Demystifying the border of depth-3 circuits

Accepted to the 62nd IEEE Symposium on Foundations of Computer Science (FOCS 2021). **Pranjal Dutta** (CMI & IIT Kanpur) & Prateek Dwivedi (IIT Kanpur) & **Nitin Saxena** (IIT Kanpur).

24th January, 2022

School and Conference on Geometric Complexity Theory Jan 2022, Chennai (virtual)

- 1. Algebraic Complexity Theory
- 2. Border Complexity and GCT
- 3. Border depth-3 circuits
- 4. Derandomizing border depth-3 circuits
- 5. Conclusion

Algebraic Complexity Theory

□ P versus NP. Proving P ≠ NP is one of the most fundamental open problems at the intersection of theoretical computer science and mathematics.

- □ P versus NP. Proving P ≠ NP is one of the most fundamental open problems at the intersection of theoretical computer science and mathematics.
- □ Very few techniques are known that could potentially break the 1994 Razborov-Rudich '*natural proofs barrier*'.

- □ P versus NP. Proving P ≠ NP is one of the most fundamental open problems at the intersection of theoretical computer science and mathematics.
- □ Very few techniques are known that could potentially break the 1994 Razborov-Rudich '*natural proofs barrier*'.
- □ In 2001 Mulmuley and Sohoni published **Geometric Complexity Theory 1** (GCT1) in which they describe a method that could potentially break the barrier.

- □ P versus NP. Proving P ≠ NP is one of the most fundamental open problems at the intersection of theoretical computer science and mathematics.
- □ Very few techniques are known that could potentially break the 1994 Razborov-Rudich '*natural proofs barrier*'.
- □ In 2001 Mulmuley and Sohoni published **Geometric Complexity Theory 1** (GCT1) in which they describe a method that could potentially break the barrier.
 - ➤ It is built on Valiant's algebraic complexity theory framework (1979) to prove the algebraic P ≠ NP, namely VP ≠ VNP.

- □ P versus NP. Proving P ≠ NP is one of the most fundamental open problems at the intersection of theoretical computer science and mathematics.
- □ Very few techniques are known that could potentially break the 1994 Razborov-Rudich '*natural proofs barrier*'.
- □ In 2001 Mulmuley and Sohoni published **Geometric Complexity Theory 1** (GCT1) in which they describe a method that could potentially break the barrier.
 - ➤ It is built on Valiant's algebraic complexity theory framework (1979) to prove the algebraic P ≠ NP, namely VP ≠ VNP.
 - It defines Border Complexity, which was independently defined by Bürgisser (2001).

- □ P versus NP. Proving P ≠ NP is one of the most fundamental open problems at the intersection of theoretical computer science and mathematics.
- □ Very few techniques are known that could potentially break the 1994 Razborov-Rudich '*natural proofs barrier*'.
- □ In 2001 Mulmuley and Sohoni published **Geometric Complexity Theory 1** (GCT1) in which they describe a method that could potentially break the barrier.
 - ➤ It is built on Valiant's algebraic complexity theory framework (1979) to prove the algebraic P ≠ NP, namely VP ≠ VNP.
 - It defines Border Complexity, which was independently defined by Bürgisser (2001). We will consider 'algebraic' notion of border complexity.

- □ P versus NP. Proving P ≠ NP is one of the most fundamental open problems at the intersection of theoretical computer science and mathematics.
- □ Very few techniques are known that could potentially break the 1994 Razborov-Rudich '*natural proofs barrier*'.
- □ In 2001 Mulmuley and Sohoni published **Geometric Complexity Theory 1** (GCT1) in which they describe a method that could potentially break the barrier.
 - ➤ It is built on Valiant's algebraic complexity theory framework (1979) to prove the algebraic P ≠ NP, namely VP ≠ VNP.
 - It defines Border Complexity, which was independently defined by Bürgisser (2001). We will consider 'algebraic' notion of border complexity.
 - It proposes to prove border complexity lower bounds using representation theory, which is developed further in [GCT2, Mulmuley-Sohoni'08].

- □ P versus NP. Proving P ≠ NP is one of the most fundamental open problems at the intersection of theoretical computer science and mathematics.
- □ Very few techniques are known that could potentially break the 1994 Razborov-Rudich '*natural proofs barrier*'.
- □ In 2001 Mulmuley and Sohoni published **Geometric Complexity Theory 1** (GCT1) in which they describe a method that could potentially break the barrier.
 - ➤ It is built on Valiant's algebraic complexity theory framework (1979) to prove the algebraic P ≠ NP, namely VP ≠ VNP.
 - It defines Border Complexity, which was independently defined by Bürgisser (2001). We will consider 'algebraic' notion of border complexity.
 - It proposes to prove border complexity lower bounds using representation theory, which is developed further in [GCT2, Mulmuley-Sohoni'08].
- \square [P $\stackrel{?}{=}$ NP, Aaronson 2011] calls GCT "The String Theory of Computer Science".

Size of the circuit = number of nodes + edges

size(f) = min size of the circuit computing f

Computationally 'easy' polynomials

The class VP is defined as the set of all sequences of polynomials $(f_n(x_1,...,x_n))_{n\geq 1}$ such that size (f_n) , deg (f_n) are both bounded by n^c for some constant c.

The class VP is defined as the set of all sequences of polynomials $(f_n(x_1,...,x_n))_{n\geq 1}$ such that size (f_n) , deg (f_n) are both bounded by n^c for some constant c.

Examples:

 $\succ f_n := x_1 \cdots x_n.$

The class VP is defined as the set of all sequences of polynomials $(f_n(x_1,...,x_n))_{n\geq 1}$ such that size (f_n) , deg (f_n) are both bounded by n^c for some constant c.

Examples:

$$f_n := x_1 \cdots x_n.$$

$$f_n := x_1^n + \ldots + x_n^n$$

The class VP is defined as the set of all sequences of polynomials $(f_n(x_1,...,x_n))_{n\geq 1}$ such that size (f_n) , deg (f_n) are both bounded by n^c for some constant c.

Examples:

$$f_n := x_1 \cdots x_n.$$

$$f_n := x_1^n + \ldots + x_n^n.$$

$$f_n := \sum_{S \subseteq [n]} \prod_{j \in S} x_j$$

The class VP is defined as the set of all sequences of polynomials $(f_n(x_1,...,x_n))_{n\geq 1}$ such that size (f_n) , deg (f_n) are both bounded by n^c for some constant c.

