Demystifying the border of depth-3 circuits

Accepted to the $62^{\text {nd }}$ IEEE Symposium on Foundations of Computer Science (FOCS 2021).
Pranjal Dutta (CMI \& IIT Kanpur) \& Prateek Dwivedi (IIT Kanpur) \& Nitin Saxena (IIT Kanpur).

$$
24^{\text {th }} \text { January, } 2022
$$

School and Conference on Geometric Complexity Theory Jan 2022, Chennai (virtual)

Table of Contents

1. Algebraic Complexity Theory
2. Border Complexity and GCT
3. Border depth- 3 circuits
4. Derandomizing border depth-3 circuits
5. Conclusion

Algebraic Complexity Theory

Basic goal

$\square P$ versus NP. Proving $P \neq N P$ is one of the most fundamental open problems at the intersection of theoretical computer science and mathematics.

Basic goal

$\square P$ versus NP. Proving $P \neq N P$ is one of the most fundamental open problems at the intersection of theoretical computer science and mathematics.

- Very few techniques are known that could potentially break the 1994 Razborov-Rudich 'natural proofs barrier'.

Basic goal

$\square P$ versus NP. Proving $P \neq N P$ is one of the most fundamental open problems at the intersection of theoretical computer science and mathematics.

- Very few techniques are known that could potentially break the 1994 Razborov-Rudich 'natural proofs barrier'.

In 2001 Mulmuley and Sohoni published Geometric Complexity Theory 1 (GCT1) in which they describe a method that could potentially break the barrier.

Basic goal

$\square P$ versus NP. Proving $P \neq N P$ is one of the most fundamental open problems at the intersection of theoretical computer science and mathematics.

- Very few techniques are known that could potentially break the 1994 Razborov-Rudich 'natural proofs barrier'.

In 2001 Mulmuley and Sohoni published Geometric Complexity Theory 1 (GCT1) in which they describe a method that could potentially break the barrier.
$>$ It is built on Valiant's algebraic complexity theory framework (1979) to prove the algebraic $P \neq N P$, namely $V P \neq V N P$.

Basic goal

$\square P$ versus NP. Proving $P \neq N P$ is one of the most fundamental open problems at the intersection of theoretical computer science and mathematics.

- Very few techniques are known that could potentially break the 1994 Razborov-Rudich 'natural proofs barrier'.

In 2001 Mulmuley and Sohoni published Geometric Complexity Theory 1 (GCT1) in which they describe a method that could potentially break the barrier.
$>$ It is built on Valiant's algebraic complexity theory framework (1979) to prove the algebraic $P \neq N P$, namely $V P \neq V N P$.
$>$ It defines Border Complexity, which was independently defined by Bürgisser (2001).

Basic goal

$\square P$ versus NP. Proving $P \neq N P$ is one of the most fundamental open problems at the intersection of theoretical computer science and mathematics.

- Very few techniques are known that could potentially break the 1994 Razborov-Rudich 'natural proofs barrier'.

In 2001 Mulmuley and Sohoni published Geometric Complexity Theory 1 (GCT1) in which they describe a method that could potentially break the barrier.
$>$ It is built on Valiant's algebraic complexity theory framework (1979) to prove the algebraic $P \neq N P$, namely $V P \neq V N P$.
$>$ It defines Border Complexity, which was independently defined by Bürgisser (2001). We will consider 'algebraic' notion of border complexity.

Basic goal

$\square P$ versus NP. Proving $P \neq N P$ is one of the most fundamental open problems at the intersection of theoretical computer science and mathematics.

- Very few techniques are known that could potentially break the 1994 Razborov-Rudich 'natural proofs barrier'.

In 2001 Mulmuley and Sohoni published Geometric Complexity Theory 1 (GCT1) in which they describe a method that could potentially break the barrier.
$>$ It is built on Valiant's algebraic complexity theory framework (1979) to prove the algebraic $P \neq N P$, namely $V P \neq V N P$.
$>$ It defines Border Complexity, which was independently defined by Bürgisser (2001). We will consider 'algebraic' notion of border complexity.
$>$ It proposes to prove border complexity lower bounds using representation theory, which is developed further in [GCT2, Mulmuley-Sohoni'08].

Basic goal

$\square P$ versus NP. Proving $P \neq N P$ is one of the most fundamental open problems at the intersection of theoretical computer science and mathematics.

- Very few techniques are known that could potentially break the 1994 Razborov-Rudich 'natural proofs barrier'.

In 2001 Mulmuley and Sohoni published Geometric Complexity Theory 1 (GCT1) in which they describe a method that could potentially break the barrier.
$>$ It is built on Valiant's algebraic complexity theory framework (1979) to prove the algebraic $P \neq N P$, namely VP $\neq \mathrm{VNP}$.
$>$ It defines Border Complexity, which was independently defined by Bürgisser (2001). We will consider 'algebraic' notion of border complexity.
$>$ It proposes to prove border complexity lower bounds using representation theory, which is developed further in [GCT2, Mulmuley-Sohoni'08].

- [P $\stackrel{?}{=}$ NP, Aaronson 2011] calls GCT "The String Theory of Computer Science".

Algebraic circuits

Computationally 'easy' polynomials

Computationally 'easy' polynomials

$\mathrm{VP}=$ "easy to compute" [Valiant'79]

The class VP is defined as the set of all sequences of polynomials $\left(f_{n}\left(x_{1}, \ldots, x_{n}\right)\right)_{n \geq 1}$ such that $\operatorname{size}\left(f_{n}\right), \operatorname{deg}\left(f_{n}\right)$ are both bounded by n^{c} for some constant c.

Computationally 'easy' polynomials

$\mathrm{VP}=$ "easy to compute" [Valiant'79]

The class VP is defined as the set of all sequences of polynomials $\left(f_{n}\left(x_{1}, \ldots, x_{n}\right)\right)_{n \geq 1}$ such that $\operatorname{size}\left(f_{n}\right), \operatorname{deg}\left(f_{n}\right)$ are both bounded by n^{c} for some constant c.

Examples:
$>f_{n}:=x_{1} \cdots x_{n}$.

Computationally 'easy' polynomials

$\mathrm{VP}=$ "easy to compute" [Valiant'79]

The class VP is defined as the set of all sequences of polynomials $\left(f_{n}\left(x_{1}, \ldots, x_{n}\right)\right)_{n \geq 1}$ such that $\operatorname{size}\left(f_{n}\right), \operatorname{deg}\left(f_{n}\right)$ are both bounded by n^{c} for some constant c.

Examples:
$>f_{n}:=x_{1} \cdots x_{n}$.
$>f_{n}:=x_{1}^{n}+\ldots+x_{n}^{n}$.

Computationally 'easy' polynomials

VP = "easy to compute" [Valiant'79]

The class VP is defined as the set of all sequences of polynomials $\left(f_{n}\left(x_{1}, \ldots, x_{n}\right)\right)_{n \geq 1}$ such that $\operatorname{size}\left(f_{n}\right), \operatorname{deg}\left(f_{n}\right)$ are both bounded by n^{c} for some constant c.

Examples:
$>f_{n}:=x_{1} \cdots x_{n}$.
$>f_{n}:=x_{1}^{n}+\ldots+x_{n}^{n}$.
$>f_{n}:=\sum_{S \subseteq[n]} \prod_{j \in S} x_{j}$

Computationally 'easy' polynomials

$\mathrm{VP}=$ "easy to compute" [Valiant'79]

The class VP is defined as the set of all sequences of polynomials $\left(f_{n}\left(x_{1}, \ldots, x_{n}\right)\right)_{n \geq 1}$ such that $\operatorname{size}\left(f_{n}\right), \operatorname{deg}\left(f_{n}\right)$ are both bounded by n^{c} for some constant c.

Examples:
$>f_{n}:=x_{1} \cdots x_{n}$.
$>f_{n}:=x_{1}^{n}+\ldots+x_{n}^{n}$.
$>f_{n}:=\sum_{S \subseteq[n]} \prod_{j \in S} x_{j}=\prod_{i=1}^{n}\left(1+x_{i}\right)$.

The determinant polynomial

The determinant polynomial

\square Let $X_{n}=\left[x_{i, j}\right]_{1 \leq i, j \leq n}$ be a $n \times n$ matrix of distinct variables $x_{i, j}$. Let $S_{n}:=\{\pi \mid \pi:\{1, \ldots, n\} \longrightarrow\{1, \ldots, n\}$ such that π is bijective $\}$. Define

$$
f_{n}:=\operatorname{det}\left(X_{n}\right)=\sum_{\pi \in S_{n}} \operatorname{sgn}(\pi) \prod_{i=1}^{n} x_{i, \pi(i)}
$$

The determinant polynomial

\square Let $X_{n}=\left[x_{i, j}\right]_{1 \leq i, j \leq n}$ be a $n \times n$ matrix of distinct variables $x_{i, j}$. Let $S_{n}:=\{\pi \mid \pi:\{1, \ldots, n\} \longrightarrow\{1, \ldots, n\}$ such that π is bijective $\}$. Define

$$
f_{n}:=\operatorname{det}\left(X_{n}\right)=\sum_{\pi \in S_{n}} \operatorname{sgn}(\pi) \prod_{i=1}^{n} x_{i, \pi(i)}
$$

\square det is universal, i.e. any polynomial $f(\boldsymbol{x})$ can be computed as a determinant of a square matrix whose entries are polynomials of degree ≤ 1.

The determinant polynomial

\square Let $X_{n}=\left[x_{i, j}\right]_{1 \leq i, j \leq n}$ be a $n \times n$ matrix of distinct variables $x_{i, j}$. Let $S_{n}:=\{\pi \mid \pi:\{1, \ldots, n\} \longrightarrow\{1, \ldots, n\}$ such that π is bijective $\}$. Define

$$
f_{n}:=\operatorname{det}\left(X_{n}\right)=\sum_{\pi \in S_{n}} \operatorname{sgn}(\pi) \prod_{i=1}^{n} x_{i, \pi(i)}
$$

\square det is universal, i.e. any polynomial $f(\boldsymbol{x})$ can be computed as a determinant of a square matrix whose entries are polynomials of degree ≤ 1.

The minimum dimension of the matrix to compute f, is called the determinantal complexity $\mathrm{dc}(f)$.

The determinant polynomial

\square Let $X_{n}=\left[x_{i, j}\right]_{1 \leq i, j \leq n}$ be a $n \times n$ matrix of distinct variables $x_{i, j}$. Let $S_{n}:=\{\pi \mid \pi:\{1, \ldots, n\} \longrightarrow\{1, \ldots, n\}$ such that π is bijective $\}$. Define

$$
f_{n}:=\operatorname{det}\left(X_{n}\right)=\sum_{\pi \in S_{n}} \operatorname{sgn}(\pi) \prod_{i=1}^{n} x_{i, \pi(i)}
$$

det is universal, i.e. any polynomial $f(\boldsymbol{x})$ can be computed as a determinant of a square matrix whose entries are polynomials of degree ≤ 1.

The minimum dimension of the matrix to compute f, is called the determinantal complexity $\mathrm{dc}(f)$.
E.g. $\operatorname{dc}\left(x_{1} \cdots x_{n}\right)=n$, since

$$
x_{1} \cdots x_{n}=\operatorname{det}\left(\begin{array}{cccc}
x_{1} & 0 & \ldots & 0 \\
0 & x_{2} & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots \\
0 & 0 & \ldots & x_{n}
\end{array}\right)
$$

Another 'easy' class VBP

V VBP: The class VBP is defined as the set of all sequences of polynomials $\left(f_{n}\right)_{n}$ with polynomially bounded $\mathrm{dc}\left(f_{n}\right)$.

Another 'easy' class VBP

VBP: The class VBP is defined as the set of all sequences of polynomials $\left(f_{n}\right)_{n}$ with polynomially bounded $\mathrm{dc}\left(f_{n}\right)$.
$\square \mathrm{VBP} \subseteq \mathrm{VP}$. It is open whether VBP $\stackrel{?}{=} \mathrm{VP}$.

Another 'easy' class VBP

V VBP: The class VBP is defined as the set of all sequences of polynomials $\left(f_{n}\right)_{n}$ with polynomially bounded $\mathrm{dc}\left(f_{n}\right)$.
$\square \mathrm{VBP} \subseteq \mathrm{VP}$. It is open whether VBP $\stackrel{?}{=} \mathrm{VP}$.
Often we will say f has a small ABP. This just means $\operatorname{dc}(f)$ is small.

Another 'easy' class VBP

V VBP: The class VBP is defined as the set of all sequences of polynomials $\left(f_{n}\right)_{n}$ with polynomially bounded $\mathrm{dc}\left(f_{n}\right)$.
$\square \mathrm{VBP} \subseteq \mathrm{VP}$. It is open whether VBP $\stackrel{?}{=} \mathrm{VP}$.
Often we will say f has a small ABP. This just means $\operatorname{dc}(f)$ is small.
Connections: Linear algebra, Volume, counting planar matchings.

‘Hard' polynomials?

\square Are there hard polynomial families $\left(f_{n}\right)_{n}$ such that it cannot be computed by an n^{C}-size circuit, for every constant c ? i.e. $\operatorname{size}\left(f_{n}\right)=n^{\omega(1)}$?

‘Hard' polynomials?

\square Are there hard polynomial families $\left(f_{n}\right)_{n}$ such that it cannot be computed by an n^{C}-size circuit, for every constant c ? i.e. $\operatorname{size}\left(f_{n}\right)=n^{\omega(1)}$?
\square A random polynomial with 0-1 coefficient is hard [Hrubeš-Yehudayoff ToC'11].

‘Hard' polynomials?

\square Are there hard polynomial families $\left(f_{n}\right)_{n}$ such that it cannot be computed by an n^{C}-size circuit, for every constant c ? i.e. $\operatorname{size}\left(f_{n}\right)=n^{\omega(1)}$?
\square A random polynomial with 0-1 coefficient is hard [Hrubeš-Yehudayoff ToC'11]. Challenge: Find an explicit one!

'Hard' polynomials?

