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ORBIT CLOSURES IN GCT

INTRODUCTION AND NOTATION



ORBIT CLOSURES IN GCT POLYNOMIALS AND ORBIT MAPS

THE SCENARIO

W ..= Cn

P ∈ C[W] = C[X1, . . . , Xn]

a ∈ GL(W) ⊆ End(W)

COMPOSITION AS RIGHT ACTION

W
a

//

P ◦a
  

W

P
~~

C

	

ORBIT & BOUNDARY

GL(W) acts on C[W]d
ΩP

..= P ◦GL(W) ⊆ P ◦End(W)

∂ΩP
..= ΩP \ΩP

GOAL

We would like to understand ∂ΩP .

P ◦End(W) 6= ΩP in general.

Something is missing!



ORBIT CLOSURES IN GCT LINEAR APPROXIMATIONS OF POLYNOMIALS

EXAMPLE

Polynomials P,Q ∈ C[X, Y, Z]:

P ..= X · Y2 − Z3

Q ..= Y · (YZ− X2)

aε
..=

1

3

(
9ε3 1 27ε6

0 −ε−3 0

3ε ε−2 0

)
P ◦aε = Q− ε3X3.

Therefore: Q ∈ ΩP \ P ◦End(C3)



ORBIT CLOSURES IN GCT THE BOUNDARY OF AN ORBIT CLOSURE

NOTATION

W ∼= Cn

P ∈ C[W]d ∼= CN where

N =
(
n+d−1

d

)
ΩP

..= P ◦GL(W)

∂ΩP
..= ΩP \ΩP

NOTE

∂ΩP is the interesting part.

EXAMPLE

W = Cd×d

P = detd

End(W) ={
a : Cd×d → Cd×d linear

}
∂ΩP not well understood

THEOREM

∂Ωdet3 is a union of two orbit closures.



1 Introduction And Notation

2 The Rational Orbit Map

3 Maximal Linear Subspaces

4 Strategy And Reading Suggestions



ORBIT CLOSURES IN GCT

THE RATIONAL ORBIT MAP
Transitioning from affine cones to projective space



ORBIT CLOSURES IN GCT THE POWER OF PROJECTIVE SPACE

PROBLEM

Recall P ∈ C[W] and let ω̌P : End(W) → ΩP be defined by a 7→ P ◦a. We usually

viewΩP through this morphism, but it is not surjective.

PROPOSITION

Let γ : Γ → Y be a projective morphism, i.e. Γ is a projective variety. Then,

γ(Z) ⊆ Y is a subvariety for every subvariety Z ⊆ Γ .

MAIN IDEA

If ω̌P was projective, it would also be surjective. Let’s try to make it projective!



ORBIT CLOSURES IN GCT THE POWER OF PROJECTIVE SPACE

MUSINGS

Let P ∈ C[W]d, and a ∈ End(W). For λ ∈ C, we get ω̌P(λa) = λd · ω̌P(a). In other

words, ω̌P maps lines to lines.

ΩP is an affine cone, so PΩP is well-defined.

DEFINITION ATTEMPT

LetωP : PEnd(W) −→ PΩP , [a] 7→ [P ◦a].

PROBLEM

Say P = X1X2 ∈ C[X1, X2] and take a = ( 1 0
0 0 ). Then, P ◦a = 0.

The definitionωP([a]) = [P ◦a] breaks down: The zero polynomial does not

correspond to a point in the projective variety PΩP .



ORBIT CLOSURES IN GCT RATIONAL MAPS

DEFINITION

Let X and Y be varieties, with X irreducible. A rational map from X to Y, denoted

ω : X 99K Y, is a morphism that may be undefined on a closed set.

EXAMPLE

Considerω : P2 → P2, mapping [x : y : z] 7→ [xy : yz : zx]. The map is not defined

at any of the points [0 : 0 : 1], [0 : 1 : 0], and [1 : 0 : 0].

THE RATIONAL ORBIT MAP

ωP : PEnd(W) 99K PΩP , [a] 7→ [P ◦a]. Undefined on the annihilator of P:

AP
..= {[a] ∈ PEnd(W) | P ◦a = 0}



ORBIT CLOSURES IN GCT THE ORBIT MAP

ORBIT MAP

Set E ..= End(W) and

ω̌P : E −→ ΩP

a 7−→ P ◦a

After projectivization:

ωP : PE 99K PΩP

[a] 7−→ [P ◦a]

Has indeterminacy:

AP
..= {[a] | P ◦a = 0}

RESOLVING INDETERMINACY

Define the graph ofωP :

Γ ..= {([a], [P ◦a]) | [a] /∈ AP} ⊆ PE× PΩP

This projective variety has two morphisms induced

by the projections to each cartesian factor:

PE ω
// PΩP

Γ

βP

]]

γP

?? ??