Examples:

 $f_n := x_1 \cdots x_n.$ $f_n := x_1^n + \dots + x_n^n.$ $f_n := \sum_{S \subseteq [n]} \prod_{j \in S} x_j = \prod_{i=1}^n (1 + x_i).$

□ Let $X_n = [x_{i,j}]_{1 \le i,j \le n}$ be a $n \times n$ matrix of distinct variables $x_{i,j}$. Let $S_n := \{\pi \mid \pi : \{1, ..., n\} \longrightarrow \{1, ..., n\}$ such that π is bijective $\}$. Define

$$f_n := \det(X_n) = \sum_{\pi \in S_n} \operatorname{sgn}(\pi) \prod_{i=1}^n x_{i,\pi(i)} .$$

□ Let $X_n = [x_{i,j}]_{1 \le i,j \le n}$ be a $n \times n$ matrix of distinct variables $x_{i,j}$. Let $S_n := \{\pi \mid \pi : \{1, ..., n\} \longrightarrow \{1, ..., n\}$ such that π is bijective $\}$. Define

$$f_n := \det(X_n) = \sum_{\pi \in S_n} \operatorname{sgn}(\pi) \prod_{i=1}^n x_{i,\pi(i)} .$$

□ det is *universal*, i.e. any polynomial $f(\mathbf{x})$ can be computed as a determinant of a square matrix whose entries are polynomials of degree ≤ 1 .

□ Let $X_n = [x_{i,j}]_{1 \le i,j \le n}$ be a $n \times n$ matrix of distinct variables $x_{i,j}$. Let $S_n := \{\pi \mid \pi : \{1, ..., n\} \longrightarrow \{1, ..., n\}$ such that π is bijective $\}$. Define

$$f_n := \det(X_n) = \sum_{\pi \in S_n} \operatorname{sgn}(\pi) \prod_{i=1}^n x_{i,\pi(i)} .$$

- □ det is *universal*, i.e. any polynomial $f(\mathbf{x})$ can be computed as a determinant of a square matrix whose entries are polynomials of degree ≤ 1 .
- □ The minimum dimension of the matrix to compute *f*, is called the determinantal complexity dc(*f*).

□ Let $X_n = [x_{i,j}]_{1 \le i,j \le n}$ be a $n \times n$ matrix of distinct variables $x_{i,j}$. Let $S_n := \{\pi \mid \pi : \{1, ..., n\} \longrightarrow \{1, ..., n\}$ such that π is bijective $\}$. Define

$$f_n := \det(X_n) = \sum_{\pi \in S_n} \operatorname{sgn}(\pi) \prod_{i=1}^n x_{i,\pi(i)} .$$

- □ det is *universal*, i.e. any polynomial $f(\mathbf{x})$ can be computed as a determinant of a square matrix whose entries are polynomials of degree ≤ 1 .
- □ The minimum dimension of the matrix to compute *f*, is called the **determinantal complexity dc**(*f*).

 \Box E.g. dc($x_1 \cdots x_n$) = n, since

$$x_{1} \cdots x_{n} = \det \begin{pmatrix} x_{1} & 0 & \dots & 0 \\ 0 & x_{2} & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & x_{n} \end{pmatrix}.$$

□ VBP: The class VBP is defined as the set of all sequences of polynomials $(f_n)_n$ with polynomially bounded $dc(f_n)$.

□ VBP: The class VBP is defined as the set of all sequences of polynomials $(f_n)_n$ with polynomially bounded $dc(f_n)$.

□ VBP ⊆ VP. It is open whether VBP $\stackrel{?}{=}$ VP.

□ VBP: The class VBP is defined as the set of all sequences of polynomials $(f_n)_n$ with polynomially bounded $dc(f_n)$.

□ VBP ⊆ VP. It is open whether VBP $\stackrel{?}{=}$ VP.

 \Box Often we will say *f* has a small ABP. This just means dc(f) is small.

- □ VBP: The class VBP is defined as the set of all sequences of polynomials $(f_n)_n$ with polynomially bounded $dc(f_n)$.
- □ VBP ⊆ VP. It is open whether VBP $\stackrel{?}{=}$ VP.
- \Box Often we will say *f* has a small ABP. This just means dc(f) is small.
- □ Connections: Linear algebra, Volume, counting planar matchings.

□ Are there hard polynomial families $(f_n)_n$ such that it cannot be computed by an n^c -size circuit, for *every* constant *c*? i.e. size $(f_n) = n^{\omega(1)}$?

- □ Are there hard polynomial families $(f_n)_n$ such that it cannot be computed by an n^c -size circuit, for *every* constant *c*? i.e. size $(f_n) = n^{\omega(1)}$?
- □ A *random* polynomial with 0-1 coefficient is **hard** [Hrubeš-Yehudayoff ToC'11].

- □ Are there hard polynomial families $(f_n)_n$ such that it cannot be computed by an n^c -size circuit, for *every* constant *c*? i.e. size $(f_n) = n^{\omega(1)}$?
- □ A *random* polynomial with 0-1 coefficient is **hard** [Hrubeš-Yehudayoff ToC'11]. Challenge: Find an **explicit** one!

- □ Are there hard polynomial families $(f_n)_n$ such that it cannot be computed by an n^c -size circuit, for *every* constant *c*? i.e. size $(f_n) = n^{\omega(1)}$?
- □ A *random* polynomial with 0-1 coefficient is **hard** [Hrubeš-Yehudayoff ToC'11]. Challenge: Find an **explicit** one!
- □ Candidate hard polynomial:

$$\operatorname{perm}(X_n) = \sum_{\pi \in S_n} \prod_{i=1}^n x_{i,\pi(i)} \, .$$
'Hard' polynomials?

- □ Are there hard polynomial families $(f_n)_n$ such that it cannot be computed by an n^c -size circuit, for *every* constant *c*? i.e. size $(f_n) = n^{\omega(1)}$?
- □ A *random* polynomial with 0-1 coefficient is **hard** [Hrubeš-Yehudayoff ToC'11]. Challenge: Find an **explicit** one!
- □ Candidate hard polynomial:

$$\operatorname{perm}(X_n) = \sum_{\pi \in S_n} \prod_{i=1}^n x_{i,\pi(i)} \, .$$

□ perm is *universal*, i.e. any polynomial $f(\mathbf{x})$ can be computed as a permanent of a square matrix whose entries are polynomials of degree ≤ 1 .

'Hard' polynomials?

- □ Are there hard polynomial families $(f_n)_n$ such that it cannot be computed by an n^c -size circuit, for *every* constant *c*? i.e. size $(f_n) = n^{\omega(1)}$?
- □ A *random* polynomial with 0-1 coefficient is **hard** [Hrubeš-Yehudayoff ToC'11]. Challenge: Find an **explicit** one!
- □ Candidate hard polynomial:

$$\operatorname{perm}(X_n) = \sum_{\pi \in S_n} \prod_{i=1}^n x_{i,\pi(i)} .$$

- □ perm is *universal*, i.e. any polynomial $f(\mathbf{x})$ can be computed as a permanent of a square matrix whose entries are polynomials of degree ≤ 1 .
- □ The minimum dimension of the matrix to compute *f*, is called the **permanental** complexity pc(*f*).