\square Are there hard polynomial families $\left(f_{n}\right)_{n}$ such that it cannot be computed by an n^{c}-size circuit, for every constant c ? i.e. size $\left(f_{n}\right)=n^{\omega(1)}$?
\square A random polynomial with 0-1 coefficient is hard [Hrubeš-Yehudayoff ToC'11]. Challenge: Find an explicit one!

- Candidate hard polynomial:

$$
\operatorname{perm}\left(X_{n}\right)=\sum_{\pi \in S_{n}} \prod_{i=1}^{n} x_{i, \pi(i)}
$$

'Hard' polynomials?

\square Are there hard polynomial families $\left(f_{n}\right)_{n}$ such that it cannot be computed by an n^{c}-size circuit, for every constant c ? i.e. size $\left(f_{n}\right)=n^{\omega(1)}$?
\square A random polynomial with 0-1 coefficient is hard [Hrubeš-Yehudayoff ToC'11]. Challenge: Find an explicit one!

- Candidate hard polynomial:

$$
\operatorname{perm}\left(X_{n}\right)=\sum_{\pi \in S_{n}} \prod_{i=1}^{n} x_{i, \pi(i)}
$$

\square perm is universal, i.e. any polynomial $f(\boldsymbol{x})$ can be computed as a permanent of a square matrix whose entries are polynomials of degree ≤ 1.

‘Hard' polynomials?

\square Are there hard polynomial families $\left(f_{n}\right)_{n}$ such that it cannot be computed by an n^{c}-size circuit, for every constant c ? i.e. size $\left(f_{n}\right)=n^{\omega(1)}$?

A A random polynomial with 0-1 coefficient is hard [Hrubeš-Yehudayoff ToC' 11]. Challenge: Find an explicit one!

- Candidate hard polynomial:

$$
\operatorname{perm}\left(X_{n}\right)=\sum_{\pi \in S_{n}} \prod_{i=1}^{n} x_{i, \pi(i)}
$$

\square perm is universal, i.e. any polynomial $f(\boldsymbol{x})$ can be computed as a permanent of a square matrix whose entries are polynomials of degree ≤ 1.

- The minimum dimension of the matrix to compute f, is called the permanental complexity $\mathrm{pc}(f)$.

Valiant's Conjecture

VNP = "hard to compute?" [Valiant 1979]

The class VNP is defined as the set of all sequences of polynomials $\left(f_{n}\left(x_{1}, \ldots, x_{n}\right)\right)_{n \geq 1}$ such that $\mathrm{pc}\left(f_{n}\right)$ is bounded by n^{c} for some constant c.

Valiant's Conjecture

VNP = "hard to compute?" [Valiant 1979]

The class VNP is defined as the set of all sequences of polynomials $\left(f_{n}\left(x_{1}, \ldots, x_{n}\right)\right)_{n \geq 1}$ such that $\mathrm{pc}\left(f_{n}\right)$ is bounded by n^{c} for some constant c.

Connections: Enumeration, counting matchings, Bosons etc.

Valiant's Conjecture

VNP = "hard to compute?" [Valiant 1979]

The class VNP is defined as the set of all sequences of polynomials $\left(f_{n}\left(x_{1}, \ldots, x_{n}\right)\right)_{n \geq 1}$ such that $\mathrm{pc}\left(f_{n}\right)$ is bounded by n^{c} for some constant c.

Connections: Enumeration, counting matchings, Bosons etc.
$\square \mathrm{VBP} \subseteq \mathrm{VP} \subseteq \mathrm{VNP}$.

Valiant's Conjecture

VNP = "hard to compute?" [Valiant 1979]

The class VNP is defined as the set of all sequences of polynomials $\left(f_{n}\left(x_{1}, \ldots, x_{n}\right)\right)_{n \geq 1}$ such that $\mathrm{pc}\left(f_{n}\right)$ is bounded by n^{c} for some constant c.

Connections: Enumeration, counting matchings, Bosons etc.

- $\mathrm{VBP} \subseteq \mathrm{VP} \subseteq \mathrm{VNP}$.

Valiant's Conjecture [Valiant 1979]

VBP $\neq \mathrm{VNP} \& \mathrm{VP} \neq \mathrm{VNP}$. Equivalently, dc $\left(\right.$ perm $\left._{n}\right)$ and size $\left(\right.$ perm $\left._{n}\right)$ are both $n^{\omega(1)}$.
[Also, VBP $\neq \mathrm{VP}$. A candidate?]

Connections to Boolean circuit complexity

Connections to Boolean circuit complexity

Separating algebraic classes are "easier" than separating classes in Boolean complexity [Bürgisser 1998]:

Connections to Boolean circuit complexity

Separating algebraic classes are "easier" than separating classes in Boolean complexity [Bürgisser 1998]:
$>P /$ poly $\neq N P /$ poly $\Longrightarrow \mathrm{VBP} \neq \mathrm{VNP}$ and $\mathrm{VP} \neq \mathrm{VNP}$ (over finite fields).

Connections to Boolean circuit complexity

Separating algebraic classes are "easier" than separating classes in Boolean complexity [Bürgisser 1998]:
$>P /$ poly $\neq N P /$ poly $\Longrightarrow \mathrm{VBP} \neq \mathrm{VNP}$ and $\mathrm{VP} \neq \mathrm{VNP}$ (over finite fields).
> Assuming GRH (Generalized Riemann hypothesis), the results hold over \mathbb{C} as well.

Summary

Summary

- A recent breakthrough. [Limaye-Srinivasan-Tavenas FOCS 2021] showed the first superpolynomial lower bound for general constant-depth algebraic circuits!

Summary

- A recent breakthrough. [Limaye-Srinivasan-Tavenas FOCS 2021] showed the first superpolynomial lower bound for general constant-depth algebraic circuits!

Can there be 'algebraic natural proofs' to prove VP \neq VNP? Some answers: [Chatterjee-Kumar-Ramya-Saptharishi-Tengse 2020, Kumar-Ramya-Saptharishi-Tengse 2020].

Border Complexity and GCT

Waring rank

Waring rank

Can 'approximations' also help in algebraic computational models?

Waring rank

Can 'approximations' also help in algebraic computational models?
\square An important measure is Waring rank, denoted $\mathrm{WR}(\cdot)$.

Waring rank

Can 'approximations' also help in algebraic computational models?
\square An important measure is Waring rank, denoted WR(\cdot).

Waring Rank

The smallest r such that a homogeneous degree d polynomial h can be written as a sum of d-th power of linear forms ℓ_{i}, i.e. $h=\sum_{i=1}^{r} \ell_{i}^{d}$.

Waring rank

Can 'approximations' also help in algebraic computational models?
\square An important measure is Waring rank, denoted WR(•).

Waring Rank

The smallest r such that a homogeneous degree d polynomial h can be written as a sum of d-th power of linear forms ℓ_{i}, i.e. $h=\sum_{i=1}^{r} \ell_{i}^{d}$.

Recall: $h=\sum_{e_{1}, \ldots, e_{n}} a_{e_{1}, \ldots, e_{n}} x_{1}^{e_{1}} \cdots x_{n}^{e_{n}}$, is called homogeneous degree d polynomial if $\sum e_{i}=d$, for every tupple $\left(e_{1}, \ldots, e_{n}\right)$ such that $a_{e_{1}, \ldots, e_{n}} \neq 0$.

Waring rank

Can 'approximations' also help in algebraic computational models?
\square An important measure is Waring rank, denoted WR(•).

Waring Rank

The smallest r such that a homogeneous degree d polynomial h can be written as a sum of d-th power of linear forms ℓ_{i}, i.e. $h=\sum_{i=1}^{r} \ell_{i}^{d}$.
\square Recall: $h=\sum_{e_{1}, . ., e_{n}} a_{e_{1}, \ldots, e_{n}} x_{1}^{e_{1}} \cdots x_{n}^{e_{n}}$, is called homogeneous degree d polynomial if $\sum e_{i}=d$, for every tupple $\left(e_{1}, \ldots, e_{n}\right)$ such that $a_{e_{1}, \ldots, e_{n}} \neq 0$.

Recall: A linear form ℓ is of the form $a_{1} x_{1}+\ldots+a_{n} x_{n}$.

Waring rank

\square Can 'approximations' also help in algebraic computational models?
\square An important measure is Waring rank, denoted WR(•).

Waring Rank

The smallest r such that a homogeneous degree d polynomial h can be written as a sum of d-th power of linear forms ℓ_{i}, i.e. $h=\sum_{i=1}^{r} \ell_{i}^{d}$.

Recall: $h=\sum_{e_{1}, \ldots, e_{n}} a_{e_{1}, \ldots, e_{n}} x_{1}^{e_{1}} \cdots x_{n}^{e_{n}}$, is called homogeneous degree d polynomial if $\sum e_{i}=d$, for every tupple $\left(e_{1}, \ldots, e_{n}\right)$ such that $a_{e_{1}, \ldots, e_{n}} \neq 0$.

Recall: A linear form ℓ is of the form $a_{1} x_{1}+\ldots+a_{n} x_{n}$.
For any homogeneous polynomial $h, \mathrm{WR}(h)$ is finite.

Waring rank

Can 'approximations' also help in algebraic computational models?
\square An important measure is Waring rank, denoted WR(•).

Waring Rank

The smallest r such that a homogeneous degree d polynomial h can be written as a sum of d-th power of linear forms ℓ_{i}, i.e. $h=\sum_{i=1}^{r} \ell_{i}^{d}$.

Recall: $h=\sum_{e_{1}, \ldots, e_{n}} a_{e_{1}, \ldots, e_{n}} x_{1}^{e_{1}} \cdots x_{n}^{e_{n}}$, is called homogeneous degree d polynomial if $\sum e_{i}=d$, for every tupple $\left(e_{1}, \ldots, e_{n}\right)$ such that $a_{e_{1}, \ldots, e_{n}} \neq 0$.

Recall: A linear form ℓ is of the form $a_{1} x_{1}+\ldots+a_{n} x_{n}$.
For any homogeneous polynomial $h, \mathrm{WR}(h)$ is finite.

- WR $(h) \leq r$ is denoted as $h \in \Sigma^{[r]} \wedge \Sigma$ (homogeneous depth-3 diagonal circuits).

Approximation helps!

- Example: $\operatorname{WR}\left(x^{2} y\right) \leq 3$, because

Approximation helps!

Example: $\operatorname{WR}\left(x^{2} y\right) \leq 3$, because

$$
x^{2} y=\frac{1}{6} \cdot(x+y)^{3}-\frac{1}{6} \cdot(x-y)^{3}-\frac{1}{3} \cdot y^{3} .
$$

Approximation helps!

Example: $\mathrm{WR}\left(x^{2} y\right) \leq 3$, because

$$
x^{2} y=\frac{1}{6} \cdot(x+y)^{3}-\frac{1}{6} \cdot(x-y)^{3}-\frac{1}{3} \cdot y^{3} .
$$

- Prove: $\operatorname{WR}\left(x^{2} y\right)=3$.

Approximation helps!

Example: $\mathrm{WR}\left(x^{2} y\right) \leq 3$, because

$$
x^{2} y=\frac{1}{6} \cdot(x+y)^{3}-\frac{1}{6} \cdot(x-y)^{3}-\frac{1}{3} \cdot y^{3}
$$

- Prove: $\operatorname{WR}\left(x^{2} y\right)=3$.

Let $h_{\epsilon}:=\frac{1}{3 \epsilon}\left((x+\epsilon y)^{3}-x^{3}\right)$

Approximation helps!

Example: $\mathrm{WR}\left(x^{2} y\right) \leq 3$, because

$$
x^{2} y=\frac{1}{6} \cdot(x+y)^{3}-\frac{1}{6} \cdot(x-y)^{3}-\frac{1}{3} \cdot y^{3}
$$

- Prove: $\operatorname{WR}\left(x^{2} y\right)=3$.
- Let $h_{\epsilon}:=\frac{1}{3 \epsilon}\left((x+\epsilon y)^{3}-x^{3}\right)$

$$
=x^{2} y+\epsilon x y^{2}+\frac{\epsilon^{2}}{3} y^{3} \xrightarrow{\epsilon \rightarrow 0} x^{2} y=: h \quad \text { (coefficient-wise). }
$$

Approximation helps!

- Example: $\operatorname{WR}\left(x^{2} y\right) \leq 3$, because

$$
x^{2} y=\frac{1}{6} \cdot(x+y)^{3}-\frac{1}{6} \cdot(x-y)^{3}-\frac{1}{3} \cdot y^{3} .
$$

- Prove: $\operatorname{WR}\left(x^{2} y\right)=3$.
- Let $h_{\epsilon}:=\frac{1}{3 \epsilon}\left((x+\epsilon y)^{3}-x^{3}\right)$

$$
=x^{2} y+\epsilon x y^{2}+\frac{\epsilon^{2}}{3} y^{3} \xrightarrow{\epsilon \rightarrow 0} x^{2} y=: h \quad \text { (coefficient-wise). }
$$

. Note: $\operatorname{WR}\left(h_{\epsilon}\right) \leq 2$, for any fixed non-zero ϵ. But $\operatorname{WR}(h)=3$!

Approximation helps!

- Example: $\operatorname{WR}\left(x^{2} y\right) \leq 3$, because

$$
x^{2} y=\frac{1}{6} \cdot(x+y)^{3}-\frac{1}{6} \cdot(x-y)^{3}-\frac{1}{3} \cdot y^{3} .
$$

- Prove: $\operatorname{WR}\left(x^{2} y\right)=3$.
- Let $h_{\epsilon}:=\frac{1}{3 \epsilon}\left((x+\epsilon y)^{3}-x^{3}\right)$

$$
=x^{2} y+\epsilon x y^{2}+\frac{\epsilon^{2}}{3} y^{3} \xrightarrow{\epsilon \rightarrow 0} x^{2} y=: h \quad \text { (coefficient-wise). }
$$

- Note: $\operatorname{WR}\left(h_{\epsilon}\right) \leq 2$, for any fixed non-zero ϵ. But $\mathrm{WR}(h)=3$!