	

The morphism γP : Γ −→ PΩP is projective.



ORBIT CLOSURES IN GCT THE ORBIT MAP

ORBIT MAP

Set E ..= End(W) and

ωP : PE 99K PΩP

[a] 7−→ [P ◦a]

Resolved by its graph:

PE ω
// PΩP

Γ

βP

YY

γP

CC CC

	

BLOWING UP

The morphism βP : Γ → PE is a so-called blow-up. It

is defined by the ideal I ⊆ C[E] that is generated by

the equations P ◦a = 0. Note that

AP = {[a] | P ◦a = 0} = Z(I)

but I 6=
√
I in general; Γ is not defined AP , but by the

ideal I itself. The ideal I is equivalent to a closed sub-
scheme ÂP ⊆ PE, called the center of βP . If ÂP is a

variety, then ÂP = AP .



ORBIT CLOSURES IN GCT QUICK STRATEGY RECAP

THEOREM

∂Ωdet3 is a union of two orbit closures.

PROOF STRATEGY

Identify two components, both of which are orbit closures.

Study the mapω : PEnd(W) 99K PΩP , [a] 7→ [P ◦a].
Understand the geometry of ÂP .

Deduce from this the changes introduced by the blow-up βP : Γ → PEnd(W).

A blow-up introduces new hypersurfaces;

This yields a bound on the number of components of ∂ΩP .



ORBIT CLOSURES IN GCT BLOW-UP TOY EXAMPLE

Considerω : P2 99K
{[

t1 t2
t3 t4

] ∣∣ t1t4 = t2t3
}
, defined byω([x : y : z]) ..=

[
x·x x·y
x·z y·z

]
. The

map is not defined at a1
..= [0 : 0 : 1] and a2

..= [0 : 1 : 0].

L1
..=

{[
0 0
s t

] ∣∣ [s : t] ∈ P1
}
* im(ω)

Let ps,t(ε) ..= [εs : εt : 1], the line through a1 in the direction [s : t] ∈ P1.

∀[s : t] ∈ P1 : ω(ps,t(ε)) =
[
ε2s2 ε2st
εs εt

]
=

[
εs2 εst
s t

] ε→0−−−−−−→
[
0 0
s t

]
Hence, L1 ⊆ im(ω). Equivalently for L2 ..= LT1 by switching y and z.

The ideal defining this blow-up is I = (x2, xy, xz, yz).

However, its saturation is (x, yz) = I({a1, a2}).

because of this1, the center of this blow-up is {a1, a2}.

This blow-up replaces each ai by a copy of P1 ∼= Li.

1 Gathmann Lecture Notes 2003, Lemma 5.5.9

https://www.mathematik.uni-kl.de/~gathmann/de/alggeom.php


ORBIT CLOSURES IN GCT BLOWING UP

THE BLOW-UP PROPOSITION

Assume that the blow-up βP : Γ → PE can be written as a sequence of blowups

Γ = Yk
βk

//

γP

))

Yk−1

βk−1
// · · · β2

// Y1
β1

// PE
ωP

vv

ΩP

where the center of each βi is smooth, then ∂ΩP has at most k+ 1 components.

PROOF SKETCH

A blowup with smooth center creates only one new hypersurface.

Since γP is surjective, k new hypersurfaces were enough to completely cover ∂ΩP .
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ORBIT CLOSURES IN GCT

MAXIMAL LINEAR SUBSPACES
Dissecting the indeterminacy of the rational orbit map



ORBIT CLOSURES IN GCT MAXIMAL VANISHING LINEAR SUBSPACES

WHAT IS THIS ABOUT

Recall that P ∈ C[W]. To understand the blow-up β : Γ → PEnd(W), we have to

understand the annihilator of P:

AP = {[a] ∈ PEnd(W) | P ◦a = 0} = {[a] ∈ PEnd(W) | im(a) ⊆ Z(P)}

DEFINITION: MAXIMAL VANISHING LINEAR SUBSPACES

End(W,L) ..= {a ∈ End(W) | im(a) ⊆ L}

LP
..= {L ⊆ Z(P) ⊆ W | L linear}

LP the inclusion-wise maximal elements of LP

AP =
{
[a]

