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Algebraic Complexity Theory



Basic goal

❑ P versus NP. Proving P ≠ NP is one of the most fundamental open problems at
the intersection of theoretical computer science and mathematics.

❑ Very few techniques are known that could potentially break the 1994
Razborov-Rudich ‘natural proofs barrier’.

❑ In 2001 Mulmuley and Sohoni published Geometric Complexity Theory 1
(GCT1) in which they describe a method that could potentially break the barrier.

➢ It is built on Valiant’s algebraic complexity theory framework (1979) to
prove the algebraic P ≠ NP, namely VP ≠ VNP.

➢ It defines Border Complexity, which was independently defined by
Bürgisser (2001). We will consider ‘algebraic’ notion of border complexity.

➢ It proposes to prove border complexity lower bounds using representation
theory, which is developed further in [GCT2, Mulmuley-Sohoni’08].

❑ [P ?
= NP, Aaronson 2011] calls GCT “The String Theory of Computer Science”.
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Computationally ‘easy’ polynomials

VP = “easy to compute” [Valiant’79]
The class VP is defined as the set of all sequences of polynomials (fn (x1, . . . , xn))n≥1
such that size(fn), deg(fn) are both bounded by nc for some constant c.

Examples:

➢ fn := x1 · · · xn.

➢ fn := xn
1 + . . . + xn

n .

➢ fn :=
∑︁

S⊆[n]

∏
j∈S

xj =

n∏
i=1

(1 + xi ).
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The determinant polynomial

❑ Let Xn = [xi ,j ]1≤i ,j≤n be a n × n matrix of distinct variables xi ,j . Let
Sn := {𝜋 | 𝜋 : {1, . . . , n} −→ {1, . . . , n} such that 𝜋 is bĳective }. Define

fn := det(Xn) =
∑︁
𝜋∈Sn

sgn(𝜋)
n∏

i=1
xi , 𝜋 (i ) .

❑ det is universal, i.e. any polynomial f (x) can be computed as a determinant of a
square matrix whose entries are polynomials of degree ≤ 1.

❑ The minimum dimension of the matrix to compute f , is called the
determinantal complexity dc(f ).

❑ E.g. dc(x1 · · · xn) = n, since

x1 · · · xn = det

©«
x1 0 . . . 0
0 x2 . . . 0
.
.
.

.

.

.
.
.
.

.

.

.

0 0 . . . xn

ª®®®®®¬
.
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Another ‘easy’ class VBP

❑ VBP: The class VBP is defined as the set of all sequences of polynomials (fn)n
with polynomially bounded dc(fn).

❑ VBP ⊆ VP. It is open whether VBP ?
= VP.

❑ Often we will say f has a small ABP. This just means dc(f ) is small.

❑ Connections: Linear algebra, Volume, counting planar matchings.

6



Another ‘easy’ class VBP

❑ VBP: The class VBP is defined as the set of all sequences of polynomials (fn)n
with polynomially bounded dc(fn).

❑ VBP ⊆ VP. It is open whether VBP ?
= VP.

❑ Often we will say f has a small ABP. This just means dc(f ) is small.

❑ Connections: Linear algebra, Volume, counting planar matchings.

6



Another ‘easy’ class VBP

❑ VBP: The class VBP is defined as the set of all sequences of polynomials (fn)n
with polynomially bounded dc(fn).

❑ VBP ⊆ VP. It is open whether VBP ?
= VP.

❑ Often we will say f has a small ABP. This just means dc(f ) is small.

❑ Connections: Linear algebra, Volume, counting planar matchings.

6



Another ‘easy’ class VBP

❑ VBP: The class VBP is defined as the set of all sequences of polynomials (fn)n
with polynomially bounded dc(fn).

❑ VBP ⊆ VP. It is open whether VBP ?
= VP.

❑ Often we will say f has a small ABP. This just means dc(f ) is small.

❑ Connections: Linear algebra, Volume, counting planar matchings.

6



‘Hard’ polynomials?

❑ Are there hard polynomial families (fn)n such that it cannot be computed by an
nc-size circuit, for every constant c? i.e. size(fn) = n𝜔 (1)?