So, Border Waring rank

So, Border Waring rank

Border Waring rank

The border Waring rank $\overline{\mathrm{WR}}(h)$ is defined as the smallest n such that h can be approximated arbitrarily closely by polynomials of Waring rank $\leq n$.

So, Border Waring rank

Border Waring rank

The border Waring rank $\overline{\mathrm{WR}}(h)$ is defined as the smallest n such that h can be approximated arbitrarily closely by polynomials of Waring rank $\leq n$.

- $\overline{\mathrm{WR}}\left(x^{2} y\right)=2$ but $\mathrm{WR}\left(x^{2} y\right)=3$.

So, Border Waring rank

Border Waring rank

The border Waring rank $\overline{\mathrm{WR}}(h)$ is defined as the smallest n such that h can be approximated arbitrarily closely by polynomials of Waring rank $\leq n$.

- $\overline{\mathrm{WR}}\left(x^{2} y\right)=2$ but $\mathrm{WR}\left(x^{2} y\right)=3$.
\square The subtlety is gone: $X_{n}:=\{h \mid \mathrm{WR}(h) \leq n\}$, is now a closed set.

So, Border Waring rank

Border Waring rank

The border Waring rank $\overline{\mathrm{WR}}(h)$ is defined as the smallest n such that h can be approximated arbitrarily closely by polynomials of Waring rank $\leq n$.
$\square \overline{\mathrm{WR}}\left(x^{2} y\right)=2$ but $\mathrm{WR}\left(x^{2} y\right)=3$.
\square The subtlety is gone: $X_{n}:=\{h \mid \overline{\mathrm{WR}}(h) \leq n\}$, is now a closed set.
On to proving lower bounds: To show $\overline{\mathrm{WR}}(p)>n$, for some p, it suffices to show that $p \notin X_{n}$, i.e. find a continuous function f that vanishes on X_{n} but not on p.

Border complexity

Replace Waring rank by any sensible measure Γ. It can be size, dc, pc and so on.

Border complexity

\square Replace Waring rank by any sensible measure Γ. It can be size, dc, $p c$ and so on.

- For any Γ, we can define the border complexity measure $\bar{\Gamma}$ via: $\bar{\Gamma}(h)$ is the smallest n such that $h(\boldsymbol{x})$ can be approximated arbitrarily closely by polynomials $h_{\epsilon}(\boldsymbol{x})$ with $\Gamma\left(h_{\epsilon}\right) \leq n$.

Border complexity

\square Replace Waring rank by any sensible measure Γ. It can be size, dc, $p c$ and so on.

- For any Γ, we can define the border complexity measure $\bar{\Gamma}$ via:
$\bar{\Gamma}(h)$ is the smallest n such that $h(\boldsymbol{x})$ can be approximated arbitrarily closely by polynomials $h_{\epsilon}(\boldsymbol{x})$ with $\Gamma\left(h_{\epsilon}\right) \leq n$. In other words,

$$
\lim _{\epsilon \rightarrow 0} h_{\epsilon}=h \text { (coefficient-wise) }
$$

Border complexity

\square Replace Waring rank by any sensible measure Γ. It can be size, dc, $p c$ and so on.

- For any Γ, we can define the border complexity measure $\bar{\Gamma}$ via:
$\bar{\Gamma}(h)$ is the smallest n such that $h(\boldsymbol{x})$ can be approximated arbitrarily closely by polynomials $h_{\epsilon}(\boldsymbol{x})$ with $\Gamma\left(h_{\epsilon}\right) \leq n$. In other words,

$$
\lim _{\epsilon \rightarrow 0} h_{\epsilon}=h \text { (coefficient-wise) }
$$

Important border rank: border tensor rank, related to border Waring rank!

Border complexity

\square Replace Waring rank by any sensible measure Γ. It can be size, dc, $p c$ and so on.

- For any Γ, we can define the border complexity measure $\bar{\Gamma}$ via:
$\bar{\Gamma}(h)$ is the smallest n such that $h(\boldsymbol{x})$ can be approximated arbitrarily closely by polynomials $h_{\epsilon}(\boldsymbol{x})$ with $\Gamma\left(h_{\epsilon}\right) \leq n$. In other words,

$$
\lim _{\epsilon \rightarrow 0} h_{\epsilon}=h \text { (coefficient-wise) }
$$

Important border rank: border tensor rank, related to border Waring rank! Border tensor rank is directly related to the matrix multiplication exponent ω [Bini 1980, Coppersmith-Winograd 1990].

Approximative circuits

- Coefficients in the earlier definition can be arbitrary depending on the parameter ϵ. Can it be 'nicer'?

Approximative circuits

Coefficients in the earlier definition can be arbitrary depending on the parameter ϵ. Can it be 'nicer'?

- Yes! Via 'approximative circuits'.

Approximative circuits (continued)

Algebraic approximation

Algebraic approximation

\square Suppose, we assume the following:
$>g(\boldsymbol{x}, \epsilon) \in \mathbb{F}\left[x_{1}, \ldots, x_{n}, \epsilon\right]$, i.e. it is a polynomial of the form

$$
g(\boldsymbol{x}, \epsilon)=\sum_{i=0}^{M} g_{i}\left(x_{1}, \ldots, x_{n}\right) \cdot \epsilon^{i}
$$

Algebraic approximation

\square Suppose, we assume the following:
$>g(\boldsymbol{x}, \epsilon) \in \mathbb{F}\left[x_{1}, \ldots, x_{n}, \epsilon\right]$, i.e. it is a polynomial of the form

$$
g(\boldsymbol{x}, \epsilon)=\sum_{i=0}^{M} g_{i}\left(x_{1}, \ldots, x_{n}\right) \cdot \epsilon^{i}
$$

$>$ Can we say anything about the complexity of g_{0} ?

Algebraic approximation

\square Suppose, we assume the following:
$>g(\boldsymbol{x}, \epsilon) \in \mathbb{F}\left[x_{1}, \ldots, x_{n}, \epsilon\right]$, i.e. it is a polynomial of the form

$$
g(\boldsymbol{x}, \epsilon)=\sum_{i=0}^{M} g_{i}\left(x_{1}, \ldots, x_{n}\right) \cdot \epsilon^{i}
$$

$>$ Can we say anything about the complexity of g_{0} ?

- Obvious attempt:
$>$ Since, $g(\boldsymbol{x}, 0)=g_{0}$, why not just set $\epsilon=0$?!

Algebraic approximation

\square Suppose, we assume the following:
$>g(\boldsymbol{x}, \epsilon) \in \mathbb{F}\left[x_{1}, \ldots, x_{n}, \epsilon\right]$, i.e. it is a polynomial of the form

$$
g(\boldsymbol{x}, \epsilon)=\sum_{i=0}^{M} g_{i}\left(x_{1}, \ldots, x_{n}\right) \cdot \epsilon^{i}
$$

$>$ Can we say anything about the complexity of g_{0} ?

- Obvious attempt:
$>$ Since, $g(\boldsymbol{x}, 0)=g_{0}$, why not just set $\epsilon=0$?! Setting $\epsilon=0$ may not be 'legal' as it could be using $1 / \epsilon$ in the wire. Though it is well-defined!

Algebraic approximation

\square Suppose, we assume the following:
$>g(\boldsymbol{x}, \epsilon) \in \mathbb{F}\left[x_{1}, \ldots, x_{n}, \epsilon\right]$, i.e. it is a polynomial of the form

$$
g(\boldsymbol{x}, \epsilon)=\sum_{i=0}^{M} g_{i}\left(x_{1}, \ldots, x_{n}\right) \cdot \epsilon^{i}
$$

$>$ Can we say anything about the complexity of g_{0} ?

- Obvious attempt:
$>$ Since, $g(\boldsymbol{x}, 0)=g_{0}$, why not just set $\epsilon=0$?! Setting $\epsilon=0$ may not be 'legal' as it could be using $1 / \epsilon$ in the wire. Though it is well-defined!

Summary: g_{0} is really something non-trivial and being 'approximated' by the circuit since $\lim _{\epsilon \rightarrow 0} g(\boldsymbol{x}, \epsilon)=g_{0}$.

Algebraic approximation (continued)

Algebraic approximation (continued)

Algebraic Approximation [Bürgisser 2004]

A polynomial $h(x) \in \mathbb{F}[\boldsymbol{x}]$ has approximative complexity s, if there is a circuit $g(\boldsymbol{x}, \epsilon) \in \mathbb{F}(\epsilon)[\boldsymbol{x}]$, of size S, over $\mathbb{F}(\epsilon)$, and a polynomial $S(\boldsymbol{x}, \epsilon) \in \mathbb{F}[\epsilon][\boldsymbol{x}]$ such that $g(\boldsymbol{x}, \epsilon)=h(\boldsymbol{x})+\epsilon \cdot S(\boldsymbol{x}, \epsilon)$. In other words, $\lim _{\epsilon \rightarrow 0} g=h$.

Algebraic approximation (continued)

Algebraic Approximation [Bürgisser 2004]

A polynomial $h(x) \in \mathbb{F}[\boldsymbol{x}]$ has approximative complexity s, if there is a circuit $g(\boldsymbol{x}, \epsilon) \in \mathbb{F}(\epsilon)[\boldsymbol{x}]$, of size S, over $\mathbb{F}(\epsilon)$, and a polynomial $S(\boldsymbol{x}, \epsilon) \in \mathbb{F}[\epsilon][\boldsymbol{x}]$ such that $g(\boldsymbol{x}, \epsilon)=h(\boldsymbol{x})+\epsilon \cdot S(\boldsymbol{x}, \epsilon)$. In other words, $\lim _{\epsilon \rightarrow 0} g=h$.

- $\overline{\operatorname{size}}(h) \leq \operatorname{size}(h)$.

Algebraic approximation (continued)

Algebraic Approximation [Bürgisser 2004]

A polynomial $h(x) \in \mathbb{F}[\boldsymbol{x}]$ has approximative complexity s, if there is a circuit $g(\boldsymbol{x}, \epsilon) \in \mathbb{F}(\epsilon)[\boldsymbol{x}]$, of size S, over $\mathbb{F}(\epsilon)$, and a polynomial $S(\boldsymbol{x}, \epsilon) \in \mathbb{F}[\epsilon][\boldsymbol{x}]$ such that $g(\boldsymbol{x}, \epsilon)=h(\boldsymbol{x})+\epsilon \cdot S(\boldsymbol{x}, \epsilon)$. In other words, $\lim _{\epsilon \rightarrow 0} g=h$.

- $\overline{\operatorname{size}}(h) \leq \operatorname{size}(h)$.

If g has circuit of size s over $\mathbb{F}(\epsilon)$, then one can assume that the highest degree of ϵ in g can be exponentially large $2^{s^{2}}$ [Bürgisser 2004, 2020].

Algebraic approximation (continued)

Algebraic Approximation [Bürgisser 2004]

A polynomial $h(x) \in \mathbb{F}[\boldsymbol{x}]$ has approximative complexity s, if there is a circuit $g(\boldsymbol{x}, \epsilon) \in \mathbb{F}(\epsilon)[\boldsymbol{x}]$, of size S, over $\mathbb{F}(\epsilon)$, and a polynomial $S(\boldsymbol{x}, \epsilon) \in \mathbb{F}[\epsilon][\boldsymbol{x}]$ such that $g(\boldsymbol{x}, \epsilon)=h(\boldsymbol{x})+\epsilon \cdot S(\boldsymbol{x}, \epsilon)$. In other words, $\lim _{\epsilon \rightarrow 0} g=h$.

- $\overline{\operatorname{size}}(h) \leq \operatorname{size}(h)$.

If g has circuit of size s over $\mathbb{F}(\epsilon)$, then one can assume that the highest degree of ϵ in g can be exponentially large $2^{s^{2}}$ [Bürgisser 2004, 2020].

Let us assume that $g(\boldsymbol{x}, \epsilon)=\sum_{i=0}^{M} g_{i} \cdot \epsilon^{i}$, where $M=2^{s^{2}}$. Note: $g_{0}=h$.

Algebraic approximation (continued)

Algebraic Approximation [Bürgisser 2004]

A polynomial $h(x) \in \mathbb{F}[\boldsymbol{x}]$ has approximative complexity s, if there is a circuit $g(\boldsymbol{x}, \epsilon) \in \mathbb{F}(\epsilon)[\boldsymbol{x}]$, of size S, over $\mathbb{F}(\epsilon)$, and a polynomial $S(\boldsymbol{x}, \epsilon) \in \mathbb{F}[\epsilon][\boldsymbol{x}]$ such that $g(\boldsymbol{x}, \epsilon)=h(\boldsymbol{x})+\epsilon \cdot S(\boldsymbol{x}, \epsilon)$. In other words, $\lim _{\epsilon \rightarrow 0} g=h$.

- $\overline{\operatorname{size}}(h) \leq \operatorname{size}(h)$.

If g has circuit of size s over $\mathbb{F}(\epsilon)$, then one can assume that the highest degree of ϵ in g can be exponentially large $2^{s^{2}}$ [Bürgisser 2004, 2020].

Let us assume that $g(\boldsymbol{x}, \epsilon)=\sum_{i=0}^{M} g_{i} \cdot \epsilon^{i}$, where $M=2^{s^{2}}$. Note: $g_{0}=h$.
$>$ Pick $M+1$ many distinct values from \mathbb{F} randomly and interpolate;

Algebraic approximation (continued)

Algebraic Approximation [Bürgisser 2004]

A polynomial $h(x) \in \mathbb{F}[\boldsymbol{x}]$ has approximative complexity s, if there is a circuit $g(\boldsymbol{x}, \epsilon) \in \mathbb{F}(\epsilon)[\boldsymbol{x}]$, of size S, over $\mathbb{F}(\epsilon)$, and a polynomial $S(\boldsymbol{x}, \epsilon) \in \mathbb{F}[\epsilon][\boldsymbol{x}]$ such that $g(\boldsymbol{x}, \epsilon)=h(\boldsymbol{x})+\epsilon \cdot S(\boldsymbol{x}, \epsilon)$. In other words, $\lim _{\epsilon \rightarrow 0} g=h$.