∣∣ im(a) ∈ LP

}
=

⋃
L∈LP

PEnd(W,L)



ORBIT CLOSURES IN GCT MAXIMAL VANISHING LINEAR SUBSPACES

EXAMPLE: MAXIMAL VANISHING LINEAR SPACES FOR DET3

LetW = C3×3 and P = det3. Then, LP = {L1, L2, L3, L4} where:

L1 =

( ∗ ∗ ∗
∗ ∗ ∗
0 0 0

)
L2 =

( ∗ ∗ 0

∗ ∗ 0

∗ ∗ 0

)
L3 =

(
0 0 ∗
0 0 ∗
∗ ∗ ∗

)
L4 =

(
0 a −b

−a 0 c

b −c 0

)
Hence:

AP = PEnd(W,L1) ∪ PEnd(W,L2) ∪ PEnd(W,L3) ∪ PEnd(W,L4)

GOOD NEWS

We will be able to ignore all but L4 to

understand det3.

BAD NEWS

For d > 5, the set Ldetd is no longer

finite and not entirely understood.



ORBIT CLOSURES IN GCT EXPLOITING SEMISTABILITY

Recall the maximal linear subspaces of Z(det3):

L1 =

( ∗ ∗ ∗
∗ ∗ ∗
0 0 0

)
L2 =

( ∗ ∗ 0

∗ ∗ 0

∗ ∗ 0

)
L3 =

(
0 0 ∗
0 0 ∗
∗ ∗ ∗

)
L4 =

(
0 a −b

−a 0 c

b −c 0

)
The space L1 is unstable:(

ε 0 0

0 ε 0

0 0 ε−2

)
·
(

x1 x2 x3

x4 x5 x6

0 0 0

)
=

(
ε·x1 ε·x2 ε·x3

ε·x4 ε·x5 ε·x6

0 0 0

)
= ε ·

(
x1 x2 x3

x4 x5 x6

0 0 0

)
ε→0−−−−−−→ 0

because Tε = diag(ε, ε, ε2) satisfies the following conditions:

GP
..= {g ∈ GL(W) | P ◦g = P}.

Since det(Tε) = 1, we have det(TεX) = det(X).

Define tε(X) ..= TεX, then tε ∈ GP .

Similar maps exist for L2 and L3; but not for L4.



ORBIT CLOSURES IN GCT EXPLOITING SEMISTABILITY

DEFINITION: SEMISTABLE POINTS

GP
..=

{
g ∈ GL(W)

∣∣ P ◦g = P
}

the stabilizer of P

NP
..=

{
a ∈ End(W)

∣∣ 0 ∈ Gpa
}

the null cone ofGP acting on End(W)

We then define Ess ..= End(W) \ NP and PEss ..= P(Ess).

APPLICATION

We can replace PE by PEss for the following reasons:

There is a quotient π : PEss → PEss//GP and the variety PEss//GP is projective.

The rational mapωP : PEss 99K PΩP isGP-invariant.



ORBIT CLOSURES IN GCT INDETERMINACIES OF RATIONAL MAPS

DEFINITION

GP
..=

{
g ∈ GL(W)

∣∣ P ◦g = P
}

NP
..=

{
a ∈ End(W)

∣∣ 0 ∈ Gpa
}

Ess ..= End(W) \ NP

PEss ..= P(Ess)

For P = det3, we have:

Ass
P

..= AP ∩ PEss ⊆ PEnd(W,L4)

ILLUSTRATION

PE ωP
// PΩP

PEss ω̄P
// PΩP

Γ

βP

^^^^

γP

@@

Γ ss

β̄P

____

γ̄P

??

In this case, Âss
P = Ass

P is a smooth variety, and the center of the blow-up β̄P . With the

Blow-Up Proposition, this proves that ∂Ωdet3 has at most two irreducible components.
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ORBIT CLOSURES IN GCT

STRATEGY AND READING SUGGESTIONS



ORBIT CLOSURES IN GCT STRATEGY AND READING SUGGESTIONS

READING SUGGESTIONS (MAYBE DATED)

Gathmann Lecture Notes 2003

Hanspeter Kraft – Geometrische Methoden in der Invariantentheorie

Hanspeter Kraft – Geometric methods in representation theory

Patrice Tauvel & Rupert W. T. Yu – Lie Algebras and Algebraic Groups

Harm Derksen and Gregor Kemper – Computational Invariant Theory

My Dissertation

Don Rosa - The Life and Times of Scrooge McDuck

https://www.mathematik.uni-kl.de/~gathmann/de/alggeom.php
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