The class VNP is defined as the set of all sequences of polynomials $(f_n(x_1, \ldots, x_n))_{n \ge 1}$ such that $pc(f_n)$ is bounded by n^c for some constant *c*.

The class VNP is defined as the set of all sequences of polynomials $(f_n(x_1, \ldots, x_n))_{n \ge 1}$ such that $pc(f_n)$ is bounded by n^c for some constant *c*.

□ Connections: Enumeration, counting matchings, Bosons etc.

The class VNP is defined as the set of all sequences of polynomials $(f_n(x_1, \ldots, x_n))_{n \ge 1}$ such that $pc(f_n)$ is bounded by n^c for some constant *c*.

□ Connections: Enumeration, counting matchings, Bosons etc.

 $\Box VBP \subseteq VP \subseteq VNP.$

The class VNP is defined as the set of all sequences of polynomials $(f_n(x_1, \ldots, x_n))_{n \ge 1}$ such that $pc(f_n)$ is bounded by n^c for some constant *c*.

□ Connections: Enumeration, counting matchings, Bosons etc.

```
\Box VBP \subseteq VP \subseteq VNP.
```

```
Valiant's Conjecture [Valiant 1979]

VBP \neq VNP & VP \neq VNP. Equivalently, dc(perm<sub>n</sub>) and size(perm<sub>n</sub>) are both n^{\omega(1)}.

[Also, VBP \neq VP. A candidate?]
```

Connections to Boolean circuit complexity

Separating algebraic classes are "easier" than separating classes in Boolean complexity [Bürgisser 1998]:

- Separating algebraic classes are "easier" than separating classes in Boolean complexity [Bürgisser 1998]:
 - > P/poly \neq NP/poly \implies VBP \neq VNP and VP \neq VNP (over finite fields).

- Separating algebraic classes are "easier" than separating classes in Boolean complexity [Bürgisser 1998]:
 - > P/poly \neq NP/poly \implies VBP \neq VNP and VP \neq VNP (over finite fields).
 - Assuming GRH (Generalized Riemann hypothesis), the results hold over C as well.

Summary

□ A recent breakthrough. [Limaye-Srinivasan-Tavenas FOCS 2021] showed the *first super*polynomial lower bound for general **constant-depth** algebraic circuits!

□ A recent breakthrough. [Limaye-Srinivasan-Tavenas FOCS 2021] showed the *first super*polynomial lower bound for general **constant-depth** algebraic circuits!

□ Can there be 'algebraic natural proofs' to prove VP ≠ VNP? Some answers: [Chatterjee-Kumar-Ramya-Saptharishi-Tengse 2020, Kumar-Ramya-Saptharishi-Tengse 2020]. **Border Complexity and GCT**

□ Can 'approximations' also help in algebraic computational models?

- □ Can 'approximations' also help in algebraic computational models?
- \Box An important measure is **Waring rank**, denoted **WR**(·).

- □ Can 'approximations' also help in algebraic computational models?
- \Box An important measure is **Waring rank**, denoted **WR**(·).

- □ Can 'approximations' also help in algebraic computational models?
- \Box An important measure is **Waring rank**, denoted **WR**(·).

The smallest *r* such that a *homogeneous* degree *d* polynomial *h* can be written as a sum of *d*-th power of linear forms ℓ_i , i.e. $h = \sum_{i=1}^r \ell_i^d$.

□ Recall: $h = \sum_{e_1,...,e_n} a_{e_1,...,e_n} x_1^{e_1} \cdots x_n^{e_n}$, is called **homogeneous** degree *d* polynomial if $\sum e_i = d$, for every tupple $(e_1, ..., e_n)$ such that $a_{e_1,...,e_n} \neq 0$.

- □ Can 'approximations' also help in algebraic computational models?
- \Box An important measure is **Waring rank**, denoted **WR**(·).

- □ Recall: $h = \sum_{e_1,...,e_n} a_{e_1,...,e_n} x_1^{e_1} \cdots x_n^{e_n}$, is called **homogeneous** degree *d* polynomial if $\sum e_i = d$, for every tupple $(e_1, ..., e_n)$ such that $a_{e_1,...,e_n} \neq 0$.
- □ Recall: A linear form ℓ is of the form $a_1x_1 + \ldots + a_nx_n$.

- □ Can 'approximations' also help in algebraic computational models?
- \Box An important measure is **Waring rank**, denoted **WR**(·).

- □ Recall: $h = \sum_{e_1,...,e_n} a_{e_1,...,e_n} x_1^{e_1} \cdots x_n^{e_n}$, is called **homogeneous** degree *d* polynomial if $\sum e_i = d$, for every tupple $(e_1, ..., e_n)$ such that $a_{e_1,...,e_n} \neq 0$.
- □ Recall: A linear form ℓ is of the form $a_1x_1 + \ldots + a_nx_n$.
- \Box For any homogeneous polynomial *h*, WR(*h*) is *finite*.

- □ Can 'approximations' also help in algebraic computational models?
- \Box An important measure is **Waring rank**, denoted **WR**(·).

- □ Recall: $h = \sum_{e_1,...,e_n} a_{e_1,...,e_n} x_1^{e_1} \cdots x_n^{e_n}$, is called **homogeneous** degree *d* polynomial if $\sum e_i = d$, for every tupple $(e_1, ..., e_n)$ such that $a_{e_1,...,e_n} \neq 0$.
- □ Recall: A linear form l is of the form $a_1x_1 + \ldots + a_nx_n$.
- \Box For any homogeneous polynomial *h*, WR(*h*) is *finite*.
- □ WR(*h*) ≤ *r* is denoted as $h \in \Sigma^{[r]} \land \Sigma$ (homogeneous *depth-3 diagonal* circuits).

□ Example: $WR(x^2y) \le 3$, because

 \Box Example: WR(x^2y) \leq 3, because

$$x^{2}y = \frac{1}{6} \cdot (x+y)^{3} - \frac{1}{6} \cdot (x-y)^{3} - \frac{1}{3} \cdot y^{3}$$

 \Box Example: WR(x^2y) \leq 3, because

$$x^{2}y = \frac{1}{6} \cdot (x+y)^{3} - \frac{1}{6} \cdot (x-y)^{3} - \frac{1}{3} \cdot y^{3}$$

Prove: $WR(x^2y) = 3$.