- $\overline{\operatorname{size}}(h) \leq \operatorname{size}(h)$.

If g has circuit of size s over $\mathbb{F}(\epsilon)$, then one can assume that the highest degree of ϵ in g can be exponentially large $2^{s^{2}}$ [Bürgisser 2004, 2020].

Let us assume that $g(\boldsymbol{x}, \epsilon)=\sum_{i=0}^{M} g_{i} \cdot \epsilon^{i}$, where $M=2^{s^{2}}$. Note: $g_{0}=h$.
$>$ Pick $M+1$ many distinct values from \mathbb{F} randomly and interpolate;
$>\operatorname{size}(h) \leq \exp (\overline{\operatorname{size}}(h))$.

Algebraic approximation (continued)

Algebraic Approximation [Bürgisser 2004]

A polynomial $h(x) \in \mathbb{F}[\boldsymbol{x}]$ has approximative complexity s, if there is a circuit $g(\boldsymbol{x}, \epsilon) \in \mathbb{F}(\epsilon)[\boldsymbol{x}]$, of size S, over $\mathbb{F}(\epsilon)$, and a polynomial $S(\boldsymbol{x}, \epsilon) \in \mathbb{F}[\epsilon][\boldsymbol{x}]$ such that $g(\boldsymbol{x}, \epsilon)=h(\boldsymbol{x})+\epsilon \cdot S(\boldsymbol{x}, \epsilon)$. In other words, $\lim _{\epsilon \rightarrow 0} g=h$.

- $\overline{\operatorname{size}}(h) \leq \operatorname{size}(h)$.

If g has circuit of size s over $\mathbb{F}(\epsilon)$, then one can assume that the highest degree of ϵ in g can be exponentially large $2^{s^{2}}$ [Bürgisser 2004, 2020].

Let us assume that $g(\boldsymbol{x}, \epsilon)=\sum_{i=0}^{M} g_{i} \cdot \epsilon^{i}$, where $M=2^{s^{2}}$. Note: $g_{0}=h$.
$>$ Pick $M+1$ many distinct values from \mathbb{F} randomly and interpolate;
$>\operatorname{size}(h) \leq \exp (\overline{\operatorname{size}}(h))$.
. $\overline{\operatorname{size}}(h) \leq \operatorname{size}(h) \leq \exp (\overline{\operatorname{size}}(h))$

De-bordering

- De-bordering: Given a 'nice' class \mathcal{C}, can we de-border \bar{C} ? i.e. find another 'nice' class \mathcal{D} such that $\overline{\mathcal{C}} \subseteq \mathcal{D}$?

De-bordering

De-bordering: Given a 'nice' class C, can we de-border \bar{C} ? i.e. find another 'nice' class \mathcal{D} such that $\bar{C} \subseteq \mathcal{D}$?

Take $C \in\{\mathrm{VBP}, \mathrm{VP}, \Sigma \wedge \Sigma, \mathrm{VNP}, \cdots\}$.

De-bordering

De-bordering: Given a 'nice' class C, can we de-border \bar{C} ? i.e. find another 'nice' class \mathcal{D} such that $\bar{C} \subseteq \mathcal{D}$?

- Take $C \in\{\mathrm{VBP}, \mathrm{VP}, \Sigma \wedge \Sigma, \mathrm{VNP}, \cdots\}$.
[Major open questions from [Mulmuley Sohoni 2001] and [Bürgisser 2001]:

De-bordering

De-bordering: Given a 'nice' class C, can we de-border \bar{C} ? i.e. find another 'nice' class \mathcal{D} such that $\bar{C} \subseteq \mathcal{D}$?

Take $C \in\{\mathrm{VBP}, \mathrm{VP}, \Sigma \wedge \Sigma, \mathrm{VNP}, \cdots\}$.

Major open questions from [Mulmuley Sohoni 2001] and [Bürgisser 2001]:

$$
\overline{\mathrm{VBP}} \stackrel{?}{=} \mathrm{VBP}, \overline{\mathrm{VP}} \stackrel{?}{=} \mathrm{VP}, \overline{\mathrm{VNP}} \stackrel{?}{=} \mathrm{VNP} .
$$

Strengthening lower bounds and its advantages

Strengthening lower bounds and its advantages

Strengthening Valiant's Conjecture [Milind Sohoni 2001]

VNP $\not \subset \overline{\mathrm{VBP}} \& \mathrm{VNP} \not \subset \overline{\mathrm{VP}}$. Equivalently, $\overline{\mathrm{dc}}\left(\right.$ perm $\left._{n}\right)$ and $\overline{\operatorname{size}}($ perm $n)$ are both $n^{\omega(1)}$.

Strengthening lower bounds and its advantages

Strengthening Valiant's Conjecture [Milind Sohoni 2001]

VNP $\not \subset \overline{\mathrm{VBP}} \& \mathrm{VNP} \not \subset \overline{\mathrm{VP}}$. Equivalently, $\overline{\mathrm{dc}}\left(\right.$ perm $\left._{n}\right)$ and $\overline{\operatorname{size}}\left(\right.$ perm $\left._{n}\right)$ are both $n^{\omega(1)}$.
\square Both det and perm have 'nice' symmetries.

Strengthening lower bounds and its advantages

Strengthening Valiant's Conjecture [Milind Sohoni 2001]

VNP $\not \subset \overline{\mathrm{VBP}} \& \mathrm{VNP} \not \subset \overline{\mathrm{VP}}$. Equivalently, $\overline{\mathrm{dc}}\left(\right.$ perm $\left._{n}\right)$ and $\overline{\operatorname{size}}\left(\right.$ perm $\left._{n}\right)$ are both $n^{\omega(1)}$.
\square Both det and perm have 'nice' symmetries.

- Symmetry-characterization avoids the Razborov-Rudich barrier: Very few functions are symmetry-characterized, so symmetry-characterization violates the largeness criterion!

De-bordering results and their importance

De-bordering results and their importance

A few known de-bordering results:

De-bordering results and their importance

A few known de-bordering results:
$>\overline{\mathrm{VBP}_{\text {non-com }}}=\mathrm{VBP}_{\text {non-com }}$, in the noncommutative world [Nisan 1991].

De-bordering results and their importance

A few known de-bordering results:
$>\overline{\mathrm{VBP}_{\text {non-com }}}=\mathrm{VBP}_{\text {non-com }}$, in the noncommutative world [Nisan 1991].
$>\overline{\Sigma \wedge \Sigma} \subsetneq$ VBP [Forbes 2016, Bläser-Dörfler-Ikenmeyer 2021].

De-bordering results and their importance

A few known de-bordering results:
$>\overline{\mathrm{VBP}_{\text {non-com }}}=\mathrm{VBP}_{\text {non-com }}$, in the noncommutative world [Nisan 1991].
$>\overline{\Sigma \wedge \Sigma} \subsetneq$ VBP [Forbes 2016, Bläser-Dörfler-Ikenmeyer 2021].
$>\overline{\Sigma^{[s]} \Pi}=\Sigma^{[s]} \Pi$ and $\overline{\Pi^{[d]} \Sigma}=\Pi^{[d]} \Sigma$.

De-bordering results and their importance

A few known de-bordering results:
$>\overline{\mathrm{VBP}_{\text {non-com }}}=\mathrm{VBP}_{\text {non-com }}$, in the noncommutative world [Nisan 1991].
$>\overline{\Sigma \wedge \Sigma} \subsetneq$ VBP [Forbes 2016, Bläser-Dörfler-Ikenmeyer 2021].
$>\overline{\Sigma^{[s]} \Pi}=\Sigma^{[s]} \Pi$ and $\overline{\Pi^{[d]} \Sigma}=\Pi^{[d]} \Sigma$.
U Upper bounds and lower bounds become more algebro-geometric in nature.

De-bordering results and their importance

A few known de-bordering results:
$>\overline{\mathrm{VBP}_{\text {non-com }}}=\mathrm{VBP}_{\text {non-com }}$, in the noncommutative world [Nisan 1991].
$>\overline{\Sigma \wedge \Sigma} \subsetneq$ VBP [Forbes 2016, Bläser-Dörfler-Ikenmeyer 2021].
$>\overline{\Sigma^{[s]} \Pi}=\Sigma^{[s]} \Pi$ and $\overline{\Pi^{[d]} \Sigma}=\Pi^{[d]} \Sigma$.
Upper bounds and lower bounds become more algebro-geometric in nature.
Further potential applications in identity testing and understanding its 'robustness'.

Border depth-3 circuits

Depth-3 circuits

Depth-3 circuits

- Depth-3 circuits with top fanin k, are denoted as $\Sigma^{[k]} \Pi^{[d]} \Sigma$. Thus, the size is trivially bounded by $O(k n d)$.

Depth-3 circuits

Depth-3 circuits with top fanin k, are denoted as $\Sigma^{[k]} \Pi^{[d]} \Sigma$. Thus, the size is trivially bounded by $O(k n d)$.

They compute polynomials of the form $\sum_{i=1}^{k} \prod_{j=1}^{d} \ell_{i j}$, where $\ell_{i j}$ are linear polynomials (i.e. $a_{0}+a_{1} x_{1}+\ldots+a_{n} x_{n}$, for $a_{i} \in \mathbb{F}$).

Depth-3 circuits

Depth-3 circuits with top fanin k, are denoted as $\Sigma^{[k]} \Pi^{[d]} \Sigma$. Thus, the size is trivially bounded by $O(k n d)$.

They compute polynomials of the form $\sum_{i=1}^{k} \prod_{j=1}^{d} \ell_{i j}$, where $\ell_{i j}$ are linear polynomials (i.e. $a_{0}+a_{1} x_{1}+\ldots+a_{n} x_{n}$, for $a_{i} \in \mathbb{F}$).
. How powerful are $\Sigma^{[k]} \Pi^{[d]} \Sigma$ circuits? Are they universal?

Depth-3 circuits

Depth-3 circuits with top fanin k, are denoted as $\Sigma^{[k]} \Pi^{[d]} \Sigma$. Thus, the size is trivially bounded by $O(k n d)$.

They compute polynomials of the form $\sum_{i=1}^{k} \prod_{j=1}^{d} \ell_{i j}$, where $\ell_{i j}$ are linear polynomials (i.e. $a_{0}+a_{1} x_{1}+\ldots+a_{n} x_{n}$, for $a_{i} \in \mathbb{F}$).

- How powerful are $\Sigma^{[k]} \Pi^{[d]} \Sigma$ circuits? Are they universal?
- No.

Depth-3 circuits

Depth-3 circuits with top fanin k, are denoted as $\Sigma^{[k]} \Pi^{[d]} \Sigma$. Thus, the size is trivially bounded by $O(k n d)$.

They compute polynomials of the form $\sum_{i=1}^{k} \prod_{j=1}^{d} \ell_{i j}$, where $\ell_{i j}$ are linear polynomials (i.e. $a_{0}+a_{1} x_{1}+\ldots+a_{n} x_{n}$, for $a_{i} \in \mathbb{F}$).

- How powerful are $\Sigma^{[k]} \Pi^{[d]} \Sigma$ circuits? Are they universal?
- No. E.g. the Inner Product polynomial $\langle\boldsymbol{x}, \boldsymbol{y}\rangle=x_{1} y_{1}+\ldots+x_{k+1} y_{k+1}$ cannot be written as a $\Sigma^{[k]} \Pi^{[d]} \Sigma$ circuit, regardless of the product fanin d !

Power of border depth-3 circuits

Power of border depth-3 circuits

- What about $\overline{\Sigma^{[k]} \Pi^{[d]} \Sigma}$ circuits?

Power of border depth-3 circuits

\square What about $\overline{\Sigma^{[k]} \Pi^{[d]} \Sigma}$ circuits?
Recall: $h \in \overline{\Sigma^{[k]} \Pi^{[d]} \Sigma}$ of size s if there exists a circuit g such that

Power of border depth-3 circuits

\square What about $\overline{\Sigma^{[k]} \Pi^{[d]} \Sigma}$ circuits?
Recall: $h \in \overline{\Sigma^{[k]} \Pi^{[d]} \Sigma}$ of size s if there exists a circuit g such that

$$
g(\boldsymbol{x}, \epsilon)=h(\boldsymbol{x})+\epsilon \cdot S(\boldsymbol{x}, \epsilon),
$$

Power of border depth-3 circuits

\square What about $\overline{\Sigma^{[k]} \Pi^{[d]} \Sigma}$ circuits?
Recall: $h \in \overline{\Sigma^{[k]} \Pi^{[d]} \Sigma}$ of size s if there exists a circuit g such that

$$
g(\boldsymbol{x}, \epsilon)=h(\boldsymbol{x})+\epsilon \cdot S(\boldsymbol{x}, \epsilon),
$$

where g can be computed by a $\Sigma^{[k]} \Pi^{[d]} \Sigma$ circuit, over $\mathbb{F}(\epsilon)$, of size s.

Power of border depth-3 circuits

\square What about $\overline{\Sigma^{[k]} \Pi^{[d]} \Sigma}$ circuits?
Recall: $h \in \overline{\Sigma^{[k]} \Pi^{[d]} \Sigma}$ of size s if there exists a circuit g such that

$$
g(\boldsymbol{x}, \epsilon)=h(\boldsymbol{x})+\epsilon \cdot S(\boldsymbol{x}, \epsilon),
$$

where g can be computed by a $\Sigma^{[k]} \Pi^{[d]} \Sigma$ circuit, over $\mathbb{F}(\epsilon)$, of size s.

Border depth-3 fanin 2 circuits are 'universal' [Kumar 2020]

Let P be any homogeneous n-variate degree d polynomial. Then, $P \in \overline{\Sigma^{[2]} \Pi^{[D]} \Sigma}$, where $D:=\exp (n, d)$.

Proof of Kumar's result

Proof.

1. Let $\mathrm{WR}(P)=: m$. Then, there are linear forms ℓ_{i} such that

Proof of Kumar's result

Proof.

