Omega}_{P} \\
a & \longmapsto P \circ a
\end{aligned}
$$

After projectivization:

$$
\begin{aligned}
\omega_{p}: & \mathbb{P E} \longrightarrow \mathbb{P} \bar{\Omega}_{P} \\
& {[\mathrm{a}] \longmapsto[\mathrm{P} \circ \mathrm{a}] }
\end{aligned}
$$

Has indeterminacy:

$$
\mathcal{A}_{P}:=\{[a] \mid P \circ a=0\}
$$

RESOLVING INDETERMINACY

Define the graph of ω_{p} :

$$
\Gamma:=\overline{\left\{([a],[P \circ a]) \mid[a] \notin \mathcal{A}_{p}\right\} \subseteq \mathbb{P E} \times \mathbb{P} \bar{\Omega}_{p} .}
$$

This projective variety has two morphisms induced by the projections to each cartesian factor:

The morphism $\gamma_{\mathrm{P}}: \Gamma \longrightarrow \mathbb{P} \bar{\Omega}_{\mathrm{P}}$ is projective.

ORBIT MAP

Set $\mathrm{E}:=\operatorname{End}(\mathrm{W})$ and

$$
\omega_{P}: \mathbb{P E} \rightarrow \mathbb{P} \bar{\Omega}_{P}
$$

$$
[a] \longmapsto[P \circ a]
$$

Resolved by its graph:

BLOWING UP

The morphism $\beta_{P}: \Gamma \rightarrow \mathbb{P E}$ is a so-called blow-up. It is defined by the ideal $\mathrm{I} \subseteq \mathbb{C}[E]$ that is generated by the equations $\mathrm{P} \circ \mathrm{a}=0$. Note that

$$
\mathcal{A}_{P}=\{[a] \mid P \circ a=0\}=Z(I)
$$

but $\mathrm{I} \neq \sqrt{\mathrm{I}}$ in general; Γ is not defined \mathcal{A}_{P}, but by the ideal I itself. The ideal I is equivalent to a closed subscheme $\hat{\mathcal{A}}_{P} \subseteq \mathbb{P} E$, called the center of β_{P}. If $\hat{\mathcal{A}}_{P}$ is a variety, then $\hat{\hat{A}}_{p}=\mathcal{A}_{p}$.

THEOREM

$\partial \Omega_{\operatorname{det}_{3}}$ is a union of two orbit closures.

PROOF STRATEGY

- Identify two components, both of which are orbit closures.
- Study the map $\omega: \mathbb{P} \operatorname{End}(W) \rightarrow \mathbb{P} \bar{\Omega}_{p},[a] \mapsto[P \circ a]$.
- Understand the geometry of $\hat{\mathcal{A}}_{P}$.
- Deduce from this the changes introduced by the blow-up $\beta_{P}: \Gamma \rightarrow \mathbb{P} \operatorname{End}(W)$.
- A blow-up introduces new hypersurfaces;
- This yields a bound on the number of components of $\partial \Omega_{p}$.

Consider $\omega: \mathbb{P}^{2} \rightarrow\left\{\left.\left[\begin{array}{ll}t_{1} & t_{2} \\ t_{3} & t_{4}\end{array}\right] \right\rvert\, t_{1} t_{4}=t_{2} t_{3}\right\}$, defined by $\omega([x: y: z]):=\left[\begin{array}{ll}x \cdot x & x \cdot y \\ x \cdot z & y \cdot z\end{array}\right]$. The map is not defined at $a_{1}:=[0: 0: 1]$ and $a_{2}:=[0: 1: 0]$.

$$
\mathrm{L}_{1}:=\left\{\left.\left[\begin{array}{ll}
0 & 0 \\
\mathrm{~s} & \mathrm{t}
\end{array}\right] \right\rvert\,[\mathrm{s}: \mathrm{t}] \in \mathbb{P}^{1}\right\} \nsubseteq \operatorname{im}(\omega)
$$

Let $p_{s, t}(\varepsilon):=[\varepsilon s: \varepsilon t: 1]$, the line through a_{1} in the direction $[s: t] \in \mathbb{P}^{1}$.

$$
\forall[s: t] \in \mathbb{P}^{1}: \quad \omega\left(p_{s, t}(\varepsilon)\right)=\left[\begin{array}{cc}
\varepsilon^{2} s^{2} & \varepsilon^{2} s t \\
\varepsilon s & \varepsilon t
\end{array}\right]=\left[\begin{array}{cc}
\varepsilon s^{2} & \varepsilon s t \\
s & t
\end{array}\right] \xrightarrow{\varepsilon \rightarrow 0}\left[\begin{array}{cc}
0 & 0 \\
s & t
\end{array}\right]
$$

Hence, $\mathrm{L}_{1} \subseteq \overline{\operatorname{im}(\omega)}$. Equivalently for $\mathrm{L}_{2}:=\mathrm{L}_{1}^{\top}$ by switching y and z .

- The ideal defining this blow-up is $I=\left(x^{2}, x y, x z, y z\right)$.
- However, its saturation is $(x, y z)=I\left(\left\{a_{1}, a_{2}\right\}\right)$.
- because of this ${ }^{1}$, the center of this blow-up is $\left\{a_{1}, a_{2}\right\}$.

