**ORBIT CLOSURES IN GCT** 

# **TECHNIQUES FROM PROJECTIVE GEOMETRY**

**Jesko Hüttenhain** NOVEMBER 5, 2021









**Maximal Linear Subspaces** 



Strategy And Reading Suggestions

# **INTRODUCTION AND NOTATION**

# POLYNOMIALS AND ORBIT MAPS

# THE SCENARIO

- $W \coloneqq \mathbb{C}^n$
- $P \in \mathbb{C}[W] = \mathbb{C}[X_1, \dots, X_n]$
- $a \in GL(W) \subseteq End(W)$

# **ORBIT & BOUNDARY**

- $\operatorname{GL}(W)$  acts on  $\mathbb{C}[W]_d$
- $\Omega_P \coloneqq P \circ GL(W) \subseteq P \circ End(W)$

$$\partial \Omega_{P} \coloneqq \overline{\Omega}_{P} \setminus \Omega_{P}$$

### **COMPOSITION AS RIGHT ACTION**



## GOAL

- We would like to understand  $\partial \Omega_P$ .
- $P \circ End(W) \neq \overline{\Omega}_P$  in general.
- Something is missing!

#### EXAMPLE

Polynomials P, Q  $\in \mathbb{C}[X, Y, Z]$ :  $P := X \cdot Y^2 - Z^3$   $Q := Y \cdot (YZ - X^2)$   $a_{\varepsilon} := \frac{1}{3} \begin{pmatrix} 9\varepsilon^3 & 1 & 27\varepsilon^6 \\ 0 & -\varepsilon^{-3} & 0 \\ 3\varepsilon & \varepsilon^{-2} & 0 \end{pmatrix}$   $P \circ a_{\varepsilon} = Q - \varepsilon^3 X^3.$ 

Therefore:  $Q\in\overline{\Omega}_P\setminus P\circ End(\mathbb{C}^3)$ 

# THE BOUNDARY OF AN ORBIT CLOSURE

## NOTATION

- $W \cong \mathbb{C}^n$
- $P \in \mathbb{C}[W]_d \cong \mathbb{C}^N$  where  $N = \binom{n+d-1}{d}$
- $\Omega_P := P \circ GL(W)$
- $\partial \Omega_P \coloneqq \overline{\Omega}_P \setminus \Omega_P$

## NOTE

 $\partial\Omega_P$  is the interesting part.

# EXAMPLE

- $W = \mathbb{C}^{d \times d}$
- $P = det_d$
- $\operatorname{End}(W) = \{a: \mathbb{C}^{d \times d} \to \mathbb{C}^{d \times d} \text{ linear} \}$
- $\partial\Omega_P$  not well understood

# THEOREM

 $\partial\Omega_{det_3}$  is a union of two orbit closures.









**Maximal Linear Subspaces** 



Strategy And Reading Suggestions

# THE RATIONAL ORBIT MAP

Transitioning from affine cones to projective space

#### PROBLEM

Recall  $P \in \mathbb{C}[W]$  and let  $\check{\omega}_P \colon End(W) \to \overline{\Omega}_P$  be defined by  $a \mapsto P \circ a$ . We usually view  $\overline{\Omega}_P$  through this morphism, but it is not surjective.

#### PROPOSITION

Let  $\gamma: \Gamma \to Y$  be a **projective morphism**, i.e.  $\Gamma$  is a projective variety. Then,  $\gamma(Z) \subseteq Y$  is a subvariety for every subvariety  $Z \subseteq \Gamma$ .

#### **MAIN IDEA**

If  $\check{\omega}_P$  was projective, it would also be surjective. Let's try to make it projective!

#### MUSINGS

- Let  $P \in \mathbb{C}[W]_d$ , and  $a \in End(W)$ . For  $\lambda \in \mathbb{C}$ , we get  $\check{\omega}_P(\lambda a) = \lambda^d \cdot \check{\omega}_P(a)$ . In other words,  $\check{\omega}_P$  maps lines to lines.
- $\overline{\Omega}_P$  is an affine cone, so  $\mathbb{P}\overline{\Omega}_P$  is well-defined.