 \Box Example: WR(x^2y) \leq 3, because

$$x^{2}y = \frac{1}{6} \cdot (x+y)^{3} - \frac{1}{6} \cdot (x-y)^{3} - \frac{1}{3} \cdot y^{3}$$

D Prove: $WR(x^2y) = 3$.

 $\Box \text{ Let } h_{\epsilon} := \frac{1}{3\epsilon} \left((x + \epsilon y)^3 - x^3 \right)$

□ Example: $WR(x^2y) \le 3$, because

$$x^{2}y = \frac{1}{6} \cdot (x+y)^{3} - \frac{1}{6} \cdot (x-y)^{3} - \frac{1}{3} \cdot y^{3}$$

□ Prove: WR(x²y) = 3. □ Let $h_{\epsilon} := \frac{1}{3\epsilon} \left((x + \epsilon y)^3 - x^3 \right)$ $= x^2 y + \epsilon x y^2 + \frac{\epsilon^2}{3} y^3 \xrightarrow{\epsilon \to 0} x^2 y =: h$ (coefficient-wise).

□ Example: $WR(x^2y) \le 3$, because

$$x^{2}y = \frac{1}{6} \cdot (x+y)^{3} - \frac{1}{6} \cdot (x-y)^{3} - \frac{1}{3} \cdot y^{3}$$

 $\Box \text{ Prove: WR}(x^2y) = 3.$ $\Box \text{ Let } h_{\epsilon} := \frac{1}{3\epsilon} \left((x + \epsilon y)^3 - x^3 \right)$ $= x^2y + \epsilon xy^2 + \frac{\epsilon^2}{3}y^3 \xrightarrow{\epsilon \to 0} x^2y =: h \text{ (coefficient-wise).}$

□ Note: $WR(h_{\epsilon}) \le 2$, for any fixed non-zero ϵ . But WR(h) = 3!

 \Box Example: WR(x^2y) \leq 3, because

$$x^{2}y = \frac{1}{6} \cdot (x+y)^{3} - \frac{1}{6} \cdot (x-y)^{3} - \frac{1}{3} \cdot y^{3}$$

□ Prove: WR(x²y) = 3.
□ Let
$$h_{\epsilon} := \frac{1}{3\epsilon} \left((x + \epsilon y)^3 - x^3 \right)$$

 $= x^2 y + \epsilon x y^2 + \frac{\epsilon^2}{3} y^3 \xrightarrow{\epsilon \to 0} x^2 y =: h$ (coefficient-wise).

□ Note: $WR(h_{\epsilon}) \le 2$, for any fixed non-zero ϵ . But WR(h) = 3!

The border Waring rank $\overline{WR}(h)$ is defined as the smallest *n* such that *h* can be **approximated** arbitrarily closely by polynomials of Waring rank $\leq n$.

The border Waring rank $\overline{WR}(h)$ is defined as the smallest *n* such that *h* can be **approximated** arbitrarily closely by polynomials of Waring rank $\leq n$.

 $\Box \ \overline{\mathsf{WR}}(x^2y) = 2 \text{ but } \mathsf{WR}(x^2y) = 3.$

The border Waring rank $\overline{WR}(h)$ is defined as the smallest *n* such that *h* can be **approximated** arbitrarily closely by polynomials of Waring rank $\leq n$.

 $\Box \ \overline{\mathsf{WR}}(x^2y) = 2 \text{ but } \mathsf{WR}(x^2y) = 3.$

□ The subtlety is *gone*: $X_n := \{h \mid \overline{WR}(h) \le n\}$, is now a **closed** set.

The border Waring rank $\overline{WR}(h)$ is defined as the smallest *n* such that *h* can be **approximated** arbitrarily closely by polynomials of Waring rank $\leq n$.

 $\Box \ \overline{\mathsf{WR}}(x^2y) = 2 \text{ but } \mathsf{WR}(x^2y) = 3.$

- □ The subtlety is *gone*: $X_n := \{h \mid \overline{WR}(h) \le n\}$, is now a **closed** set.
- □ On to proving lower bounds: To show $\overline{WR}(p) > n$, for some p, it suffices to show that $p \notin X_n$, i.e. find a *continuous* function f that vanishes on X_n but not on p.

 \Box Replace Waring rank by any sensible measure Γ . It can be size, dc, pc and so on.
- \Box Replace Waring rank by any sensible measure Γ . It can be size, dc, pc and so on.
- □ For any Γ , we can define the border complexity measure $\overline{\Gamma}$ via: $\overline{\Gamma}(h)$ is the *smallest* n such that $h(\mathbf{x})$ can be approximated arbitrarily closely by polynomials $h_{\epsilon}(\mathbf{x})$ with $\Gamma(h_{\epsilon}) \leq n$.

- \Box Replace Waring rank by any sensible measure Γ . It can be size, dc, pc and so on.
- □ For any Γ , we can define the border complexity measure $\overline{\Gamma}$ via: $\overline{\Gamma}(h)$ is the *smallest* n such that $h(\mathbf{x})$ can be approximated arbitrarily closely by polynomials $h_{\epsilon}(\mathbf{x})$ with $\Gamma(h_{\epsilon}) \leq n$. In other words,

 $\lim_{\epsilon \to 0} h_{\epsilon} = h \text{ (coefficient-wise)}.$

- \Box Replace Waring rank by any sensible measure Γ . It can be size, dc, pc and so on.
- □ For any Γ , we can define the border complexity measure $\overline{\Gamma}$ via: $\overline{\Gamma}(h)$ is the *smallest* n such that $h(\mathbf{x})$ can be approximated arbitrarily closely by polynomials $h_{\epsilon}(\mathbf{x})$ with $\Gamma(h_{\epsilon}) \leq n$. In other words,

 $\lim_{\epsilon \to 0} h_{\epsilon} = h \text{ (coefficient-wise)}.$

□ Important border rank: **border tensor rank**, related to border Waring rank!

- \Box Replace Waring rank by any sensible measure Γ . It can be size, dc, pc and so on.
- □ For any Γ , we can define the border complexity measure $\overline{\Gamma}$ via: $\overline{\Gamma}(h)$ is the *smallest* n such that $h(\mathbf{x})$ can be approximated arbitrarily closely by polynomials $h_{\epsilon}(\mathbf{x})$ with $\Gamma(h_{\epsilon}) \leq n$. In other words,

 $\lim_{\epsilon \to 0} h_{\epsilon} = h \text{ (coefficient-wise)}.$

Important border rank: border tensor rank, related to border Waring rank! Border tensor rank is *directly* related to the matrix multiplication exponent ω [Bini 1980, Coppersmith-Winograd 1990]. Coefficients in the earlier definition can be arbitrary depending on the parameter *ϵ*. Can it be 'nicer'?