1. Let $\mathrm{WR}(P)=: m$. Then, there are linear forms ℓ_{i} such that

$$
P=\sum_{i=1}^{m} \ell_{i}^{d} \quad[m \text { can be as large as } \exp (n, d)]
$$

Proof of Kumar's result

Proof.

1. Let $\mathrm{WR}(P)=: m$. Then, there are linear forms ℓ_{i} such that

$$
P=\sum_{i=1}^{m} \ell_{i}^{d} \quad[m \text { can be as large as } \exp (n, d)]
$$

2. Consider $\boldsymbol{A}(\boldsymbol{x}):=\prod_{i=1}^{m}\left(1+\ell_{i}^{d}\right)=\prod_{i=1}^{m} \prod_{j=1}^{d}\left(\alpha_{j}+\ell_{i}\right)$, for $\alpha_{j} \in \mathbb{C}$.

Proof of Kumar's result

Proof.

1. Let $\mathrm{WR}(P)=: m$. Then, there are linear forms ℓ_{i} such that

$$
P=\sum_{i=1}^{m} \ell_{i}^{d} \quad[m \text { can be as large as } \exp (n, d)]
$$

2. Consider $\boldsymbol{A}(\boldsymbol{x}):=\prod_{i=1}^{m}\left(1+\ell_{i}^{d}\right)=\prod_{i=1}^{m} \prod_{j=1}^{d}\left(\alpha_{j}+\ell_{i}\right)$, for $\alpha_{j} \in \mathbb{C}$. Note that

$$
A(\boldsymbol{x})=1+P+B \text { where } \operatorname{deg}(B) \geq 2 d
$$

Proof of Kumar's result

Proof.

1. Let $\mathrm{WR}(P)=: m$. Then, there are linear forms ℓ_{i} such that

$$
P=\sum_{i=1}^{m} \ell_{i}^{d} \quad[m \text { can be as large as } \exp (n, d)]
$$

2. Consider $\boldsymbol{A}(\boldsymbol{x}):=\prod_{i=1}^{m}\left(1+\ell_{i}^{d}\right)=\prod_{i=1}^{m} \prod_{j=1}^{d}\left(\alpha_{j}+\ell_{i}\right)$, for $\alpha_{j} \in \mathbb{C}$. Note that

$$
A(\boldsymbol{x})=1+P+B \text { where } \operatorname{deg}(B) \geq 2 d
$$

3. Replace x_{i} by $\epsilon \cdot x_{i}$ to get that

Proof of Kumar's result

Proof.

1. Let $\mathrm{WR}(P)=: m$. Then, there are linear forms ℓ_{i} such that

$$
P=\sum_{i=1}^{m} \ell_{i}^{d} \quad[m \text { can be as large as } \exp (n, d)]
$$

2. Consider $\boldsymbol{A}(\boldsymbol{x}):=\prod_{i=1}^{m}\left(1+\ell_{i}^{d}\right)=\prod_{i=1}^{m} \prod_{j=1}^{d}\left(\alpha_{j}+\ell_{i}\right)$, for $\alpha_{j} \in \mathbb{C}$. Note that

$$
A(\boldsymbol{x})=1+P+B \text { where } \operatorname{deg}(B) \geq 2 d
$$

3. Replace x_{i} by $\epsilon \cdot x_{i}$ to get that

$$
\prod_{i=1}^{m} \prod_{j=1}^{d}\left(\alpha_{j}+\epsilon \cdot \ell_{i}\right)=1+\epsilon^{d} \cdot P+\epsilon^{2 d} \cdot R(\boldsymbol{x}, \epsilon)
$$

Proof of Kumar's result

Proof.

1. Let $\mathrm{WR}(P)=: m$. Then, there are linear forms ℓ_{i} such that

$$
P=\sum_{i=1}^{m} \ell_{i}^{d} \quad[m \text { can be as large as } \exp (n, d)]
$$

2. Consider $\boldsymbol{A}(\boldsymbol{x}):=\prod_{i=1}^{m}\left(1+\ell_{i}^{d}\right)=\prod_{i=1}^{m} \prod_{j=1}^{d}\left(\alpha_{j}+\ell_{i}\right)$, for $\alpha_{j} \in \mathbb{C}$. Note that

$$
A(\boldsymbol{x})=1+P+B \text { where } \operatorname{deg}(B) \geq 2 d
$$

3. Replace x_{i} by $\epsilon \cdot x_{i}$ to get that

$$
\prod_{i=1}^{m} \prod_{j=1}^{d}\left(\alpha_{j}+\epsilon \cdot \ell_{i}\right)=1+\epsilon^{d} \cdot P+\epsilon^{2 d} \cdot R(\boldsymbol{x}, \epsilon)
$$

4. Divide by ϵ^{d} and rearrange to get

$$
P+\epsilon^{d} \cdot R(\boldsymbol{x}, \epsilon)=-\epsilon^{-d}+\epsilon^{-d} \cdot \prod_{i=1}^{m} \prod_{j=1}^{d}\left(\alpha_{j}+\epsilon \cdot \ell_{i}\right) \in \Sigma^{[2]} \Pi^{[m d]} \Sigma .
$$

De-bordering $\overline{\Sigma^{[2]} \Pi \Sigma}$ circuits

De-bordering $\overline{\Sigma^{[2]} \Pi \Sigma}$ circuits

If h is approximated by a $\Sigma^{[2]} \Pi^{[d]} \Sigma$ circuit with $d=$ poly (n), what's the exact complexity of h ?

De-bordering $\overline{\Sigma^{[2]} \Pi \Sigma}$ circuits

If h is approximated by a $\Sigma^{[2]} \Pi^{[d]} \Sigma$ circuit with $d=$ poly (n), what's the exact complexity of h ?
$>$ Is it even explicit?

De-bordering $\overline{\Sigma^{[2]} \Pi \Sigma}$ circuits

- If h is approximated by a $\Sigma^{[2]} \Pi^{[d]} \Sigma$ circuit with $d=\operatorname{poly}(n)$, what's the exact complexity of h ?
$>$ Is it even explicit? If yes, $\overline{\Sigma^{[2]} \Pi^{[d]} \Sigma} \subseteq$ VNP?

De-bordering $\overline{\Sigma^{[2]} \Pi \Sigma}$ circuits

If h is approximated by a $\Sigma^{[2]} \Pi^{[d]} \Sigma$ circuit with $d=$ poly (n), what's the exact complexity of h ?
$>$ Is it even explicit? If yes, $\overline{\Sigma^{[2]} \Pi^{[d]} \Sigma} \subseteq$ VNP?

Theorem 1 (Border of depth-3 top-fanin-2 circuit is 'easy')

[Dutta-Dwivedi-Saxena FOCS 2021].
$\overline{\Sigma^{[2]} \Pi^{[d]} \Sigma} \subseteq \mathrm{VBP}$, for $d=\operatorname{poly}(n)$.
In particular, any polynomial in the border of top-fanin- 2 size- s depth- 3 circuits, can also be exactly computed by a linear projection of a poly $(s) \times \operatorname{poly}(s)$ determinant.

De-bordering $\overline{\Sigma^{[2]} \Pi \Sigma}$ circuits

If h is approximated by a $\Sigma^{[2]} \Pi^{[d]} \Sigma$ circuit with $d=$ poly (n), what's the exact complexity of h ?
$>$ Is it even explicit? If yes, $\overline{\Sigma^{[2]} \Pi^{[d]} \Sigma} \subseteq$ VNP?

Theorem 1 (Border of depth-3 top-fanin-2 circuit is 'easy')
[Dutta-Dwivedi-Saxena FOCS 2021].
$\overline{\Sigma^{[2]} \Pi^{[d]} \Sigma} \subseteq \mathrm{VBP}$, for $d=\operatorname{poly}(n)$.
In particular, any polynomial in the border of top-fanin-2 size-s depth-3 circuits, can also be exactly computed by a linear projection of a poly $(s) \times$ poly (s) determinant.

Remark. The result holds if one replaces the top-fanin-2 by arbitrary constant k.

Why $k=2$ is hard to analyze?

Why $k=2$ is hard to analyze?

Deep cancellations for $k=2$ make things harder.

Why $k=2$ is hard to analyze?

Deep cancellations for $k=2$ make things harder.
\square E.g., $T_{1}:=\epsilon^{-3}\left(1+\epsilon x_{1}+\epsilon^{2} x_{2}+\epsilon^{3} x_{3}+\ldots\right)$,

Why $k=2$ is hard to analyze?

Deep cancellations for $k=2$ make things harder.
E.g., $T_{1}:=\epsilon^{-3}\left(1+\epsilon x_{1}+\epsilon^{2} x_{2}+\epsilon^{3} x_{3}+\ldots\right), T_{2}:=\epsilon^{-3}\left(1+\epsilon x_{1}+\epsilon^{2} x_{2}+\epsilon^{3} x_{4}+\ldots\right)$.

Why $k=2$ is hard to analyze?

Deep cancellations for $k=2$ make things harder.
E.g., $T_{1}:=\epsilon^{-3}\left(1+\epsilon x_{1}+\epsilon^{2} x_{2}+\epsilon^{3} x_{3}+\ldots\right), T_{2}:=\epsilon^{-3}\left(1+\epsilon x_{1}+\epsilon^{2} x_{2}+\epsilon^{3} x_{4}+\ldots\right)$. Note, $\lim _{\epsilon \rightarrow 0}\left(T_{1}-T_{2}\right)=\left(x_{3}-x_{4}\right)$.

Why $k=2$ is hard to analyze?

Deep cancellations for $k=2$ make things harder.
E. E.g., $T_{1}:=\epsilon^{-3}\left(1+\epsilon x_{1}+\epsilon^{2} x_{2}+\epsilon^{3} x_{3}+\ldots\right), T_{2}:=\epsilon^{-3}\left(1+\epsilon x_{1}+\epsilon^{2} x_{2}+\epsilon^{3} x_{4}+\ldots\right)$. Note, $\lim _{\epsilon \rightarrow 0}\left(T_{1}-T_{2}\right)=\left(x_{3}-x_{4}\right)$.

- Note $x^{2} \equiv\left(x-\epsilon^{M / 2} \cdot a\right)\left(x+\epsilon^{M / 2} \cdot a\right) \bmod \epsilon^{M}$, for any $a \in \mathbb{F}$.

Why $k=2$ is hard to analyze?

Deep cancellations for $k=2$ make things harder.
E.g., $T_{1}:=\epsilon^{-3}\left(1+\epsilon x_{1}+\epsilon^{2} x_{2}+\epsilon^{3} x_{3}+\ldots\right), T_{2}:=\epsilon^{-3}\left(1+\epsilon x_{1}+\epsilon^{2} x_{2}+\epsilon^{3} x_{4}+\ldots\right)$. Note, $\lim _{\epsilon \rightarrow 0}\left(T_{1}-T_{2}\right)=\left(x_{3}-x_{4}\right)$.

- Note $x^{2} \equiv\left(x-\epsilon^{M / 2} \cdot a\right)\left(x+\epsilon^{M / 2} \cdot a\right) \bmod \epsilon^{M}$, for any $a \in \mathbb{F}$.
- Moreover,

$$
\lim _{\epsilon \rightarrow 0} \frac{1}{\epsilon^{M}} \cdot\left(x^{2}-\left(x-\epsilon^{M / 2} \cdot a\right)\left(x+\epsilon^{M / 2} \cdot a\right)\right)=a^{2}
$$

Why $k=2$ is hard to analyze?

Deep cancellations for $k=2$ make things harder.
E. E.g., $T_{1}:=\epsilon^{-3}\left(1+\epsilon x_{1}+\epsilon^{2} x_{2}+\epsilon^{3} x_{3}+\ldots\right), T_{2}:=\epsilon^{-3}\left(1+\epsilon x_{1}+\epsilon^{2} x_{2}+\epsilon^{3} x_{4}+\ldots\right)$. Note, $\lim _{\epsilon \rightarrow 0}\left(T_{1}-T_{2}\right)=\left(x_{3}-x_{4}\right)$.

- Note $x^{2} \equiv\left(x-\epsilon^{M / 2} \cdot a\right)\left(x+\epsilon^{M / 2} \cdot a\right) \bmod \epsilon^{M}$, for any $a \in \mathbb{F}$.
- Moreover,

$$
\lim _{\epsilon \rightarrow 0} \frac{1}{\epsilon^{M}} \cdot\left(x^{2}-\left(x-\epsilon^{M / 2} \cdot a\right)\left(x+\epsilon^{M / 2} \cdot a\right)\right)=a^{2}
$$

\square Infinitely many factorizations may give infinitely many limits.

Proof sketch for $k=2$

Proof sketch for $k=2$

- $T_{1}+T_{2}=f(\boldsymbol{x})+\epsilon \cdot S(\boldsymbol{x}, \epsilon)$, where $T_{i} \in \Pi \Sigma$ in $\mathbb{F}(\epsilon)[\boldsymbol{x}]$. Assume $\operatorname{deg}(f)=: d$.

Proof sketch for $k=2$

- $T_{1}+T_{2}=f(\boldsymbol{x})+\epsilon \cdot S(\boldsymbol{x}, \epsilon)$, where $T_{i} \in \Pi \Sigma$ in $\mathbb{F}(\epsilon)[\boldsymbol{x}]$. Assume $\operatorname{deg}(f)=: d$.

High-level idea: Reduce fanin 2 to 1 with a 'nice' form.

Proof sketch for $k=2$

- $T_{1}+T_{2}=f(\boldsymbol{x})+\epsilon \cdot S(\boldsymbol{x}, \epsilon)$, where $T_{i} \in \Pi \Sigma$ in $\mathbb{F}(\epsilon)[\boldsymbol{x}]$. Assume $\operatorname{deg}(f)=: d$.

High-level idea: Reduce fanin 2 to 1 with a 'nice' form.
\square Apply a map Φ, defined by $\Phi: x_{i} \mapsto z \cdot x_{i}+\alpha_{i}$, where $\alpha_{i} \in \mathbb{F}$ are random.