## **DEFINITION ATTEMPT**

Let  $\omega_P \colon \mathbb{P} \operatorname{End}(W) \longrightarrow \mathbb{P}\overline{\Omega}_P$ ,  $[\mathfrak{a}] \mapsto [P \circ \mathfrak{a}]$ .

#### PROBLEM

- Say  $P = X_1 X_2 \in \mathbb{C}[X_1, X_2]$  and take  $a = (\begin{smallmatrix} 1 & 0 \\ 0 & 0 \end{smallmatrix})$ . Then,  $P \circ a = 0$ .
- The definition ω<sub>P</sub>([a]) = [P ∘ a] breaks down: The zero polynomial does not correspond to a point in the projective variety PΩ<sub>P</sub>.

## DEFINITION

Let X and Y be varieties, with X irreducible. A **rational map** from X to Y, denoted  $\omega: X \dashrightarrow Y$ , is a morphism that may be undefined on a closed set.

#### **EXAMPLE**

Consider  $\omega : \mathbb{P}^2 \to \mathbb{P}^2$ , mapping  $[x : y : z] \mapsto [xy : yz : zx]$ . The map is not defined at any of the points [0:0:1], [0:1:0], and [1:0:0].

#### THE RATIONAL ORBIT MAP

 $\omega_P \colon \mathbb{P} \operatorname{End}(W) \dashrightarrow \mathbb{P}\overline{\Omega}_P$ ,  $[a] \mapsto [P \circ a]$ . Undefined on the **annihilator** of P:

 $\mathcal{A}_{\mathsf{P}} \coloneqq \{[\mathfrak{a}] \in \mathbb{P} \operatorname{End}(\mathsf{W}) \mid \mathsf{P} \circ \mathfrak{a} = \mathsf{0}\}$ 

#### **ORBIT MAP**

- Set E := End(W) and  $\check{w}_P \colon E \longrightarrow \overline{\Omega}_P$   $a \longmapsto P \circ a$ After projectivization:  $\omega_P \colon \mathbb{P}E \dashrightarrow \mathbb{P}\overline{\Omega}_P$ 
  - $[a] \longmapsto [P \circ a]$

Has indeterminacy:

 $\mathcal{A}_{\mathsf{P}} := \{[\mathfrak{a}] \mid \mathsf{P} \circ \mathfrak{a} = \mathfrak{0}\}$ 

# **RESOLVING INDETERMINACY**

Define the graph of  $\omega_P$ :

 $\Gamma \coloneqq \overline{\{([\mathfrak{a}], [P \circ \mathfrak{a}]) \mid [\mathfrak{a}] \notin \mathcal{A}_P\}} \subseteq \mathbb{P} E \times \mathbb{P} \overline{\Omega}_P$ 

This **projective variety** has two **morphisms** induced by the projections to each cartesian factor:



The morphism  $\gamma_P \colon \Gamma \longrightarrow \mathbb{P}\overline{\Omega}_P$  is projective.

#### **ORBIT MAP**

Set E := End(W) and  $\omega_P \colon \mathbb{P}E \dashrightarrow \mathbb{P}\overline{\Omega}_P$  $[a] \longmapsto [P \circ a]$ 

Resolved by its graph:



## **BLOWING UP**

The morphism  $\beta_P \colon \Gamma \to \mathbb{P}E$  is a so-called blow-up. It is defined by the ideal  $I \subseteq \mathbb{C}[E]$  that is generated by the equations  $P \circ a = 0$ . Note that

 $\mathcal{A}_{\mathsf{P}} = \{[\mathfrak{a}] \mid \mathsf{P} \circ \mathfrak{a} = \mathfrak{0}\} = \mathsf{Z}(\mathsf{I})$ 

but  $I \neq \sqrt{I}$  in general;  $\Gamma$  is not defined  $\mathcal{A}_P$ , but by the ideal I itself. The ideal I is equivalent to a closed **subscheme**  $\hat{\mathcal{A}}_P \subseteq \mathbb{P}E$ , called the **center** of  $\beta_P$ . If  $\hat{\mathcal{A}}_P$  is a variety, then  $\hat{\mathcal{A}}_P = \mathcal{A}_P$ .