- Coefficients in the earlier definition can be arbitrary depending on the parameter *ϵ*. Can it be 'nicer'?
- □ Yes! Via '*approximative circuits*'.

Approximative circuits (continued)

 \Box Suppose, we assume the following:

> $g(\mathbf{x}, \epsilon) \in \mathbb{F}[x_1, ..., x_n, \epsilon]$, i.e. it is a polynomial of the form

$$g(\mathbf{x},\epsilon) = \sum_{i=0}^{M} g_i(x_1,\ldots,x_n) \cdot \epsilon^i$$
,

□ Suppose, we assume the following:

 \succ *g*(**x**, *ϵ*) ∈ **F**[*x*₁,...,*x*_n, *ϵ*], i.e. it is a polynomial of the form

$$g(\mathbf{x},\epsilon) = \sum_{i=0}^{M} g_i(x_1,\ldots,x_n) \cdot \epsilon^i$$
,

> Can we say anything about the complexity of g_0 ?

 \Box Suppose, we assume the following:

 \succ *g*(**x**, *ϵ*) ∈ **F**[*x*₁,...,*x*_n, *ϵ*], i.e. it is a polynomial of the form

$$g(\mathbf{x},\epsilon) = \sum_{i=0}^{M} g_i(x_1,\ldots,x_n) \cdot \epsilon^i$$
,

> Can we say anything about the complexity of g_0 ?

□ Obvious attempt:

> Since, $g(\mathbf{x}, 0) = g_0$, why not just set $\epsilon = 0$?!

□ Suppose, we assume the following:

 \succ $g(\mathbf{x}, \epsilon) \in \mathbb{F}[x_1, ..., x_n, \epsilon]$, i.e. it is a polynomial of the form

$$g(\mathbf{x},\epsilon) = \sum_{i=0}^{M} g_i(x_1,\ldots,x_n) \cdot \epsilon^i$$
,

> Can we say anything about the complexity of g_0 ?

□ Obvious attempt:

> Since, $g(\mathbf{x}, 0) = g_0$, why not just set $\epsilon = 0$?! Setting $\epsilon = 0$ may not be 'legal' as it could be using $1/\epsilon$ in the wire. Though it is well-defined!

 \Box Suppose, we assume the following:

 \succ $g(\mathbf{x}, \epsilon) \in \mathbb{F}[x_1, ..., x_n, \epsilon]$, i.e. it is a polynomial of the form

$$g(\mathbf{x},\epsilon) = \sum_{i=0}^{M} g_i(x_1,\ldots,x_n) \cdot \epsilon^i ,$$

> Can we say anything about the complexity of g_0 ?

□ Obvious attempt:

> Since, $g(\mathbf{x}, 0) = g_0$, why not just set $\epsilon = 0$?! Setting $\epsilon = 0$ may not be 'legal' as it could be using $1/\epsilon$ in the wire. Though it is well-defined!

□ Summary: g_0 is really something **non-trivial** and being 'approximated' by the circuit since $\lim_{\epsilon \to 0} g(\mathbf{x}, \epsilon) = g_0$.

A polynomial $h(x) \in \mathbb{F}[x]$ has **approximative complexity** *s*, if there is a circuit $g(x, \epsilon) \in \mathbb{F}(\epsilon)[x]$, of size *s*, over $\mathbb{F}(\epsilon)$, and a polynomial $S(x, \epsilon) \in \mathbb{F}[\epsilon][x]$ such that $g(x, \epsilon) = h(x) + \epsilon \cdot S(x, \epsilon)$. In other words, $\lim_{\epsilon \to 0} g = h$.

Algebraic approximation (continued)

Algebraic Approximation [Bürgisser 2004]

A polynomial $h(x) \in \mathbb{F}[x]$ has **approximative complexity** *s*, if there is a circuit $g(x, \epsilon) \in \mathbb{F}(\epsilon)[x]$, of size *s*, over $\mathbb{F}(\epsilon)$, and a polynomial $S(x, \epsilon) \in \mathbb{F}[\epsilon][x]$ such that $g(x, \epsilon) = h(x) + \epsilon \cdot S(x, \epsilon)$. In other words, $\lim_{\epsilon \to 0} g = h$.

 $\Box \ \overline{\text{size}}(h) \leq \text{size}(h).$

A polynomial $h(x) \in \mathbb{F}[x]$ has **approximative complexity** *s*, if there is a circuit $g(x, \epsilon) \in \mathbb{F}(\epsilon)[x]$, of size *s*, over $\mathbb{F}(\epsilon)$, and a polynomial $S(x, \epsilon) \in \mathbb{F}[\epsilon][x]$ such that $g(x, \epsilon) = h(x) + \epsilon \cdot S(x, \epsilon)$. In other words, $\lim_{\epsilon \to 0} g = h$.

 $\Box \ \overline{\text{size}}(h) \leq \text{size}(h).$

□ If *g* has circuit of size *s* over $\mathbb{F}(\epsilon)$, then one can assume that the highest degree of ϵ in *g* can be *exponentially large* 2^{s^2} [Bürgisser 2004, 2020].

A polynomial $h(x) \in \mathbb{F}[x]$ has **approximative complexity** *s*, if there is a circuit $g(x, \epsilon) \in \mathbb{F}(\epsilon)[x]$, of size *s*, over $\mathbb{F}(\epsilon)$, and a polynomial $S(x, \epsilon) \in \mathbb{F}[\epsilon][x]$ such that $g(x, \epsilon) = h(x) + \epsilon \cdot S(x, \epsilon)$. In other words, $\lim_{\epsilon \to 0} g = h$.

 $\Box \ \overline{\text{size}}(h) \leq \text{size}(h).$

□ If *g* has circuit of size *s* over $\mathbb{F}(\epsilon)$, then one can assume that the highest degree of ϵ in *g* can be *exponentially large* 2^{s^2} [Bürgisser 2004, 2020].

 \Box Let us assume that $g(\mathbf{x}, \epsilon) = \sum_{i=0}^{M} g_i \cdot \epsilon^i$, where $M = 2^{s^2}$. Note: $g_0 = h$.

A polynomial $h(x) \in \mathbb{F}[x]$ has **approximative complexity** *s*, if there is a circuit $g(x, \epsilon) \in \mathbb{F}(\epsilon)[x]$, of size *s*, over $\mathbb{F}(\epsilon)$, and a polynomial $S(x, \epsilon) \in \mathbb{F}[\epsilon][x]$ such that $g(x, \epsilon) = h(x) + \epsilon \cdot S(x, \epsilon)$. In other words, $\lim_{\epsilon \to 0} g = h$.