Proof sketch for $k=2$

$\square T_{1}+T_{2}=f(\boldsymbol{x})+\epsilon \cdot S(\boldsymbol{x}, \epsilon)$, where $T_{i} \in \Pi \Sigma$ in $\mathbb{F}(\epsilon)[\boldsymbol{x}]$. Assume $\operatorname{deg}(f)=: d$.
[High-level idea: Reduce fanin 2 to 1 with a 'nice' form.
\square Apply a map Φ, defined by $\Phi: x_{i} \mapsto z \cdot x_{i}+\alpha_{i}$, where $\alpha_{i} \in \mathbb{F}$ are random.
$>$ The variable z is the degree counter and enables derivation,

Proof sketch for $k=2$

$\square T_{1}+T_{2}=f(\boldsymbol{x})+\epsilon \cdot S(\boldsymbol{x}, \epsilon)$, where $T_{i} \in \Pi \Sigma$ in $\mathbb{F}(\epsilon)[\boldsymbol{x}]$. Assume $\operatorname{deg}(f)=: d$.
High-level idea: Reduce fanin 2 to 1 with a 'nice' form.
\square Apply a map Φ, defined by $\Phi: x_{i} \mapsto z \cdot x_{i}+\alpha_{i}$, where $\alpha_{i} \in \mathbb{F}$ are random.
$>$ The variable z is the degree counter and enables derivation,
$>\alpha_{i}$ to ensure: If $\ell \mid T_{i}$, then $\left.\Phi(\ell)\right|_{z=0}=\ell\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{F}(\epsilon) \backslash\{0\}$.

Proof sketch for $k=2$

$\square T_{1}+T_{2}=f(\boldsymbol{x})+\epsilon \cdot S(\boldsymbol{x}, \epsilon)$, where $T_{i} \in \Pi \Sigma$ in $\mathbb{F}(\epsilon)[\boldsymbol{x}]$. Assume $\operatorname{deg}(f)=: d$.
[High-level idea: Reduce fanin 2 to 1 with a 'nice' form.
\square Apply a map Φ, defined by $\Phi: x_{i} \mapsto z \cdot x_{i}+\alpha_{i}$, where $\alpha_{i} \in \mathbb{F}$ are random.
$>$ The variable z is the degree counter and enables derivation,
$>\alpha_{i}$ to ensure: If $\ell \mid T_{i}$, then $\left.\Phi(\ell)\right|_{z=0}=\ell\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{F}(\epsilon) \backslash\{0\}$.
\square It suffices to show that $\Phi(f)$ has small ABP.

Proof sketch for $k=2$

$\square T_{1}+T_{2}=f(\boldsymbol{x})+\epsilon \cdot S(\boldsymbol{x}, \epsilon)$, where $T_{i} \in \Pi \Sigma$ in $\mathbb{F}(\epsilon)[\boldsymbol{x}]$. Assume $\operatorname{deg}(f)=: d$.
[High-level idea: Reduce fanin 2 to 1 with a 'nice' form.
\square Apply a map Φ, defined by $\Phi: x_{i} \mapsto z \cdot x_{i}+\alpha_{i}$, where $\alpha_{i} \in \mathbb{F}$ are random.
$>$ The variable z is the degree counter and enables derivation,
$>\alpha_{i}$ to ensure: If $\ell \mid T_{i}$, then $\left.\Phi(\ell)\right|_{z=0}=\ell\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{F}(\epsilon) \backslash\{0\}$.
It suffices to show that $\Phi(f)$ has small ABP.
\square We devise a technique called DiDIL Divide, Derive, Interpolate/ Induct with Limit.

$k=2$ proof continued: Divide and Derive

$k=2$ proof continued: Divide and Derive

$\square \operatorname{Let} \Phi\left(T_{i}\right)=: \epsilon^{a_{i}} \cdot \tilde{T}_{i}$, for $i \in[2]$, where $a_{i}:=\operatorname{val}_{\epsilon}\left(\Phi\left(T_{i}\right)\right)$.
val $\epsilon_{\epsilon}(\cdot)$ denotes the highest power of ϵ dividing it.

$k=2$ proof continued: Divide and Derive

Let $\Phi\left(T_{i}\right)=: \epsilon^{a_{i}} \cdot \tilde{T}_{i}$, for $i \in[2]$, where $a_{i}:=\operatorname{val}_{\epsilon}\left(\Phi\left(T_{i}\right)\right)$.
$\square \operatorname{val}_{\epsilon}(\cdot)$ denotes the highest power of ϵ dividing it.
D Divide and Derive:

$k=2$ proof continued: Divide and Derive

Let $\Phi\left(T_{i}\right)=: \epsilon^{a_{i}} \cdot \tilde{T}_{i}$, for $i \in[2]$, where $a_{i}:=\operatorname{val}_{\epsilon}\left(\Phi\left(T_{i}\right)\right)$.
$\square \operatorname{val}_{\epsilon}(\cdot)$ denotes the highest power of ϵ dividing it.
D Divide and Derive:

$$
\begin{align*}
f+\epsilon \cdot S & =T_{1}+T_{2} \\
\Longrightarrow \quad \Phi(f)+\epsilon \cdot \Phi(S) & =\Phi\left(T_{1}\right)+\Phi\left(T_{2}\right) \\
\Longrightarrow \quad \Phi(f) / \tilde{T}_{2}+\epsilon \cdot \Phi(S) / \tilde{T}_{2} & =\Phi\left(T_{1}\right) / \tilde{T}_{2}+\epsilon^{a_{2}} \\
\Longrightarrow \quad \partial_{z}\left(\Phi(f) / \tilde{T}_{2}\right)+\epsilon \cdot \partial_{z}\left(\Phi(S) / \tilde{T}_{2}\right) & =\partial_{z}\left(\Phi\left(T_{1}\right) / \tilde{T}_{2}\right)=: g_{1} . \tag{1}
\end{align*}
$$

$k=2$ proof continued: Divide and Derive

Let $\Phi\left(T_{i}\right)=: \epsilon^{a_{i}} \cdot \tilde{T}_{i}$, for $i \in[2]$, where $a_{i}:=\operatorname{val}_{\epsilon}\left(\Phi\left(T_{i}\right)\right)$.
val $\epsilon(\cdot)$ denotes the highest power of ϵ dividing it.

- Divide and Derive:

$$
\begin{align*}
f+\epsilon \cdot S & =T_{1}+T_{2} \\
\Longrightarrow \quad \Phi(f)+\epsilon \cdot \Phi(S) & =\Phi\left(T_{1}\right)+\Phi\left(T_{2}\right) \\
\Longrightarrow \quad \Phi(f) / \tilde{T}_{2}+\epsilon \cdot \Phi(S) / \tilde{T}_{2} & =\Phi\left(T_{1}\right) / \tilde{T}_{2}+\epsilon^{a_{2}} \\
\Longrightarrow \quad \partial_{z}\left(\Phi(f) / \tilde{T}_{2}\right)+\epsilon \cdot \partial_{z}\left(\Phi(S) / \tilde{T}_{2}\right) & =\partial_{z}\left(\Phi\left(T_{1}\right) / \tilde{T}_{2}\right)=: g_{1} . \tag{1}
\end{align*}
$$

- $\lim _{\epsilon \rightarrow 0} g_{1}=\partial_{Z}\left(\Phi(f) / t_{2}\right)$, where $t_{2}:=\lim _{\epsilon \rightarrow 0} \tilde{T_{2}}$.

$k=2$ proof continued

$k=2$ proof continued

- First target: compute $\lim _{\epsilon \rightarrow 0} g_{1}=\partial_{z}\left(\Phi(f) / t_{2}\right)$.

$k=2$ proof continued

\square First target: compute $\lim _{\epsilon \rightarrow 0} g_{1}=\partial_{Z}\left(\Phi(f) / t_{2}\right)$.
\square Logarithmic derivative: $\operatorname{dlog}_{z}(h):=\partial_{z}(h) / h$.

$k=2$ proof continued

- First target: compute $\lim _{\epsilon \rightarrow 0} g_{1}=\partial_{z}\left(\Phi(f) / t_{2}\right)$.

Logarithmic derivative: $\operatorname{dlog}_{z}(h):=\partial_{z}(h) / h$.
\square dlog linearizes product: $\operatorname{dlog}\left(h_{1} h_{2}\right)=\operatorname{dlog}\left(h_{1}\right)+\operatorname{dlog}\left(h_{2}\right)$.

$k=2$ proof continued

- First target: compute $\lim _{\epsilon \rightarrow 0} g_{1}=\partial_{z}\left(\Phi(f) / t_{2}\right)$.

Logarithmic derivative: $\operatorname{dlog}_{z}(h):=\partial_{z}(h) / h$.
\square dlog linearizes product: $\operatorname{dlog}\left(h_{1} h_{2}\right)=\operatorname{dlog}\left(h_{1}\right)+\operatorname{dlog}\left(h_{2}\right)$. Note:

$$
\begin{aligned}
\partial_{z}\left(\Phi\left(T_{1}\right) / \tilde{T}_{2}\right) & =\Phi\left(T_{1}\right) / \tilde{T}_{2} \cdot \operatorname{dlog}\left(\Phi\left(T_{1}\right) / \tilde{T}_{2}\right) \\
& =(\Pi \Sigma / \Pi \Sigma) \cdot \operatorname{dlog}(\Pi \Sigma / \Pi \Sigma) \\
& =\Pi \Sigma / \Pi \Sigma \cdot\left(\pm \sum \operatorname{dlog}(\Sigma)\right)
\end{aligned}
$$

$k=2$ proof continued

- First target: compute $\lim _{\epsilon \rightarrow 0} g_{1}=\partial_{z}\left(\Phi(f) / t_{2}\right)$.

Logarithmic derivative: $\operatorname{dlog}_{z}(h):=\partial_{z}(h) / h$.
\square dlog linearizes product: $\operatorname{dlog}\left(h_{1} h_{2}\right)=\operatorname{dlog}\left(h_{1}\right)+\operatorname{dlog}\left(h_{2}\right)$. Note:

$$
\begin{aligned}
\partial_{z}\left(\Phi\left(T_{1}\right) / \tilde{T}_{2}\right) & =\Phi\left(T_{1}\right) / \tilde{T}_{2} \cdot \operatorname{dlog}\left(\Phi\left(T_{1}\right) / \tilde{T}_{2}\right) \\
& =(\Pi \Sigma / \Pi \Sigma) \cdot \operatorname{dlog}(\Pi \Sigma / \Pi \Sigma) \\
& =\Pi \Sigma / \Pi \Sigma \cdot\left(\pm \sum \operatorname{dlog}(\Sigma)\right)
\end{aligned}
$$

\square Here Σ means just a linear polynomial ℓ.

$k=2$ proof continued: Quick recap

$k=2$ proof continued: Quick recap

\square Recap: $\partial_{Z}\left(\Phi(f) / t_{2}\right)=\lim _{\epsilon \rightarrow 0} g_{1}=\lim _{\epsilon \rightarrow 0}(\Pi \Sigma / \Pi \Sigma) \cdot\left(\pm \sum \operatorname{dlog}(\Sigma)\right)$.

$k=2$ proof continued: Quick recap

\square Recap: $\partial_{Z}\left(\Phi(f) / t_{2}\right)=\lim _{\epsilon \rightarrow 0} g_{1}=\lim _{\epsilon \rightarrow 0}(\Pi \Sigma / \Pi \Sigma) \cdot\left(\pm \sum \operatorname{dlog}(\Sigma)\right)$.
$\square \operatorname{deg}(f)=d \Longrightarrow \operatorname{deg}_{z}(\Phi(f))=d \Longrightarrow \operatorname{deg}_{z}\left(\partial_{z}(\Phi(f))\right)=d-1$.

$k=2$ proof continued: Quick recap

\square Recap: $\partial_{Z}\left(\Phi(f) / t_{2}\right)=\lim _{\epsilon \rightarrow 0} g_{1}=\lim _{\epsilon \rightarrow 0}(\Pi \Sigma / \Pi \Sigma) \cdot\left(\pm \sum \mathrm{dlog}(\Sigma)\right)$.
$\square \operatorname{deg}(f)=d \Longrightarrow \operatorname{deg}_{z}(\Phi(f))=d \Longrightarrow \operatorname{deg}_{z}\left(\partial_{z}(\Phi(f))\right)=d-1$.

- Suffices to compute $\lim _{\epsilon \rightarrow 0} g_{1} \bmod z^{d}$.

$k=2$ proof: dlog strikes!

- What is $\mathrm{dlog}(\ell)$ for a linear polynomial $\ell=A-z \cdot B$?

$k=2$ proof: dlog strikes!

What is $\operatorname{dlog}(\ell)$ for a linear polynomial $\ell=A-z \cdot B$?

$$
\begin{aligned}
\operatorname{dlog}(A-z B) & =\frac{-B}{A(1-z \cdot B / A)} \\
& =-\frac{B}{A} \cdot \sum_{j=0}^{d-1}\left(\frac{z \cdot B}{A}\right)^{j} \bmod z^{d} \\
& \in \Sigma \wedge \Sigma
\end{aligned}
$$

$k=2$ proof: dlog strikes!