This blow-up replaces each a_{i} by a copy of $\mathbb{P}^{1} \cong L_{i}$.

THE BLOW-UP PROPOSITION

Assume that the blow-up $\beta_{P}: \Gamma \rightarrow \mathbb{P E}$ can be written as a sequence of blowups

where the center of each β_{i} is smooth, then $\partial \Omega_{p}$ has at most $k+1$ components.

PROOF SKETCH

- A blowup with smooth center creates only one new hypersurface.
- Since γ_{p} is surjective, k new hypersurfaces were enough to completely cover $\partial \Omega_{p}$.

1 Introduction And Notation

2 The Rational Orbit Map

3 Maximal Linear Subspaces
$4 \quad$ Strategy And Reading Suggestions

MAXIMAL LINEAR SUBSPACES

Dissecting the indeterminacy of the rational orbit map

MAXIMAL VANISHING LINEAR SUBSPACES

WHAT IS THIS ABOUT

Recall that $P \in \mathbb{C}[W]$. To understand the blow-up $\beta: \Gamma \rightarrow \mathbb{P} \operatorname{End}(W)$, we have to understand the annihilator of P :

$$
\mathcal{A}_{P}=\{[a] \in \mathbb{P} \operatorname{End}(W) \mid P \circ a=0\}=\{[a] \in \mathbb{P} \operatorname{End}(W) \mid \operatorname{im}(a) \subseteq Z(P)\}
$$

DEFINITION: MAXIMAL VANISHING LINEAR SUBSPACES

- $\operatorname{End}(W, L):=\{a \in \operatorname{End}(W) \mid \operatorname{im}(a) \subseteq L\}$
- $\overline{\mathcal{L}}_{\mathrm{P}}:=\{\mathrm{L} \subseteq \mathrm{Z}(\mathrm{P}) \subseteq \mathrm{W} \mid \mathrm{L}$ linear $\}$
- \mathcal{L}_{P} the inclusion-wise maximal elements of $\overline{\mathcal{L}}_{P}$

$$
\mathcal{A}_{p}=\left\{[a] \mid \operatorname{im}(a) \in \overline{\mathcal{L}}_{p}\right\}=\bigcup_{L \in \mathcal{L}_{P}} \mathbb{P} \operatorname{End}(W, L)
$$

EXAMPLE: MAXIMAL VANISHING LINEAR SPACES FOR DET ${ }_{3}$

Let $W=\mathbb{C}^{3 \times 3}$ and $P=\operatorname{det}_{3}$. Then, $\mathcal{L}_{P}=\left\{L_{1}, L_{2}, L_{3}, L_{4}\right\}$ where:

$$
\mathrm{L}_{1}=\left(\begin{array}{ccc}
* & * & * \\
* & * & * \\
0 & 0 & 0
\end{array}\right) \quad \mathrm{L}_{2}=\left(\begin{array}{ccc}
* & * & 0 \\
* & * & 0 \\
* & * & 0
\end{array}\right) \quad \mathrm{L}_{3}=\left(\begin{array}{lll}
0 & 0 & * \\
0 & 0 & * \\
* & * & *
\end{array}\right) \quad \mathrm{L}_{4}=\left(\begin{array}{rrr}
0 & \mathrm{a} & -\mathrm{b} \\
-\mathrm{a} & 0 & \mathrm{c} \\
\mathrm{~b} & -\mathrm{c} & 0
\end{array}\right)
$$

Hence:

$$
\mathcal{A}_{P}=\mathbb{P} \operatorname{End}\left(W, L_{1}\right) \cup \mathbb{P} \operatorname{End}\left(W, L_{2}\right) \cup \mathbb{P} \operatorname{End}\left(W, L_{3}\right) \cup \mathbb{P} \operatorname{End}\left(W, L_{4}\right)
$$

GOOD NEWS

We will be able to ignore all but L_{4} to understand det_{3}.

BAD NEWS

For $d \geqslant 5$, the set $\mathcal{L}_{\operatorname{det}_{d}}$ is no longer finite and not entirely understood.

Recall the maximal linear subspaces of $Z\left(\operatorname{det}_{3}\right)$:

$$
\mathrm{L}_{1}=\left(\begin{array}{ccc}
* & * & * \\
* & * & * \\
0 & 0 & 0
\end{array}\right) \quad \mathrm{L}_{2}=\left(\begin{array}{lll}
* & * & 0 \\
* & * & 0 \\
* & * & 0
\end{array}\right) \quad \mathrm{L}_{3}=\left(\begin{array}{lll}
0 & 0 & * \\
0 & 0 & * \\
* & *
\end{array}\right) \quad \mathrm{L}_{4}=\left(\begin{array}{rrr}
0 & \mathrm{a} & -\mathrm{b} \\
-\mathrm{a} & 0 & \mathrm{c} \\
\mathrm{~b} & -\mathrm{c} & 0
\end{array}\right)
$$