 $\Box \ \overline{\text{size}}(h) \leq \text{size}(h).$

- □ If *g* has circuit of size *s* over $\mathbb{F}(\epsilon)$, then one can assume that the highest degree of ϵ in *g* can be *exponentially large* 2^{s^2} [Bürgisser 2004, 2020].
- **L**et us assume that $g(\mathbf{x}, \epsilon) = \sum_{i=0}^{M} g_i \cdot \epsilon^i$, where $M = 2^{s^2}$. Note: $g_0 = h$.

> Pick M + 1 many distinct values from \mathbb{F} randomly and interpolate;

A polynomial $h(x) \in \mathbb{F}[x]$ has **approximative complexity** *s*, if there is a circuit $g(x, \epsilon) \in \mathbb{F}(\epsilon)[x]$, of size *s*, over $\mathbb{F}(\epsilon)$, and a polynomial $S(x, \epsilon) \in \mathbb{F}[\epsilon][x]$ such that $g(x, \epsilon) = h(x) + \epsilon \cdot S(x, \epsilon)$. In other words, $\lim_{\epsilon \to 0} g = h$.

 $\Box \ \overline{\text{size}}(h) \leq \text{size}(h).$

- □ If *g* has circuit of size *s* over $\mathbb{F}(\epsilon)$, then one can assume that the highest degree of ϵ in *g* can be *exponentially large* 2^{s^2} [Bürgisser 2004, 2020].
- \Box Let us assume that $g(\mathbf{x}, \epsilon) = \sum_{i=0}^{M} g_i \cdot \epsilon^i$, where $M = 2^{s^2}$. Note: $g_0 = h$.

> Pick M + 1 many distinct values from \mathbb{F} randomly and interpolate;

➤ size(h) ≤ exp($\overline{\text{size}}(h)$).

A polynomial $h(x) \in \mathbb{F}[x]$ has **approximative complexity** *s*, if there is a circuit $g(x, \epsilon) \in \mathbb{F}(\epsilon)[x]$, of size *s*, over $\mathbb{F}(\epsilon)$, and a polynomial $S(x, \epsilon) \in \mathbb{F}[\epsilon][x]$ such that $g(x, \epsilon) = h(x) + \epsilon \cdot S(x, \epsilon)$. In other words, $\lim_{\epsilon \to 0} g = h$.

 $\Box \ \overline{\text{size}}(h) \leq \text{size}(h).$

□ If *g* has circuit of size *s* over $\mathbb{F}(\epsilon)$, then one can assume that the highest degree of ϵ in *g* can be *exponentially large* 2^{s^2} [Bürgisser 2004, 2020].

 \Box Let us assume that $g(\mathbf{x}, \epsilon) = \sum_{i=0}^{M} g_i \cdot \epsilon^i$, where $M = 2^{s^2}$. Note: $g_0 = h$.

> Pick M + 1 many distinct values from \mathbb{F} randomly and interpolate;

➤ size(h) ≤ exp($\overline{\text{size}}(h)$).

 $\Box \ \overline{\text{size}}(h) \le \text{size}(h) \le \exp(\overline{\text{size}}(h))$

□ De-bordering: Given a 'nice' class *C*, can we de-border \overline{C} ? i.e. find another 'nice' class *D* such that $\overline{C} \subseteq D$?

- □ De-bordering: Given a 'nice' class C, can we de-border \overline{C} ? i.e. find another 'nice' class \mathcal{D} such that $\overline{C} \subseteq \mathcal{D}$?
- $\Box \text{ Take } C \in \{ \mathsf{VBP}, \mathsf{VP}, \Sigma \land \Sigma, \mathsf{VNP}, \cdots \}.$

- □ De-bordering: Given a 'nice' class *C*, can we de-border \overline{C} ? i.e. find another 'nice' class *D* such that $\overline{C} \subseteq D$?
- $\Box \text{ Take } C \in \{ \mathsf{VBP}, \mathsf{VP}, \Sigma \land \Sigma, \mathsf{VNP}, \cdots \}.$

□ Major open questions from [Mulmuley Sohoni 2001] and [Bürgisser 2001]:

- □ De-bordering: Given a 'nice' class *C*, can we de-border \overline{C} ? i.e. find another 'nice' class \mathcal{D} such that $\overline{C} \subseteq \mathcal{D}$?
- $\Box \text{ Take } C \in \{ \mathsf{VBP}, \mathsf{VP}, \Sigma \land \Sigma, \mathsf{VNP}, \cdots \}.$

□ Major open questions from [Mulmuley Sohoni 2001] and [Bürgisser 2001]:

$$\overline{\mathsf{VBP}} \stackrel{?}{=} \mathsf{VBP}$$
, $\overline{\mathsf{VP}} \stackrel{?}{=} \mathsf{VP}$, $\overline{\mathsf{VNP}} \stackrel{?}{=} \mathsf{VNP}$.

Strengthening Valiant's Conjecture [Milind Sohoni 2001]

VNP $\notin \overline{\text{VBP}} \& \text{VNP} \notin \overline{\text{VP}}$. Equivalently, $\overline{\text{dc}}(\text{perm}_n)$ and $\overline{\text{size}}(\text{perm}_n)$ are both $n^{\omega(1)}$.

Strengthening Valiant's Conjecture [Milind Sohoni 2001]

VNP $\notin \overline{\text{VBP}} \& \text{VNP} \notin \overline{\text{VP}}$. Equivalently, $\overline{\text{dc}}(\text{perm}_n)$ and $\overline{\text{size}}(\text{perm}_n)$ are both $n^{\omega(1)}$.

□ Both det and perm have 'nice' symmetries.

Strengthening Valiant's Conjecture [Milind Sohoni 2001]

VNP $\notin \overline{\text{VBP}} \& \text{VNP} \notin \overline{\text{VP}}$. Equivalently, $\overline{\text{dc}}(\text{perm}_n)$ and $\overline{\text{size}}(\text{perm}_n)$ are both $n^{\omega(1)}$.

□ Both det and perm have 'nice' symmetries.

□ Symmetry-characterization **avoids** the Razborov–Rudich barrier: *Very few* functions are symmetry-characterized, so symmetry-characterization violates the largeness criterion!

 \gg VBP_{non-com} = VBP_{non-com}, in the noncommutative world [Nisan 1991].

- \gg VBP_{non-com} = VBP_{non-com}, in the noncommutative world [Nisan 1991].
- \succ Σ ∧ Σ ⊊ VBP [Forbes 2016, Bläser-Dörfler-Ikenmeyer 2021].