❑ A random polynomial with 0-1 coefficient is hard [Hrubeš-Yehudayoff
ToC’11]. Challenge: Find an explicit one!

❑ Candidate hard polynomial:

perm(Xn) =
∑︁
𝜋∈Sn

n∏
i=1

xi , 𝜋 (i ) .

❑ perm is universal, i.e. any polynomial f (x) can be computed as a permanent of a
square matrix whose entries are polynomials of degree ≤ 1.

❑ The minimum dimension of the matrix to compute f , is called the permanental
complexity pc(f ).
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ToC’11]. Challenge: Find an explicit one!

❑ Candidate hard polynomial:

perm(Xn) =
∑︁
𝜋∈Sn

n∏
i=1

xi , 𝜋 (i ) .

❑ perm is universal, i.e. any polynomial f (x) can be computed as a permanent of a
square matrix whose entries are polynomials of degree ≤ 1.

❑ The minimum dimension of the matrix to compute f , is called the permanental
complexity pc(f ).

7



‘Hard’ polynomials?

❑ Are there hard polynomial families (fn)n such that it cannot be computed by an
nc-size circuit, for every constant c? i.e. size(fn) = n𝜔 (1)?

❑ A random polynomial with 0-1 coefficient is hard [Hrubeš-Yehudayoff
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Valiant’s Conjecture

VNP = “hard to compute?” [Valiant 1979]
The class VNP is defined as the set of all sequences of polynomials
(fn (x1, . . . , xn))n≥1 such that pc(fn)is bounded by nc for some constant c.

❑ Connections: Enumeration, counting matchings, Bosons etc.

❑ VBP ⊆ VP ⊆ VNP.

Valiant’s Conjecture [Valiant 1979]
VBP ≠ VNP & VP ≠ VNP. Equivalently, dc(permn) and size(permn) are both
n𝜔 (1) .
[Also, VBP ≠ VP. A candidate?]
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Connections to Boolean circuit complexity

❑ Separating algebraic classes are “easier” than separating classes in Boolean
complexity [Bürgisser 1998]:

➢ P/poly ≠ NP/poly =⇒ VBP ≠ VNP and VP ≠ VNP (over finite fields).

➢ Assuming GRH (Generalized Riemann hypothesis), the results hold over C
as well.
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Summary

❑ A recent breakthrough. [Limaye-Srinivasan-Tavenas FOCS 2021] showed the
first superpolynomial lower bound for general constant-depth algebraic circuits!

❑ Can there be ‘algebraic natural proofs’ to prove VP ≠ VNP? Some
answers: [Chatterjee-Kumar-Ramya-Saptharishi-Tengse 2020,
Kumar-Ramya-Saptharishi-Tengse 2020].
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Border Complexity and GCT



Waring rank

❑ Can ‘approximations’ also help in algebraic computational models?

❑ An important measure is Waring rank, denoted WR(·).

Waring Rank
The smallest r such that a homogeneous degree d polynomial h can be written as a
sum of d-th power of linear forms ℓi , i.e. h =

∑r
i=1 ℓd

i .

❑ Recall: h =
∑

e1 ,..,en ae1 ,...,en xe1
1 · · · xen

n , is called homogeneous degree d
polynomial if

∑
ei = d, for every tupple (e1, . . . , en) such that ae1 ,...,en ≠ 0.

❑ Recall: A linear form ℓ is of the form a1x1 + . . . + anxn.

❑ For any homogeneous polynomial h, WR(h) is finite.

❑ WR(h) ≤ r is denoted as h ∈ Σ[r ] ∧Σ (homogeneous depth-3 diagonal circuits).
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Approximation helps!

❑ Example: WR(x2y) ≤ 3, because

x2y =
1
6
· (x + y)3 − 1

6
· (x − y)3 − 1

3
· y3 .

❑ Prove: WR(x2y) = 3.

❑ Let h𝜖 := 1
3𝜖

(
(x + 𝜖y)3 − x3

)
= x2y + 𝜖xy2 + 𝜖 2

3 y3 𝜖→0→ x2y =: h (coefficient-wise).