The space L_{1} is unstable:

$$
\left(\begin{array}{ccc}
\varepsilon & 0 & 0 \\
0 & \varepsilon & 0 \\
0 & 0 & \varepsilon^{-2}
\end{array}\right) \cdot\left(\begin{array}{ccc}
x_{1} & x_{2} & x_{3} \\
x_{4} & x_{5} & x_{6} \\
0 & 0 & 0
\end{array}\right)=\left(\begin{array}{ccc}
\varepsilon \cdot x_{1} & \varepsilon \cdot x_{2} & \varepsilon \cdot x_{3} \\
\varepsilon \cdot x_{4} & \varepsilon \cdot x_{5} & \varepsilon \cdot x_{6} \\
0 & 0 & 0
\end{array}\right)=\varepsilon \cdot\left(\begin{array}{ccc}
x_{1} & x_{2} & x_{3} \\
x_{4} & x_{5} & x_{6} \\
0 & 0 & 0
\end{array}\right) \xrightarrow{\varepsilon \rightarrow 0} 0
$$

because $\mathrm{T}_{\varepsilon}=\operatorname{diag}\left(\varepsilon, \varepsilon, \varepsilon^{2}\right)$ satisfies the following conditions:

- $\mathrm{GP}_{\mathrm{P}}:=\{\mathrm{g} \in \mathrm{GL}(\mathrm{W}) \mid \mathrm{P} \circ \mathrm{g}=\mathrm{P}\}$.
- Since $\operatorname{det}\left(T_{\varepsilon}\right)=1$, we have $\operatorname{det}\left(T_{\varepsilon} X\right)=\operatorname{det}(X)$.
- Define $t_{\varepsilon}(X):=T_{\varepsilon} X$, then $t_{\varepsilon} \in G_{p}$.

Similar maps exist for L_{2} and L_{3}; but not for L_{4}.

DEFINITION: SEMISTABLE POINTS

$$
\begin{aligned}
& G_{p}:=\{g \in G L(W) \mid P \circ g=P\} \quad \text { the stabilizer of } P \\
& \mathcal{N}_{p}:=\left\{a \in \operatorname{End}(W) \mid 0 \in \overline{G_{p}} a\right\} \quad \text { the null cone of } G p \text { acting on End }(W) \\
& \text { We then define } E^{s s}:=\operatorname{End}(W) \backslash \mathcal{N}_{p} \text { and } \mathbb{P}^{s s}:=\mathbb{P}\left(E^{s s}\right) .
\end{aligned}
$$

APPLICATION

We can replace $\mathbb{P E}$ by $\mathbb{P E}^{\text {ss }}$ for the following reasons:

- There is a quotient $\pi: \mathbb{P E}^{s s} \rightarrow \mathbb{P E}^{s s} / / \mathrm{G}_{\mathrm{p}}$ and the variety $\mathbb{P E}^{s s} / / \mathrm{G}_{\mathrm{p}}$ is projective.
- The rational map $\omega_{P}: \mathbb{P E}^{s s} \rightarrow \mathbb{P} \bar{\Omega}_{P}$ is G_{p}-invariant.

DEFINITION

$$
\begin{aligned}
G_{p} & :=\{g \in G L(W) \mid P \circ g=P\} \\
\mathcal{N}_{p} & :=\left\{a \in \operatorname{End}(W) \mid 0 \in \overline{G_{p}} a\right\} \\
E^{s s} & :=\operatorname{End}(W) \backslash \mathcal{N}_{p} \\
\mathbb{P E}^{s s} & :=\mathbb{P}\left(E^{\mathrm{Ss}}\right)
\end{aligned}
$$

$$
\text { For } \mathrm{P}=\operatorname{det}_{3} \text {, we have: }
$$

$$
\mathcal{A}_{\mathrm{p}}^{\mathrm{ss}}:=\mathcal{A}_{\mathrm{P}} \cap \mathbb{P E}^{\mathrm{ss}} \subseteq \mathbb{P} \operatorname{End}\left(\mathrm{~W}, \mathrm{~L}_{4}\right)
$$

ILLUSTRATION

In this case, $\hat{\mathcal{A}}_{\mathrm{p}}^{\mathrm{ss}}=\mathcal{A}_{\mathrm{p}}^{\text {ss }}$ is a smooth variety, and the center of the blow-up $\bar{\beta}_{\mathrm{p}}$. With the Blow-Up Proposition, this proves that $\partial \Omega_{\operatorname{det}_{3}}$ has at most two irreducible components.

1 Introduction And Notation

2 The Rational Orbit Map

3 Maximal Linear Subspaces
$4 \quad$ Strategy And Reading Suggestions

STRATEGY AND READING SUGGESTIONS

READING SUGGESTIONS (MAYBE DATED)

- Gathmann Lecture Notes 2003
- Hanspeter Kraft - Geometrische Methoden in der Invariantentheorie
- Hanspeter Kraft - Geometric methods in representation theory
- Patrice Tauvel \& Rupert W. T. Yu - Lie Algebras and Algebraic Groups
- Harm Derksen and Gregor Kemper - Computational Invariant Theory
- My Dissertation
- Don Rosa - The Life and Times of Scrooge McDuck