- \gg VBP_{non-com} = VBP_{non-com}, in the noncommutative world [Nisan 1991].
- \succ Σ ∧ Σ ⊊ VBP [Forbes 2016, Bläser-Dörfler-Ikenmeyer 2021].

 $\succ \overline{\Sigma^{[s]}\Pi} = \Sigma^{[s]}\Pi \text{ and } \overline{\Pi^{[d]}\Sigma} = \Pi^{[d]}\Sigma.$

- \gg VBP_{non-com} = VBP_{non-com}, in the noncommutative world [Nisan 1991].
- ▶ $\overline{\Sigma \land \Sigma} \subsetneq$ VBP [Forbes 2016, Bläser-Dörfler-Ikenmeyer 2021].

 $\succ \overline{\Sigma^{[s]}\Pi} = \Sigma^{[s]}\Pi \text{ and } \overline{\Pi^{[d]}\Sigma} = \Pi^{[d]}\Sigma.$

Upper bounds and lower bounds become more algebro-geometric in nature.

- \gg VBP_{non-com} = VBP_{non-com}, in the noncommutative world [Nisan 1991].
- \succ Σ ∧ Σ ⊊ VBP [Forbes 2016, Bläser-Dörfler-Ikenmeyer 2021].

 $\succ \overline{\Sigma^{[s]}\Pi} = \Sigma^{[s]}\Pi \text{ and } \overline{\Pi^{[d]}\Sigma} = \Pi^{[d]}\Sigma.$

Upper bounds and lower bounds become more algebro-geometric in nature.

□ Further potential applications in identity testing and understanding its 'robustness'.
Border depth-3 circuits

□ Depth-3 circuits with top fanin *k*, are denoted as $\Sigma^{[k]}\Pi^{[d]}\Sigma$. Thus, the size is trivially bounded by *O*(*knd*).

- □ Depth-3 circuits with top fanin *k*, are denoted as $\Sigma^{[k]}\Pi^{[d]}\Sigma$. Thus, the size is trivially bounded by *O*(*knd*).
- □ They compute polynomials of the form $\sum_{i=1}^{k} \prod_{j=1}^{d} \ell_{ij}$, where ℓ_{ij} are linear polynomials (i.e. $a_0 + a_1x_1 + \ldots + a_nx_n$, for $a_i \in \mathbb{F}$).

- Depth-3 circuits with top fanin k, are denoted as Σ^[k]Π^[d]Σ. Thus, the size is trivially bounded by O(knd).
- □ They compute polynomials of the form $\sum_{i=1}^{k} \prod_{j=1}^{d} \ell_{ij}$, where ℓ_{ij} are linear polynomials (i.e. $a_0 + a_1x_1 + \ldots + a_nx_n$, for $a_i \in \mathbb{F}$).
- \Box How powerful are $\Sigma^{[k]}\Pi^{[d]}\Sigma$ circuits? Are they *universal*?

- Depth-3 circuits with top fanin k, are denoted as Σ^[k]Π^[d]Σ. Thus, the size is trivially bounded by O(knd).
- □ They compute polynomials of the form $\sum_{i=1}^{k} \prod_{j=1}^{d} \ell_{ij}$, where ℓ_{ij} are linear polynomials (i.e. $a_0 + a_1 x_1 + \ldots + a_n x_n$, for $a_i \in \mathbb{F}$).
- \Box How powerful are $\Sigma^{[k]}\Pi^{[d]}\Sigma$ circuits? Are they *universal*?
- □ No.

- Depth-3 circuits with top fanin k, are denoted as Σ^[k]Π^[d]Σ. Thus, the size is trivially bounded by O(knd).
- □ They compute polynomials of the form $\sum_{i=1}^{k} \prod_{j=1}^{d} \ell_{ij}$, where ℓ_{ij} are linear polynomials (i.e. $a_0 + a_1 x_1 + \ldots + a_n x_n$, for $a_i \in \mathbb{F}$).
- **D** How powerful are $\Sigma^{[k]}\Pi^{[d]}\Sigma$ circuits? Are they *universal*?
- □ No. E.g. the *Inner Product* polynomial $\langle \boldsymbol{x}, \boldsymbol{y} \rangle = x_1y_1 + \ldots + x_{k+1}y_{k+1}$ cannot be written as a $\Sigma^{[k]}\Pi^{[d]}\Sigma$ circuit, *regardless* of the product famin *d*!

Power of border depth-3 circuits

 \Box What about $\overline{\Sigma^{[k]}\Pi^{[d]}\Sigma}$ circuits?

 \Box What about $\overline{\Sigma^{[k]}\Pi^{[d]}\Sigma}$ circuits?

□ Recall: $h \in \overline{\Sigma^{[k]} \Pi^{[d]} \Sigma}$ of size *s* if there exists a circuit *g* such that

 \Box What about $\overline{\Sigma^{[k]}\Pi^{[d]}\Sigma}$ circuits?

□ Recall: $h \in \overline{\Sigma^{[k]} \Pi^{[d]} \Sigma}$ of size *s* if there exists a circuit *g* such that

 $g(\boldsymbol{x},\epsilon) = h(\boldsymbol{x}) + \epsilon \cdot S(\boldsymbol{x},\epsilon) ,$

 \Box What about $\Sigma^{[k]}\Pi^{[d]}\Sigma$ circuits?

□ Recall: $h \in \overline{\Sigma^{[k]} \Pi^{[d]} \Sigma}$ of size *s* if there exists a circuit *g* such that

 $g(\boldsymbol{x},\epsilon) = h(\boldsymbol{x}) + \epsilon \cdot S(\boldsymbol{x},\epsilon) ,$

where *g* can be computed by a $\Sigma^{[k]}\Pi^{[d]}\Sigma$ circuit, over $\mathbb{F}(\epsilon)$, of size *s*.

 \Box What about $\Sigma^{[k]}\Pi^{[d]}\Sigma$ circuits?

□ Recall: $h \in \overline{\Sigma^{[k]} \Pi^{[d]} \Sigma}$ of size *s* if there exists a circuit *g* such that

 $g(\mathbf{x},\epsilon) = h(\mathbf{x}) + \epsilon \cdot S(\mathbf{x},\epsilon) ,$

where *g* can be computed by a $\Sigma^{[k]}\Pi^{[d]}\Sigma$ circuit, over $\mathbb{F}(\epsilon)$, of size *s*.

Border depth-3 fanin 2 circuits are 'universal' [Kumar 2020]

Let *P* be *any* homogeneous *n*-variate degree *d* polynomial. Then, $P \in \Sigma^{[2]}\Pi^{[D]}\Sigma$, where $D := \exp(n, d)$.

Proof.