#### THEOREM

 $\partial\Omega_{det_3}$  is a union of two orbit closures.

# **PROOF STRATEGY**

- Identify two components, both of which are orbit closures.
- Study the map  $\omega : \mathbb{P} \operatorname{End}(W) \dashrightarrow \mathbb{P}\overline{\Omega}_{P}$ ,  $[a] \mapsto [P \circ a]$ .
- Understand the geometry of  $\hat{\mathcal{A}}_{P}$ .
- Deduce from this the changes introduced by the blow-up  $\beta_P:\Gamma o \mathbb{P}\operatorname{End}(W).$
- A blow-up introduces new hypersurfaces;
- This yields a bound on the number of components of  $\partial \Omega_P$ .

#### **ORBIT CLOSURES IN GCT**

# **BLOW-UP TOY EXAMPLE**

Consider  $\omega \colon \mathbb{P}^2 \dashrightarrow \left\{ \begin{bmatrix} t_1 & t_2 \\ t_3 & t_4 \end{bmatrix} \mid t_1 t_4 = t_2 t_3 \right\}$ , defined by  $\omega([x : y : z]) \coloneqq \begin{bmatrix} x \cdot x & x \cdot y \\ x \cdot z & y \cdot z \end{bmatrix}$ . The map is not defined at  $a_1 \coloneqq [0:0:1]$  and  $a_2 \coloneqq [0:1:0]$ .

 $L_1 \coloneqq \left\{ \left[\begin{smallmatrix} 0 & 0 \\ s & t \end{smallmatrix}\right] \; \middle| \; [s:t] \in \mathbb{P}^1 \right\} \nsubseteq im(\omega)$ 

Let  $p_{s,t}(\epsilon) \coloneqq [\epsilon s : \epsilon t : 1]$ , the line through  $a_1$  in the direction  $[s : t] \in \mathbb{P}^1$ .

 $\forall [s:t] \in \mathbb{P}^1: \quad \omega(p_{s,t}(\epsilon)) = \left[\begin{smallmatrix} \epsilon^2 s^2 & \epsilon^2 s t \\ \epsilon s & \epsilon t \end{smallmatrix}\right] = \left[\begin{smallmatrix} \epsilon s^2 & \epsilon s t \\ s & t \end{smallmatrix}\right] \xrightarrow{\epsilon \to 0} \left[\begin{smallmatrix} 0 & 0 \\ s & t \end{smallmatrix}\right]$ 

Hence,  $L_1 \subseteq \overline{im(\omega)}$ . Equivalently for  $L_2 := L_1^T$  by switching y and z.

- The ideal defining this blow-up is  $I = (x^2, xy, xz, yz)$ .
- However, its saturation is  $(x, yz) = I({\overline{a_1, a_2}})$ .
- because of this<sup>1</sup>, the center of this blow-up is  $\{a_1, a_2\}$ .

This blow-up replaces each  $a_i$  by a copy of  $\mathbb{P}^1 \cong L_i$ .

# **BLOWING UP**

### THE BLOW-UP PROPOSITION

Assume that the blow-up  $\beta_P:\Gamma\to \mathbb{P}E$  can be written as a sequence of blowups



where the center of each  $\beta_i$  is smooth, then  $\partial\Omega_P$  has at most k+1 components.

### **PROOF SKETCH**

- A blowup with smooth center creates only one new hypersurface.
- Since  $\gamma_P$  is surjective, k new hypersurfaces were enough to completely cover  $\partial \Omega_P$ .