❑ Note: WR(h𝜖 ) ≤ 2, for any fixed non-zero 𝜖 . But WR(h) = 3!

WR(h) ≤ 1WR(h) ≤ 2WR(h) ≤ 3WR(h) ≤ 4

x2y

12
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So, Border Waring rank

Border Waring rank

The border Waring rank WR(h) is defined as the smallest n such that h can be
approximated arbitrarily closely by polynomials of Waring rank ≤ n.

❑ WR(x2y) = 2 but WR(x2y) = 3.

❑ The subtlety is gone: Xn := {h | WR(h) ≤ n}, is now a closed set.

❑ On to proving lower bounds: To show WR(p) > n, for some p, it suffices to show
that p ∉ Xn, i.e. find a continuous function f that vanishes on Xn but not on p.
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Border complexity

❑ Replace Waring rank by any sensible measure Γ. It can be size, dc, pc and so on.

❑ For any Γ, we can define the border complexity measure Γ via:
Γ(h) is the smallest n such that h(x) can be approximated arbitrarily closely by
polynomials h𝜖 (x) with Γ(h𝜖 ) ≤ n. In other words,

lim
𝜖→0

h𝜖 = h (coefficient-wise) .

❑ Important border rank: border tensor rank, related to border Waring rank!
Border tensor rank is directly related to the matrix multiplication exponent
𝜔 [Bini 1980, Coppersmith-Winograd 1990].
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Approximative circuits

❑ Coefficients in the earlier definition can be arbitrary depending on the parameter
𝜖 . Can it be ‘nicer’?

❑ Yes! Via ‘approximative circuits’.
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Approximative circuits (continued)

x1 x2 x3 1

+ + + + + +

× × ×

+

1
𝜖3

𝜖

𝜖3+1

g(x1, . . . , xn, 𝜖) ∈ F(𝜖) [x]

F(𝜖) := {p(𝜖)
q(𝜖) | p, q ∈ F[𝜖], q(𝜖) ≠ 0}
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Algebraic approximation

❑ Suppose, we assume the following:
➢ g(x , 𝜖) ∈ F[x1, . . . , xn, 𝜖], i.e. it is a polynomial of the form

g(x , 𝜖) =

M∑︁
i=0

gi (x1, . . . , xn) · 𝜖 i ,

➢ Can we say anything about the complexity of g0?

❑ Obvious attempt:

➢ Since, g(x , 0) = g0, why not just set 𝜖 = 0?! Setting 𝜖 = 0 may not be
‘legal’ as it could be using 1/𝜖 in the wire. Though it is well-defined!

❑ Summary: g0 is really something non-trivial and being ‘approximated’ by the
circuit since lim𝜖→0 g(x , 𝜖) = g0.
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‘legal’ as it could be using 1/𝜖 in the wire. Though it is well-defined!

❑ Summary: g0 is really something non-trivial and being ‘approximated’ by the
circuit since lim𝜖→0 g(x , 𝜖) = g0.
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Algebraic approximation (continued)

Algebraic Approximation [Bürgisser 2004]
A polynomial h(x) ∈ F[x] has approximative complexity s, if there is a circuit
g(x , 𝜖) ∈ F(𝜖) [x], of size s, over F(𝜖), and a polynomial S(x , 𝜖) ∈ F[𝜖] [x] such that
g(x , 𝜖) = h(x) + 𝜖 · S(x , 𝜖). In other words, lim𝜖→0 g = h.

❑ size(h) ≤ size(h).

❑ If g has circuit of size s over F(𝜖), then one can assume that the highest degree
of 𝜖 in g can be exponentially large 2s2 [Bürgisser 2004, 2020].

❑ Let us assume that g(x , 𝜖) = ∑M
i=0 gi · 𝜖 i , where M = 2s2 . Note: g0 = h.

➢ Pick M + 1 many distinct values from F randomly and interpolate;

➢ size(h) ≤ exp(size(h)).

❑ size(h) ≤ size(h) ≤ exp(size(h))
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De-bordering

❑ De-bordering: Given a ‘nice’ class C, can we de-border C? i.e. find another
‘nice’ class D such that C ⊆ D?