What is $\operatorname{dlog}(\ell)$ for a linear polynomial $\ell=A-z \cdot B$?

$$
\begin{aligned}
\operatorname{dlog}(A-z B) & =\frac{-B}{A(1-z \cdot B / A)} \\
& =-\frac{B}{A} \cdot \sum_{j=0}^{d-1}\left(\frac{z \cdot B}{A}\right)^{j} \bmod z^{d} \\
& \in \Sigma \wedge \Sigma
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\lim _{\epsilon \rightarrow 0} g_{1} \bmod z^{d} & \equiv \lim _{\epsilon \rightarrow 0} \Pi \Sigma / \Pi \Sigma \cdot\left(\sum \mathrm{dlog}(\Sigma)\right) \bmod z^{d} \\
& \equiv \lim _{\epsilon \rightarrow 0}(\Pi \Sigma / \Pi \Sigma) \cdot(\Sigma \wedge \Sigma) \bmod z^{d} \\
& \in \overline{(\Pi \Sigma / \Pi \Sigma) \cdot(\Sigma \wedge \Sigma)} \bmod z^{d}
\end{aligned}
$$

Finishing the proof

- $\overline{C \cdot \mathcal{D}} \subseteq \bar{C} \cdot \overline{\mathcal{D}}$. Therefore,

Finishing the proof

- $\overline{C \cdot \mathcal{D}} \subseteq \bar{C} \cdot \bar{D}$. Therefore,

$$
\begin{aligned}
\overline{(\Pi \Sigma / \Pi \Sigma) \cdot(\Sigma \wedge \Sigma)} & \subseteq \overline{(\Pi \Sigma / \Pi \Sigma)} \cdot \overline{\Sigma \wedge \Sigma} \\
& \subseteq(\mathrm{ABP} / \mathrm{ABP}) \cdot \mathrm{ABP} \\
& =\mathrm{ABP} / \mathrm{ABP} .
\end{aligned}
$$

Finishing the proof

- $\overline{C \cdot \mathcal{D}} \subseteq \bar{C} \cdot \bar{D}$. Therefore,

$$
\begin{aligned}
\overline{(\Pi \Sigma / \Pi \Sigma) \cdot(\Sigma \wedge \Sigma)} & \subseteq \overline{(\Pi \Sigma / \Pi \Sigma)} \cdot \overline{\Sigma \wedge \Sigma} \\
& \subseteq(\mathrm{ABP} / \mathrm{ABP}) \cdot \mathrm{ABP} \\
& =\mathrm{ABP} / \mathrm{ABP} .
\end{aligned}
$$

- Eliminate division to get: $\lim _{\epsilon \rightarrow 0} g_{1} \bmod z^{d} \equiv \mathrm{ABP} / \mathrm{ABP} \bmod z^{d}=\mathrm{ABP}$.

Finishing the proof

- $\overline{C \cdot \mathcal{D}} \subseteq \bar{C} \cdot \bar{D}$. Therefore,

$$
\begin{aligned}
\overline{(\Pi \Sigma / \Pi \Sigma) \cdot(\Sigma \wedge \Sigma)} & \subseteq \overline{(\Pi \Sigma / \Pi \Sigma)} \cdot \overline{\Sigma \wedge \Sigma} \\
& \subseteq(\mathrm{ABP} / \mathrm{ABP}) \cdot \mathrm{ABP} \\
& =\mathrm{ABP} / \mathrm{ABP} .
\end{aligned}
$$

- Eliminate division to get: $\lim _{\epsilon \rightarrow 0} g_{1} \bmod z^{d} \equiv \mathrm{ABP} / \mathrm{ABP} \bmod z^{d}=\mathrm{ABP}$.
- Thus, $\partial_{z}\left(\Phi(f) / t_{2}\right)=\lim _{\epsilon \rightarrow 0} g_{1}=\operatorname{ABP}$.

Finishing the proof

- $\overline{C \cdot \mathcal{D}} \subseteq \bar{C} \cdot \bar{D}$. Therefore,

$$
\begin{aligned}
\overline{(\Pi \Sigma / \Pi \Sigma) \cdot(\Sigma \wedge \Sigma)} & \subseteq \overline{(\Pi \Sigma / \Pi \Sigma)} \cdot \overline{\Sigma \wedge \Sigma} \\
& \subseteq(\mathrm{ABP} / \mathrm{ABP}) \cdot \mathrm{ABP} \\
& =\mathrm{ABP} / \mathrm{ABP} .
\end{aligned}
$$

- Eliminate division to get: $\lim _{\epsilon \rightarrow 0} g_{1} \bmod z^{d} \equiv \mathrm{ABP} / \mathrm{ABP} \bmod z^{d}=\mathrm{ABP}$.

Thus, $\partial_{z}\left(\Phi(f) / t_{2}\right)=\lim _{\epsilon \rightarrow 0} g_{1}=A B P$. Interpolate/ Induct with Limit:

Finishing the proof

- $\overline{C \cdot \mathcal{D}} \subseteq \bar{C} \cdot \bar{D}$. Therefore,

$$
\begin{aligned}
\overline{(\Pi \Sigma / \Pi \Sigma) \cdot(\Sigma \wedge \Sigma)} & \subseteq \overline{(\Pi \Sigma / \Pi \Sigma)} \cdot \overline{\Sigma \wedge \Sigma} \\
& \subseteq(\mathrm{ABP} / \mathrm{ABP}) \cdot \mathrm{ABP} \\
& =\mathrm{ABP} / \mathrm{ABP} .
\end{aligned}
$$

- Eliminate division to get: $\lim _{\epsilon \rightarrow 0} g_{1} \bmod z^{d} \equiv \mathrm{ABP} / \mathrm{ABP} \bmod z^{d}=\mathrm{ABP}$.
- Thus, $\partial_{z}\left(\Phi(f) / t_{2}\right)=\lim _{\epsilon \rightarrow 0} g_{1}=A B P$. Interpolate/ Induct with Limit:

Thus, $\Phi(f) / t_{2}=\mathrm{ABP} \Longrightarrow \Phi(f)=\mathrm{ABP} \Longrightarrow f=\mathrm{ABP}$.

Derandomizing border depth-3 circuits

Polynomial Identity Testing

Polynomial Identity Testing

\square Polynomial Identity Testing (PIT): Given a circuit C, test whether C computes the zero polynomial (deterministically).

Polynomial Identity Testing

\square Polynomial Identity Testing (PIT): Given a circuit C, test whether C computes the zero polynomial (deterministically).
> Blackbox-PIT asks for an algorithm to test the zeroness of a given algebraic circuit via mere query access.

Polynomial Identity Testing

\square Polynomial Identity Testing (PIT): Given a circuit C, test whether C computes the zero polynomial (deterministically).
> Blackbox-PIT asks for an algorithm to test the zeroness of a given algebraic circuit via mere query access.

Polynomial Identity Lemma [Ore, Demillo-Lipton, Schwartz, Zippel]

Polynomial Identity Testing

\square Polynomial Identity Testing (PIT): Given a circuit C, test whether C computes the zero polynomial (deterministically).
> Blackbox-PIT asks for an algorithm to test the zeroness of a given algebraic circuit via mere query access.

Polynomial Identity Lemma [Ore, Demillo-Lipton, Schwartz, Zippel]

If $P(\boldsymbol{x})$ is a nonzero polynomial of degree d, and $S \subseteq \mathbb{F}$ of size at least $d+1$, then $P(\mathbf{a}) \neq 0$ for some $\boldsymbol{a} \in S^{n}$.

Polynomial Identity Testing

\square Polynomial Identity Testing (PIT): Given a circuit C, test whether C computes the zero polynomial (deterministically).
> Blackbox-PIT asks for an algorithm to test the zeroness of a given algebraic circuit via mere query access.

Polynomial Identity Lemma [Ore, Demillo-Lipton, Schwartz, Zippel]

If $P(\boldsymbol{x})$ is a nonzero polynomial of degree d, and $S \subseteq \mathbb{F}$ of size at least $d+1$, then $P(\mathbf{a}) \neq 0$ for some $\boldsymbol{a} \in S^{n}$.

This above lemma puts PIT \in RP.

Polynomial Identity Testing

\square Polynomial Identity Testing (PIT): Given a circuit C, test whether C computes the zero polynomial (deterministically).
> Blackbox-PIT asks for an algorithm to test the zeroness of a given algebraic circuit via mere query access.

Polynomial Identity Lemma [Ore, Demillo-Lipton, Schwartz, Zippel]

If $P(\boldsymbol{x})$ is a nonzero polynomial of degree d, and $S \subseteq \mathbb{F}$ of size at least $d+1$, then $P(\boldsymbol{a}) \neq 0$ for some $\boldsymbol{a} \in S^{n}$.

- This above lemma puts PIT \in RP.
- Can we derandomize blackbox-PIT?

Polynomial Identity Testing

\square Polynomial Identity Testing (PIT): Given a circuit C, test whether C computes the zero polynomial (deterministically).
> Blackbox-PIT asks for an algorithm to test the zeroness of a given algebraic circuit via mere query access.

Polynomial Identity Lemma [Ore, Demillo-Lipton, Schwartz, Zippel]

If $P(\boldsymbol{x})$ is a nonzero polynomial of degree d, and $S \subseteq \mathbb{F}$ of size at least $d+1$, then $P(\boldsymbol{a}) \neq 0$ for some $\boldsymbol{a} \in S^{n}$.

- This above lemma puts PIT \in RP.

Can we derandomize blackbox-PIT? Some special cases are derandomized.

Polynomial Identity Testing

\square Polynomial Identity Testing (PIT): Given a circuit C, test whether C computes the zero polynomial (deterministically).
> Blackbox-PIT asks for an algorithm to test the zeroness of a given algebraic circuit via mere query access.

Polynomial Identity Lemma [Ore, Demillo-Lipton, Schwartz, Zippel]

If $P(\boldsymbol{x})$ is a nonzero polynomial of degree d, and $S \subseteq \mathbb{F}$ of size at least $d+1$, then $P(\boldsymbol{a}) \neq 0$ for some $\boldsymbol{a} \in S^{n}$.

This above lemma puts PIT \in RP.

- Can we derandomize blackbox-PIT? Some special cases are derandomized.

Derandomizing PIT, for restricted cases, has many algorithmic applications:

Polynomial Identity Testing

\square Polynomial Identity Testing (PIT): Given a circuit C, test whether C computes the zero polynomial (deterministically).
$>$ Blackbox-PIT asks for an algorithm to test the zeroness of a given algebraic circuit via mere query access.

Polynomial Identity Lemma [Ore, Demillo-Lipton, Schwartz, Zippel]

If $P(\boldsymbol{x})$ is a nonzero polynomial of degree d, and $S \subseteq \mathbb{F}$ of size at least $d+1$, then $P(\boldsymbol{a}) \neq 0$ for some $\boldsymbol{a} \in S^{n}$.

- This above lemma puts PIT \in RP.

Can we derandomize blackbox-PIT? Some special cases are derandomized.
D Derandomizing PIT, for restricted cases, has many algorithmic applications:
$>$ Graph Theory [Lovasz'79], [Fenner-Gurjar-Theirauf' 19]

Polynomial Identity Testing

\square Polynomial Identity Testing (PIT): Given a circuit C, test whether C computes the zero polynomial (deterministically).
> Blackbox-PIT asks for an algorithm to test the zeroness of a given algebraic circuit via mere query access.

Polynomial Identity Lemma [Ore, Demillo-Lipton, Schwartz, Zippel]

If $P(\boldsymbol{x})$ is a nonzero polynomial of degree d, and $S \subseteq \mathbb{F}$ of size at least $d+1$, then $P(\boldsymbol{a}) \neq 0$ for some $\boldsymbol{a} \in S^{n}$.

This above lemma puts PIT \in RP.
Can we derandomize blackbox-PIT? Some special cases are derandomized.
D Derandomizing PIT, for restricted cases, has many algorithmic applications:
$>$ Graph Theory [Lovasz' 79], [Fenner-Gurjar-Theirauf' 19]
$>$ Primality Testing [Agrawal-Kayal-Saxena'04].

Border PIT

Border hitting set

\mathcal{H} is a hitting set for a class \bar{C}, if $g(x, \epsilon) \in \mathcal{C}_{\mathbb{F}(\epsilon)}$ approximates a non-zero polynomial $h(\boldsymbol{x})$, then $\exists \boldsymbol{a} \in \mathcal{H}$ such that $g(\boldsymbol{a}, \epsilon) \notin \epsilon \cdot \mathbb{F}[\epsilon]$, i.e. $h(\boldsymbol{a}) \neq 0$.

Border PIT

Border hitting set

\mathcal{H} is a hitting set for a class \bar{C}, if $g(x, \epsilon) \in \mathcal{C}_{\mathbb{F}(\epsilon)}$ approximates a non-zero polynomial $h(\boldsymbol{x})$, then $\exists \boldsymbol{a} \in \mathcal{H}$ such that $g(\boldsymbol{a}, \epsilon) \notin \epsilon \cdot \mathbb{F}[\epsilon]$, i.e. $h(\boldsymbol{a}) \neq 0$.
\square Finding $\boldsymbol{a} \in \mathbb{F}^{n}$ such that $g(\mathbf{a}, \epsilon) \neq 0$ does not suffice.

Border PIT

Border hitting set

\mathcal{H} is a hitting set for a class \bar{C}, if $g(x, \epsilon) \in \mathcal{C}_{\mathbb{F}(\epsilon)}$ approximates a non-zero polynomial $h(\boldsymbol{x})$, then $\exists \boldsymbol{a} \in \mathcal{H}$ such that $g(\boldsymbol{a}, \epsilon) \notin \epsilon \cdot \mathbb{F}[\epsilon]$, i.e. $h(\boldsymbol{a}) \neq 0$.
\square Finding $\boldsymbol{a} \in \mathbb{F}^{n}$ such that $g(\mathbf{a}, \epsilon) \neq 0$ does not suffice.
$\square h$ could have really high (exact) complexity compared to g.

Border PIT

Border hitting set

\mathcal{H} is a hitting set for a class \bar{C}, if $g(x, \epsilon) \in C_{\mathbb{F}(\epsilon)}$ approximates a non-zero polynomial $h(\boldsymbol{x})$, then $\exists \boldsymbol{a} \in \mathcal{H}$ such that $g(\boldsymbol{a}, \epsilon) \notin \epsilon \cdot \mathbb{F}[\epsilon]$, i.e. $h(\boldsymbol{a}) \neq 0$.
\square Finding $\boldsymbol{a} \in \mathbb{F}^{n}$ such that $g(\mathbf{a}, \epsilon) \neq 0$ does not suffice.
$\square h$ could have really high (exact) complexity compared to g.