**Maximal Linear Subspaces** 



Strategy And Reading Suggestions

# MAXIMAL LINEAR SUBSPACES

Dissecting the indeterminacy of the rational orbit map

# WHAT IS THIS ABOUT

Recall that  $P \in \mathbb{C}[W]$ . To understand the blow-up  $\beta \colon \Gamma \to \mathbb{P} \operatorname{End}(W)$ , we have to understand the annihilator of P:

 $\mathcal{A}_{\mathsf{P}} = \{[\mathfrak{a}] \in \mathbb{P} \operatorname{End}(W) \mid \mathsf{P} \circ \mathfrak{a} = 0\} = \{[\mathfrak{a}] \in \mathbb{P} \operatorname{End}(W) \mid \operatorname{im}(\mathfrak{a}) \subseteq \mathsf{Z}(\mathsf{P})\}$ 

### **DEFINITION: MAXIMAL VANISHING LINEAR SUBSPACES**

- $End(W, L) := \{a \in End(W) \mid im(a) \subseteq L\}$
- $\overline{\mathcal{L}}_{P} := \{ L \subseteq Z(P) \subseteq W \mid L \text{ linear} \}$

•  $\mathcal{L}_P$  the inclusion-wise maximal elements of  $\overline{\mathcal{L}}_P$ 

$$\mathcal{A}_{\mathsf{P}} = \left\{ [\mathfrak{a}] \mid \operatorname{im}(\mathfrak{a}) \in \overline{\mathcal{L}}_{\mathsf{P}} \right\} = \bigcup_{\mathsf{L} \in \mathcal{L}_{\mathsf{P}}} \mathbb{P} \operatorname{End}(W, \mathsf{L})$$

## EXAMPLE: MAXIMAL VANISHING LINEAR SPACES FOR DET<sub>3</sub>

Let  $W = \mathbb{C}^{3 \times 3}$  and  $P = det_3$ . Then,  $\mathcal{L}_P = \{L_1, L_2, L_3, \overline{L_4}\}$  where:

$$L_1 = \begin{pmatrix} * & * & * \\ * & * & * \\ 0 & 0 & 0 \end{pmatrix} \qquad L_2 = \begin{pmatrix} * & * & 0 \\ * & * & 0 \\ * & * & 0 \end{pmatrix} \qquad L_3 = \begin{pmatrix} 0 & 0 & * \\ 0 & 0 & * \\ * & * & * \end{pmatrix} \qquad L_4 = \begin{pmatrix} 0 & a & -b \\ -a & 0 & c \\ b & -c & 0 \end{pmatrix}$$

Hence:

 $\mathcal{A}_{P} = \mathbb{P}\operatorname{End}(W, L_{1}) \cup \mathbb{P}\operatorname{End}(W, L_{2}) \cup \mathbb{P}\operatorname{End}(W, L_{3}) \cup \mathbb{P}\operatorname{End}(W, L_{4})$ 

## **GOOD NEWS**

We will be able to ignore all but  $L_4$  to understand  $det_3. \label{eq:L4}$ 

#### **BAD NEWS**

For  $d \geqslant 5$  , the set  $\mathcal{L}_{det_d}$  is no longer finite and not entirely understood.

Recall the maximal linear subspaces of  $Z(det_3)$ :

$$L_1 = \begin{pmatrix} * & * & * \\ * & * & * \\ 0 & 0 & 0 \end{pmatrix} \qquad L_2 = \begin{pmatrix} * & * & 0 \\ * & * & 0 \\ * & * & 0 \end{pmatrix} \qquad L_3 = \begin{pmatrix} 0 & 0 & * \\ 0 & 0 & * \\ * & * & * \end{pmatrix} \qquad L_4 = \begin{pmatrix} 0 & a & -b \\ -a & 0 & c \\ b & -c & 0 \end{pmatrix}$$

The space  $L_1$  is **unstable**:

$$\begin{pmatrix} \varepsilon & 0 & 0 \\ 0 & \varepsilon & 0 \\ 0 & 0 & \varepsilon^{-2} \end{pmatrix} \cdot \begin{pmatrix} x_1 & x_2 & x_3 \\ x_4 & x_5 & x_6 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} \varepsilon \cdot x_1 & \varepsilon \cdot x_2 & \varepsilon \cdot x_3 \\ \varepsilon \cdot x_4 & \varepsilon \cdot x_5 & \varepsilon \cdot x_6 \\ 0 & 0 & 0 \end{pmatrix} = \varepsilon \cdot \begin{pmatrix} x_1 & x_2 & x_3 \\ x_4 & x_5 & x_6 \\ 0 & 0 & 0 \end{pmatrix} \xrightarrow{\varepsilon \to 0} 0$$

because  $T_{\epsilon} = diag(\epsilon, \epsilon, \epsilon^2)$  satisfies the following conditions:

• 
$$G_P := \{g \in GL(W) \mid P \circ g = P\}.$$

- Since  $det(T_{\epsilon}) = 1$ , we have  $det(T_{\epsilon}X) = det(X)$ .
- Define  $t_{\epsilon}(X)\coloneqq T_{\epsilon}X$  , then  $t_{\epsilon}\in G_{P}.$

Similar maps exist for  $L_2$  and  $L_3$ ; but not for  $L_4$ .

# **DEFINITION: SEMISTABLE POINTS**

$$\begin{split} G_{\mathsf{P}} &\coloneqq \left\{ g \in \operatorname{GL}(W) \; \middle| \; \mathsf{P} \circ g = \mathsf{P} \right\} \\ \mathcal{N}_{\mathsf{P}} &\coloneqq \left\{ a \in \operatorname{End}(W) \; \middle| \; \mathfrak{0} \in \overline{\operatorname{G}_{\mathsf{P}} a} \right\} \end{split}$$

the stabilizer of P

the null cone of  $G_P$  acting on End(W)

We then define  $E^{ss} := End(W) \setminus \mathcal{N}_P$  and  $\mathbb{P}E^{ss} := \mathbb{P}(E^{ss})$ .

#### APPLICATION

We can replace  $\mathbb{P}E$  by  $\mathbb{P}E^{ss}$  for the following reasons:

- There is a quotient  $\pi : \mathbb{P}E^{ss} \to \mathbb{P}E^{ss}/\!\!/G_P$  and the variety  $\mathbb{P}E^{ss}/\!\!/G_P$  is projective.
- The rational map  $\omega_P : \mathbb{P}E^{ss} \dashrightarrow \mathbb{P}\overline{\Omega}_P$  is  $G_P$ -invariant.

#### DEFINITION

$$\begin{split} G_P &\coloneqq \left\{g \in GL(W) \ \middle| \ P \circ g = P\right\} \\ \mathcal{N}_P &\coloneqq \left\{a \in End(W) \ \middle| \ 0 \in \overline{G_P a}\right\} \\ E^{ss} &\coloneqq End(W) \setminus \mathcal{N}_P \\ \mathbb{P}E^{ss} &\coloneqq \mathbb{P}(E^{ss}) \\ \text{or } P &= det_3, \text{ we have:} \end{split}$$

 $\mathcal{A}_{P}^{ss} \coloneqq \mathcal{A}_{P} \cap \mathbb{P}E^{ss} \subseteq \mathbb{P}\operatorname{End}(W, L_{4})$ 

# ILLUSTRATION



In this case,  $\hat{\mathcal{A}}_{P}^{ss} = \mathcal{A}_{P}^{ss}$  is a smooth variety, and the center of the blow-up  $\tilde{\beta}_{P}$ . With the Blow-Up Proposition, this proves that  $\partial\Omega_{det_3}$  has at most two irreducible components.









**Maximal Linear Subspaces** 



Strategy And Reading Suggestions

# **STRATEGY AND READING SUGGESTIONS**

# STRATEGY AND READING SUGGESTIONS

# **READING SUGGESTIONS (MAYBE DATED)**

- Gathmann Lecture Notes 2003
- Hanspeter Kraft Geometrische Methoden in der Invariantentheorie
- Hanspeter Kraft Geometric methods in representation theory
- Patrice Tauvel & Rupert W. T. Yu Lie Algebras and Algebraic Groups
- Harm Derksen and Gregor Kemper Computational Invariant Theory
- My Dissertation
- Don Rosa The Life and Times of Scrooge McDuck