❑ Take C ∈ {VBP,VP, Σ ∧ Σ,VNP, · · · }.

❑ Major open questions from [Mulmuley Sohoni 2001] and [Bürgisser 2001]:

VBP ?
= VBP , VP ?

= VP , VNP ?
= VNP .
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Strengthening lower bounds and its advantages

Strengthening Valiant’s Conjecture [Milind Sohoni 2001]

VNP ⊄ VBP & VNP ⊄ VP. Equivalently, dc(permn) and size(permn) are both
n𝜔 (1) .

❑ Both det and perm have ‘nice’ symmetries.

❑ Symmetry-characterization avoids the Razborov–Rudich barrier: Very few
functions are symmetry-characterized, so symmetry-characterization violates
the largeness criterion!
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De-bordering results and their importance

❑ A few known de-bordering results:
➢ VBPnon-com = VBPnon-com, in the noncommutative world [Nisan 1991].

➢ Σ ∧ Σ ⊊ VBP [Forbes 2016, Bläser-Dörfler-Ikenmeyer 2021].

➢ Σ[s]Π = Σ[s]Π and Π [d ]Σ = Π [d ]Σ.

❑ Upper bounds and lower bounds become more algebro-geometric in nature.

❑ Further potential applications in identity testing and understanding its
‘robustness’.

21



De-bordering results and their importance

❑ A few known de-bordering results:

➢ VBPnon-com = VBPnon-com, in the noncommutative world [Nisan 1991].

➢ Σ ∧ Σ ⊊ VBP [Forbes 2016, Bläser-Dörfler-Ikenmeyer 2021].

➢ Σ[s]Π = Σ[s]Π and Π [d ]Σ = Π [d ]Σ.

❑ Upper bounds and lower bounds become more algebro-geometric in nature.

❑ Further potential applications in identity testing and understanding its
‘robustness’.

21



De-bordering results and their importance

❑ A few known de-bordering results:
➢ VBPnon-com = VBPnon-com, in the noncommutative world [Nisan 1991].

➢ Σ ∧ Σ ⊊ VBP [Forbes 2016, Bläser-Dörfler-Ikenmeyer 2021].

➢ Σ[s]Π = Σ[s]Π and Π [d ]Σ = Π [d ]Σ.

❑ Upper bounds and lower bounds become more algebro-geometric in nature.

❑ Further potential applications in identity testing and understanding its
‘robustness’.

21



De-bordering results and their importance

❑ A few known de-bordering results:
➢ VBPnon-com = VBPnon-com, in the noncommutative world [Nisan 1991].

➢ Σ ∧ Σ ⊊ VBP [Forbes 2016, Bläser-Dörfler-Ikenmeyer 2021].

➢ Σ[s]Π = Σ[s]Π and Π [d ]Σ = Π [d ]Σ.

❑ Upper bounds and lower bounds become more algebro-geometric in nature.

❑ Further potential applications in identity testing and understanding its
‘robustness’.

21



De-bordering results and their importance

❑ A few known de-bordering results:
➢ VBPnon-com = VBPnon-com, in the noncommutative world [Nisan 1991].

➢ Σ ∧ Σ ⊊ VBP [Forbes 2016, Bläser-Dörfler-Ikenmeyer 2021].

➢ Σ[s]Π = Σ[s]Π and Π [d ]Σ = Π [d ]Σ.

❑ Upper bounds and lower bounds become more algebro-geometric in nature.

❑ Further potential applications in identity testing and understanding its
‘robustness’.

21



De-bordering results and their importance

❑ A few known de-bordering results:
➢ VBPnon-com = VBPnon-com, in the noncommutative world [Nisan 1991].

➢ Σ ∧ Σ ⊊ VBP [Forbes 2016, Bläser-Dörfler-Ikenmeyer 2021].

➢ Σ[s]Π = Σ[s]Π and Π [d ]Σ = Π [d ]Σ.

❑ Upper bounds and lower bounds become more algebro-geometric in nature.

❑ Further potential applications in identity testing and understanding its
‘robustness’.