- We know

Border PIT

Border hitting set

\mathcal{H} is a hitting set for a class \bar{C}, if $g(x, \epsilon) \in C_{\mathbb{F}(\epsilon)}$ approximates a non-zero polynomial $h(\boldsymbol{x})$, then $\exists \boldsymbol{a} \in \mathcal{H}$ such that $g(\boldsymbol{a}, \epsilon) \notin \epsilon \cdot \mathbb{F}[\epsilon]$, i.e. $h(\boldsymbol{a}) \neq 0$.
\square Finding $\boldsymbol{a} \in \mathbb{F}^{n}$ such that $g(\mathbf{a}, \epsilon) \neq 0$ does not suffice.
$\square h$ could have really high (exact) complexity compared to g.

- We know
$>$ polynomial-time hitting set for $\overline{\Pi \Sigma}=\Pi \Sigma$ [Klivans-Spielman 2001],

Border PIT

Border hitting set

\mathcal{H} is a hitting set for a class \bar{C}, if $g(x, \epsilon) \in C_{\mathbb{F}(\epsilon)}$ approximates a non-zero polynomial $h(\boldsymbol{x})$, then $\exists \boldsymbol{a} \in \mathcal{H}$ such that $g(\boldsymbol{a}, \epsilon) \notin \epsilon \cdot \mathbb{F}[\epsilon]$, i.e. $h(\boldsymbol{a}) \neq 0$.
\square Finding $\boldsymbol{a} \in \mathbb{F}^{n}$ such that $g(\mathbf{a}, \epsilon) \neq 0$ does not suffice.
$\square h$ could have really high (exact) complexity compared to g.

- We know
$>$ polynomial-time hitting set for $\overline{\Pi \Sigma}=\Pi \Sigma$ [Klivans-Spielman 2001],
$>$ quasipolynomial-time hitting set for $\overline{\Sigma \wedge \Sigma}$ [Forbes-Shpilka 2013].

Border PIT

Border hitting set

\mathcal{H} is a hitting set for a class \bar{C}, if $g(x, \epsilon) \in C_{\mathbb{F}(\epsilon)}$ approximates a non-zero polynomial $h(\boldsymbol{x})$, then $\exists \boldsymbol{a} \in \mathcal{H}$ such that $g(\boldsymbol{a}, \epsilon) \notin \epsilon \cdot \mathbb{F}[\epsilon]$, i.e. $h(\boldsymbol{a}) \neq 0$.
\square Finding $\boldsymbol{a} \in \mathbb{F}^{n}$ such that $g(\mathbf{a}, \epsilon) \neq 0$ does not suffice.
$\square h$ could have really high (exact) complexity compared to g.

- We know
$>$ polynomial-time hitting set for $\overline{\Pi \Sigma}=\Pi \Sigma$ [Klivans-Spielman 2001],
$>$ quasipolynomial-time hitting set for $\overline{\Sigma \wedge \Sigma}$ [Forbes-Shpilka 2013].
- $n^{O(k)}$-time hitting set is known for $\Sigma^{[k]} \Pi \Sigma$ [Saxena-Seshadri 2012].

Border PIT

Border hitting set

\mathcal{H} is a hitting set for a class \bar{C}, if $g(x, \epsilon) \in C_{\mathbb{F}(\epsilon)}$ approximates a non-zero polynomial $h(\boldsymbol{x})$, then $\exists \boldsymbol{a} \in \mathcal{H}$ such that $g(\boldsymbol{a}, \epsilon) \notin \epsilon \cdot \mathbb{F}[\epsilon]$, i.e. $h(\boldsymbol{a}) \neq 0$.
\square Finding $\mathbf{a} \in \mathbb{F}^{n}$ such that $g(\mathbf{a}, \epsilon) \neq 0$ does not suffice.
$\square h$ could have really high (exact) complexity compared to g.

- We know
$>$ polynomial-time hitting set for $\overline{\Pi \Sigma}=\Pi \Sigma$ [Klivans-Spielman 2001],
$>$ quasipolynomial-time hitting set for $\overline{\Sigma \wedge \Sigma}$ [Forbes-Shpilka 2013].
- $n^{O(k)}$-time hitting set is known for $\Sigma^{[k]} \Pi \Sigma$ [Saxena-Seshadri 2012]. Unfortunately, it does not work for $\overline{\Sigma^{[k]} \Pi \Sigma}$.

Border PIT

Border hitting set

\mathcal{H} is a hitting set for a class \bar{C}, if $g(x, \epsilon) \in \mathcal{C}_{\mathbb{F}(\epsilon)}$ approximates a non-zero polynomial $h(\boldsymbol{x})$, then $\exists \boldsymbol{a} \in \mathcal{H}$ such that $g(\boldsymbol{a}, \epsilon) \notin \epsilon \cdot \mathbb{F}[\epsilon]$, i.e. $h(\boldsymbol{a}) \neq 0$.
\square Finding $\boldsymbol{a} \in \mathbb{F}^{n}$ such that $g(\mathbf{a}, \epsilon) \neq 0$ does not suffice.
$\square h$ could have really high (exact) complexity compared to g.

- We know
$>$ polynomial-time hitting set for $\overline{\Pi \Sigma}=\Pi \Sigma$ [Klivans-Spielman 2001],
$>$ quasipolynomial-time hitting set for $\overline{\Sigma \wedge \Sigma}$ [Forbes-Shpilka 2013].
- $n^{O(k)}$-time hitting set is known for $\Sigma^{[k]} \Pi \Sigma$ [Saxena-Seshadri 2012]. Unfortunately, it does not work for $\overline{\Sigma^{[k]} \Pi \Sigma}$.
- General PIT for det is not known!

Border PIT

Border hitting set

\mathcal{H} is a hitting set for a class \bar{C}, if $g(x, \epsilon) \in C_{\mathbb{F}(\epsilon)}$ approximates a non-zero polynomial $h(\boldsymbol{x})$, then $\exists \boldsymbol{a} \in \mathcal{H}$ such that $g(\boldsymbol{a}, \epsilon) \notin \epsilon \cdot \mathbb{F}[\epsilon]$, i.e. $h(\boldsymbol{a}) \neq 0$.
\square Finding $\boldsymbol{a} \in \mathbb{F}^{n}$ such that $g(\mathbf{a}, \epsilon) \neq 0$ does not suffice.
$\square h$ could have really high (exact) complexity compared to g.

- We know
$>$ polynomial-time hitting set for $\overline{\Pi \Sigma}=\Pi \Sigma$ [Klivans-Spielman 2001],
$>$ quasipolynomial-time hitting set for $\overline{\Sigma \wedge \Sigma}$ [Forbes-Shpilka 2013].
- $n^{O(k)}$-time hitting set is known for $\Sigma^{[k]} \Pi \Sigma$ [Saxena-Seshadri 2012]. Unfortunately, it does not work for $\overline{\Sigma^{[k]} \Pi \Sigma}$.

General PIT for det is not known!

Theorem 2 (Derandomizing polynomal-sized depth-3 top-fanin- k circuits) [Dutta-Dwivedi-Saxena 2021]

There exists an explicit quasipolynomial-time $\left(s^{O(\log \log s)}\right)$ hitting set for size-s $\Sigma^{[k]} \Pi \Sigma$ circuits, for any constant k.

Conclusion

Concluding remarks

Concluding remarks

\square Can we show $\overline{\sum^{[k]} \Pi^{[d]} \Sigma} \neq \mathrm{VBP}$, for $d=\operatorname{poly}(n)$?

Concluding remarks

\square Can we show $\overline{\sum^{[k]} \Pi^{[d]} \Sigma} \neq \mathrm{VBP}$, for $d=\operatorname{poly}(n)$?

Upcoming result by [Dutta-Saxena 2021, Preprint]

There is an explicit n-variate and $<n$ degree polynomial f computed by size- $O(n)$ $\overline{\Sigma^{[k+1]} \Pi \Sigma}$ circuit, such that f requires $2^{\Omega(n)}$-size $\overline{\Sigma^{[k]} \Pi \Sigma}$ circuits.

Concluding remarks

\square Can we show $\overline{\sum^{[k]} \Pi^{[d]} \Sigma} \neq \mathrm{VBP}$, for $d=\operatorname{poly}(n)$?

Upcoming result by [Dutta-Saxena 2021, Preprint]

There is an explicit n-variate and $<n$ degree polynomial f computed by size- $O(n)$ $\Sigma^{[k+1]} \Pi \Sigma$ circuit, such that f requires $2^{\Omega(n)}$-size $\overline{\Sigma^{[k]} \Pi \Sigma}$ circuits.
$>$ This refined separation also establishes: $\overline{\Sigma^{[k]} \Pi^{[d]} \Sigma} \neq \mathrm{VBP}, \mathrm{VNP}$.

Concluding remarks

\square Can we show $\overline{\bar{\Sigma}^{[k]} \Pi^{[d]} \Sigma} \neq \mathrm{VBP}$, for $d=\operatorname{poly}(n)$?

Upcoming result by [Dutta-Saxena 2021, Preprint]

There is an explicit n-variate and $<n$ degree polynomial f computed by size- $O(n)$ $\Sigma^{[k+1]} \Pi \Sigma$ circuit, such that f requires $2^{\Omega(n)}$-size $\Sigma^{[k]} \Pi \Sigma$ circuits.
$>$ This refined separation also establishes: $\overline{\Sigma^{[k]} \Pi^{[d]} \Sigma} \neq \mathrm{VBP}, \mathrm{VNP}$.
[Dutta-Dwivedi-Saxena 2021] showed a quasipolynomial-time hitting set for $\overline{\Sigma^{[k]} \Pi^{[d]} \Sigma}$ circuits. Can we improve it to polynomial?

Concluding remarks

\square Can we show $\overline{\bar{\Sigma}^{[k]} \Pi^{[d]} \Sigma} \neq \mathrm{VBP}$, for $d=\operatorname{poly}(n)$?

Upcoming result by [Dutta-Saxena 2021, Preprint]

There is an explicit n-variate and $<n$ degree polynomial f computed by size- $O(n)$ $\Sigma^{[k+1]} \Pi \Sigma$ circuit, such that f requires $2^{\Omega(n)}$-size $\Sigma^{[k]} \Pi \Sigma$ circuits.
$>$ This refined separation also establishes: $\overline{\Sigma^{[k]} \Pi^{[d]} \Sigma} \neq \mathrm{VBP}, \mathrm{VNP}$.
[Dutta-Dwivedi-Saxena 2021] showed a quasipolynomial-time hitting set for $\overline{\Sigma^{[k]} \Pi^{[d]} \Sigma}$ circuits. Can we improve it to polynomial? In fact, it's poly-time for log-variate $\overline{\Sigma^{[k]} \Pi^{[d]} \Sigma}$ circuits.

Concluding remarks

\square Can we show $\overline{\bar{\Sigma}^{[k]} \Pi^{[d]} \Sigma} \neq \mathrm{VBP}$, for $d=\operatorname{poly}(n)$?

Upcoming result by [Dutta-Saxena 2021, Preprint]

There is an explicit n-variate and $<n$ degree polynomial f computed by size- $O(n)$ $\overline{\Sigma^{[k+1]} \Pi \Sigma}$ circuit, such that f requires $2^{\Omega(n)}$-size $\overline{\Sigma^{[k]} \Pi \Sigma}$ circuits.
$>$ This refined separation also establishes: $\overline{\Sigma^{[k]} \Pi^{[d]} \Sigma} \neq \mathrm{VBP}, \mathrm{VNP}$.
[Dutta-Dwivedi-Saxena 2021] showed a quasipolynomial-time hitting set for $\Sigma^{[k]} \Pi^{[d]} \Sigma$ circuits. Can we improve it to polynomial? In fact, it's poly-time for log-variate $\overline{\Sigma^{[k]} \Pi^{[d]} \Sigma}$ circuits.

D Does our technique extend to arbitrary constant-depth border circuits? Currently it extends to restricted depth- 4 circuits.

Concluding remarks

\square Can we show $\overline{\bar{\Sigma}^{[k]} \Pi^{[d]} \Sigma} \neq \mathrm{VBP}$, for $d=\operatorname{poly}(n)$?

Upcoming result by [Dutta-Saxena 2021, Preprint]

There is an explicit n-variate and $<n$ degree polynomial f computed by size- $O(n)$ $\Sigma^{[k+1]} \Pi \Sigma$ circuit, such that f requires $2^{\Omega(n)}$-size $\overline{\Sigma^{[k]} \Pi \Sigma}$ circuits.
$>$ This refined separation also establishes: $\overline{\Sigma^{[k]} \Pi^{[d]} \Sigma} \neq \mathrm{VBP}$, VNP.
[Dutta-Dwivedi-Saxena 2021] showed a quasipolynomial-time hitting set for $\overline{\Sigma^{[k]} \Pi^{[d]} \Sigma}$ circuits. Can we improve it to polynomial? In fact, it's poly-time for log-variate $\overline{\Sigma^{[k]} \Pi^{[d]} \Sigma}$ circuits.

Does our technique extend to arbitrary constant-depth border circuits? Currently it extends to restricted depth- 4 circuits.

Thank you.

Concluding remarks

\square Can we show $\overline{\bar{\Sigma}^{[k]} \Pi^{[d]} \Sigma} \neq \mathrm{VBP}$, for $d=\operatorname{poly}(n)$?

Upcoming result by [Dutta-Saxena 2021, Preprint]

There is an explicit n-variate and $<n$ degree polynomial f computed by size- $O(n)$ $\Sigma^{[k+1]} \Pi \Sigma$ circuit, such that f requires $2^{\Omega(n)}$-size $\overline{\Sigma^{[k]} \Pi \Sigma}$ circuits.
$>$ This refined separation also establishes: $\overline{\Sigma^{[k]} \Pi^{[d]} \Sigma} \neq \mathrm{VBP}, \mathrm{VNP}$.
[Dutta-Dwivedi-Saxena 2021] showed a quasipolynomial-time hitting set for $\overline{\Sigma^{[k]} \Pi^{[d]} \Sigma}$ circuits. Can we improve it to polynomial? In fact, it's poly-time for log-variate $\overline{\Sigma^{[k]} \Pi^{[d]} \Sigma}$ circuits.

D Does our technique extend to arbitrary constant-depth border circuits? Currently it extends to restricted depth- 4 circuits.

Thank you. Questions?