21



De-bordering results and their importance

❑ A few known de-bordering results:
➢ VBPnon-com = VBPnon-com, in the noncommutative world [Nisan 1991].

➢ Σ ∧ Σ ⊊ VBP [Forbes 2016, Bläser-Dörfler-Ikenmeyer 2021].

➢ Σ[s]Π = Σ[s]Π and Π [d ]Σ = Π [d ]Σ.

❑ Upper bounds and lower bounds become more algebro-geometric in nature.

❑ Further potential applications in identity testing and understanding its
‘robustness’.

21



Border depth-3 circuits



Depth-3 circuits

❑ Depth-3 circuits with top fanin k, are denoted as Σ[k ]Π [d ]Σ. Thus, the size is
trivially bounded by O(knd).

❑ They compute polynomials of the form
∑k

i=1
∏d

j=1 ℓij , where ℓij are linear
polynomials (i.e. a0 + a1x1 + . . . + anxn, for ai ∈ F).

❑ How powerful are Σ[k ]Π [d ]Σ circuits? Are they universal?

❑ No. E.g. the Inner Product polynomial ⟨x , y⟩ = x1y1 + . . . + xk+1yk+1 cannot
be written as a Σ[k ]Π [d ]Σ circuit, regardless of the product fanin d!
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Power of border depth-3 circuits

❑ What about Σ[k ]Π [d ]Σ circuits?

❑ Recall: h ∈ Σ[k ]Π [d ]Σ of size s if there exists a circuit g such that

g(x , 𝜖) = h(x) + 𝜖 · S(x , 𝜖) ,

where g can be computed by a Σ[k ]Π [d ]Σ circuit, over F(𝜖), of size s.

Border depth-3 fanin 2 circuits are ‘universal’ [Kumar 2020]

Let P be any homogeneous n-variate degree d polynomial. Then, P ∈ Σ[2]Π [D]Σ,
where D := exp(n, d).
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Proof of Kumar’s result

Proof.
1. Let WR(P) =: m. Then, there are linear forms ℓi such that

P =

m∑︁
i=1

ℓd
i [m can be as large as exp(n, d)] .

2. Consider A(x) := ∏m
i=1 (1 + ℓd

i ) =
∏m

i=1
∏d

j=1 (𝛼j + ℓi ), for 𝛼j ∈ C. Note that

A(x) = 1 + P + B where deg(B) ≥ 2d .

3. Replace xi by 𝜖 · xi to get that

m∏
i=1

d∏
j=1

(𝛼j + 𝜖 · ℓi ) = 1 + 𝜖d · P + 𝜖2d · R(x , 𝜖) .

4. Divide by 𝜖d and rearrange to get

P + 𝜖d · R(x , 𝜖) = −𝜖−d + 𝜖−d ·
m∏

i=1

d∏
j=1

(𝛼j + 𝜖 · ℓi ) ∈ Σ[2]Π [md ]Σ .

□
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De-bordering Σ[2]ΠΣ circuits

❑ If h is approximated by a Σ[2]Π [d ]Σ circuit with d = poly(n), what’s the exact
complexity of h?

➢ Is it even explicit? If yes, Σ[2]Π [d ]Σ ⊆ VNP?

Theorem 1 (Border of depth-3 top-fanin-2 circuit is ‘easy’)
[Dutta-Dwivedi-Saxena FOCS 2021].

Σ[2]Π [d ]Σ ⊆ VBP, for d = poly(n).
In particular, any polynomial in the border of top-fanin-2 size-s depth-3 circuits, can
also be exactly computed by a linear projection of a poly(s) × poly(s) determinant.

Remark. The result holds if one replaces the top-fanin-2 by arbitrary constant k.
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Why k = 2 is hard to analyze?

❑ Deep cancellations for k = 2 make things harder.

❑ E.g., T1 := 𝜖−3 (1+𝜖x1+𝜖2x2+𝜖3x3+ . . .),T2 := 𝜖−3 (1+𝜖x1+𝜖2x2+𝜖3x4+ . . .).
Note, lim𝜖→0 (T1 − T2) = (x3 − x4).

❑ Note x2 ≡ (x − 𝜖M/2 · a) (x + 𝜖M/2 · a) mod 𝜖M , for any a ∈ F.

❑ Moreover,

lim
𝜖→0

1
𝜖M ·

(
x2 − (x − 𝜖M/2 · a) (x + 𝜖M/2 · a)

)
= a2 .

❑ Infinitely many factorizations may give infinitely many limits.
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Proof sketch for k = 2

❑ T1 + T2 = f (x) + 𝜖 · S(x , 𝜖), where Ti ∈ ΠΣ in F(𝜖) [x]. Assume deg(f ) =: d.

❑ High-level idea: Reduce fanin 2 to 1 with a ‘nice’ form.

❑ Apply a map Φ, defined by Φ : xi ↦→ z · xi + 𝛼i , where 𝛼i ∈ F are random.

➢ The variable z is the degree counter and enables derivation,

➢ 𝛼i to ensure: If ℓ | Ti , then Φ(ℓ) |z=0 = ℓ(𝛼1, . . . , 𝛼n) ∈ F(𝜖)\{0}.

❑ It suffices to show that Φ(f ) has small ABP.

❑ We devise a technique called DiDIL –
Divide, Derive, Interpolate/ Induct with Limit.

27
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k = 2 proof continued: Divide and Derive

❑ Let Φ(Ti ) =: 𝜖ai · T̃i , for i ∈ [2], where ai := val𝜖 (Φ(Ti )).

❑ val𝜖 (·) denotes the highest power of 𝜖 dividing it.

❑ Divide and Derive:

f + 𝜖 · S = T1 + T2

=⇒ Φ(f ) + 𝜖 · Φ(S) = Φ(T1) +Φ(T2)
=⇒ Φ(f )/T̃2 + 𝜖 · Φ(S)/T̃2 = Φ(T1)/T̃2 + 𝜖a2

=⇒ 𝜕z
(
Φ(f )/T̃2

)
+ 𝜖 · 𝜕z

(
Φ(S)/T̃2

)
= 𝜕z

(
Φ(T1)/T̃2

)
=: g1 . (1)

❑ lim𝜖→0 g1 = 𝜕z (Φ(f )/t2), where t2 := lim𝜖→0 T̃2.
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k = 2 proof continued

❑ First target: compute lim𝜖→0 g1 = 𝜕z (Φ(f )/t2).

❑ Logarithmic derivative: dlogz (h) := 𝜕z (h)/h.

❑ dlog linearizes product: dlog(h1h2) = dlog(h1) + dlog(h2). Note:

𝜕z
(
Φ(T1)/T̃2

)
= Φ(T1)/T̃2 · dlog

(
Φ(T1)/T̃2

)
= (ΠΣ/ΠΣ) · dlog (ΠΣ/ΠΣ)

= ΠΣ/ΠΣ ·
(
±
∑︁

dlog(Σ)
)
.

❑ Here Σ means just a linear polynomial ℓ.
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k = 2 proof continued: Quick recap

❑ Recap: 𝜕z (Φ(f )/t2) = lim𝜖→0 g1 = lim𝜖→0 (ΠΣ/ΠΣ) · (±∑
dlog(Σ)).

❑ deg(f ) = d =⇒ degz (Φ(f )) = d =⇒ degz (𝜕z (Φ(f ))) = d − 1.

❑ Suffices to compute lim𝜖→0 g1 mod zd .
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k = 2 proof: dlog strikes!

❑ What is dlog(ℓ) for a linear polynomial ℓ = A − z · B?

dlog(A − zB) = −B
A (1 − z · B/A)

= −B
A

·
d−1∑︁
j=0

(
z · B

A

) j
mod zd

∈ Σ ∧ Σ .

Thus,

lim
𝜖→0

g1 mod zd ≡ lim
𝜖→0

ΠΣ/ΠΣ ·
(∑︁

dlog(Σ)
)

mod zd

≡ lim
𝜖→0

(ΠΣ/ΠΣ) · (Σ ∧ Σ) mod zd

∈ (ΠΣ/ΠΣ) · (Σ ∧ Σ) mod zd .
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Finishing the proof

❑ C · D ⊆ C · D. Therefore,

(ΠΣ/ΠΣ) · (Σ ∧ Σ) ⊆ (ΠΣ/ΠΣ) · Σ ∧ Σ

⊆ (ABP/ABP) · ABP

= ABP/ABP .

❑ Eliminate division to get: lim𝜖→0 g1 mod zd ≡ ABP/ABP mod zd = ABP.

❑ Thus, 𝜕z (Φ(f )/t2) = lim𝜖→0 g1 = ABP. Interpolate/ Induct with Limit:

❑ Thus, Φ(f )/t2 = ABP =⇒ Φ(f ) = ABP =⇒ f = ABP.
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Derandomizing border depth-3 circuits



Polynomial Identity Testing

❑ Polynomial Identity Testing (PIT): Given a circuit C, test whether C computes
the zero polynomial (deterministically).

➢ Blackbox-PIT asks for an algorithm to test the zeroness of a given algebraic
circuit via mere query access.

Polynomial Identity Lemma [Ore, Demillo-Lipton, Schwartz, Zippel]
If P(x) is a nonzero polynomial of degree d, and S ⊆ F of size at least d + 1, then
P(a) ≠ 0 for some a ∈ Sn.

❑ This above lemma puts PIT ∈ RP.

❑ Can we derandomize blackbox-PIT? Some special cases are derandomized.

❑ Derandomizing PIT, for restricted cases, has many algorithmic applications:
➢ Graph Theory [Lovasz’79], [Fenner-Gurjar-Theirauf’19]
➢ Primality Testing [Agrawal-Kayal-Saxena’04].
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Polynomial Identity Testing

❑ Polynomial Identity Testing (PIT): Given a circuit C, test whether C computes
the zero polynomial (deterministically).

➢ Blackbox-PIT asks for an algorithm to test the zeroness of a given algebraic
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Border PIT

Border hitting set

H is a hitting set for a class C, if g(x, 𝜖) ∈ CF(𝜖 ) approximates a non-zero
polynomial h(x), then ∃a ∈ H such that g(a, 𝜖) ∉ 𝜖 · F[𝜖], i.e. h(a) ≠ 0.

❑ Finding a ∈ Fn such that g(a, 𝜖) ≠ 0 does not suffice.

❑ h could have really high (exact) complexity compared to g.

❑ We know
➢ polynomial-time hitting set for ΠΣ = ΠΣ [Klivans-Spielman 2001],
➢ quasipolynomial-time hitting set for Σ ∧ Σ [Forbes-Shpilka 2013].

❑ nO (k ) -time hitting set is known for Σ[k ]ΠΣ [Saxena-Seshadri 2012].
Unfortunately, it does not work for Σ[k ]ΠΣ.

❑ General PIT for det is not known!

Theorem 2 (Derandomizing polynomal-sized depth-3 top-fanin-k circuits)
[Dutta-Dwivedi-Saxena 2021]

There exists an explicit quasipolynomial-time (sO (log log s) ) hitting set for size-s
Σ[k ]ΠΣ circuits, for any constant k.
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Concluding remarks

❑ Can we show Σ[k ]Π [d ]Σ ≠ VBP, for d = poly(n)?

Upcoming result by [Dutta-Saxena 2021, Preprint]
There is an explicit n-variate and < n degree polynomial f computed by size-O(n)
Σ[k+1]ΠΣ circuit, such that f requires 2Ω(n) -size Σ[k ]ΠΣ circuits.

➢ This refined separation also establishes: Σ[k ]Π [d ]Σ ≠ VBP,VNP.

❑ [Dutta-Dwivedi-Saxena 2021] showed a quasipolynomial-time hitting set for
Σ[k ]Π [d ]Σ circuits. Can we improve it to polynomial?
In fact, it’s poly-time for log-variate Σ[k ]Π [d ]Σ circuits.

❑ Does our technique extend to arbitrary constant-depth border circuits? Currently
it extends to restricted depth-4 circuits.

Thank you. Questions?
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