1. Let WR(P) =: m. Then, there are linear forms ℓ_i such that

Proof.

1. Let WR(P) =: m. Then, there are linear forms ℓ_i such that

$$P = \sum_{i=1}^{m} \ell_i^d \qquad [m \text{ can be as large as } \exp(n, d)].$$

Proof.

1. Let WR(P) =: m. Then, there are linear forms ℓ_i such that

$$P = \sum_{i=1}^{m} \ell_i^d \qquad [m \text{ can be as large as } \exp(n, d)]$$

2. Consider $A(\mathbf{x}) := \prod_{i=1}^{m} (1 + \ell_i^d) = \prod_{i=1}^{m} \prod_{j=1}^{d} (\alpha_j + \ell_i)$, for $\alpha_j \in \mathbb{C}$.

Proof.

1. Let WR(P) =: m. Then, there are linear forms ℓ_i such that

$$P = \sum_{i=1}^{m} \ell_i^d \qquad [m \text{ can be as large as } \exp(n, d)].$$

2. Consider $A(\mathbf{x}) := \prod_{i=1}^{m} (1 + \ell_i^d) = \prod_{i=1}^{m} \prod_{j=1}^{d} (\alpha_j + \ell_j)$, for $\alpha_j \in \mathbb{C}$. Note that

 $A(\mathbf{x}) = 1 + P + B$ where deg $(B) \ge 2d$.

Proof.

1. Let WR(P) =: m. Then, there are linear forms ℓ_i such that

$$P = \sum_{i=1}^{m} \ell_i^d \qquad [m \text{ can be as large as } \exp(n, d)].$$

2. Consider $A(\mathbf{x}) := \prod_{i=1}^{m} (1 + \ell_i^d) = \prod_{i=1}^{m} \prod_{j=1}^{d} (\alpha_j + \ell_i)$, for $\alpha_j \in \mathbb{C}$. Note that

 $A(\mathbf{x}) = 1 + P + B$ where deg $(B) \ge 2d$.

3. Replace x_i by $\epsilon \cdot x_i$ to get that

Proof.

1. Let WR(P) =: m. Then, there are linear forms ℓ_i such that

$$P = \sum_{i=1}^{m} \ell_i^d \qquad [m \text{ can be as large as } \exp(n, d)].$$

2. Consider $A(\mathbf{x}) := \prod_{i=1}^{m} (1 + \ell_i^d) = \prod_{i=1}^{m} \prod_{j=1}^{d} (\alpha_j + \ell_j)$, for $\alpha_j \in \mathbb{C}$. Note that

 $A(\mathbf{x}) = 1 + P + B$ where deg $(B) \ge 2d$.

3. Replace x_i by $\epsilon \cdot x_i$ to get that

$$\prod_{i=1}^{m} \prod_{j=1}^{d} (\alpha_j + \epsilon \cdot \ell_i) = 1 + \epsilon^d \cdot P + \epsilon^{2d} \cdot R(\boldsymbol{x}, \epsilon) .$$

Proof.

1. Let WR(P) =: m. Then, there are linear forms ℓ_i such that

$$P = \sum_{i=1}^{m} \ell_i^d \qquad [m \text{ can be as large as } \exp(n, d)].$$

2. Consider $A(\mathbf{x}) := \prod_{i=1}^{m} (1 + \ell_i^d) = \prod_{i=1}^{m} \prod_{j=1}^{d} (\alpha_j + \ell_i)$, for $\alpha_j \in \mathbb{C}$. Note that

 $A(\mathbf{x}) = 1 + P + B$ where deg $(B) \ge 2d$.

3. Replace x_i by $\epsilon \cdot x_i$ to get that

$$\prod_{i=1}^{m} \prod_{j=1}^{d} (\alpha_j + \epsilon \cdot \ell_i) = 1 + \epsilon^d \cdot P + \epsilon^{2d} \cdot R(\boldsymbol{x}, \epsilon) \; .$$

4. Divide by ϵ^d and rearrange to get

$$P + \epsilon^d \cdot R(\boldsymbol{x}, \epsilon) = -\epsilon^{-d} + \epsilon^{-d} \cdot \prod_{i=1}^m \prod_{j=1}^d (\alpha_j + \epsilon \cdot \ell_i) \in \Sigma^{[2]} \Pi^{[md]} \Sigma .$$

De-bordering $\overline{\Sigma^{[2]}\Pi\Sigma}$ circuits

□ If *h* is approximated by a $\Sigma^{[2]}\Pi^{[d]}\Sigma$ circuit with *d* = poly(*n*), what's the *exact* complexity of *h*?

- □ If *h* is approximated by a $\Sigma^{[2]}\Pi^{[d]}\Sigma$ circuit with *d* = poly(*n*), what's the *exact* complexity of *h*?
 - > Is it even explicit?

De-bordering $\overline{\Sigma^{[2]}\Pi\Sigma}$ circuits

- □ If *h* is approximated by a $\Sigma^{[2]}\Pi^{[d]}\Sigma$ circuit with *d* = poly(*n*), what's the *exact* complexity of *h*?
 - > Is it even explicit? If yes, $\overline{\Sigma^{[2]}\Pi^{[d]}\Sigma} \subseteq \mathsf{VNP}$?

□ If *h* is approximated by a $\Sigma^{[2]}\Pi^{[d]}\Sigma$ circuit with *d* = poly(*n*), what's the *exact* complexity of *h*?

> Is it even explicit? If yes, $\overline{\Sigma^{[2]}\Pi^{[d]}\Sigma} \subseteq \mathsf{VNP}$?

Theorem 1 (Border of depth-3 top-fanin-2 circuit is 'easy') [Dutta-Dwivedi-Saxena FOCS 2021].

 $\Sigma^{[2]}\Pi^{[d]}\Sigma \subseteq \mathsf{VBP}, \text{ for } d = \mathsf{poly}(n).$

In particular, any polynomial in the border of top-fanin-2 size-*s* depth-3 circuits, can also be exactly computed by a linear projection of a $poly(s) \times poly(s)$ determinant.

□ If *h* is approximated by a $\Sigma^{[2]}\Pi^{[d]}\Sigma$ circuit with *d* = poly(*n*), what's the *exact* complexity of *h*?

> Is it even explicit? If yes, $\overline{\Sigma^{[2]}\Pi^{[d]}\Sigma} \subseteq \mathsf{VNP}$?

Theorem 1 (Border of depth-3 top-fanin-2 circuit is 'easy') [Dutta-Dwivedi-Saxena FOCS 2021].

 $\Sigma^{[2]}\Pi^{[d]}\Sigma \subseteq \mathsf{VBP}, \text{ for } d = \mathsf{poly}(n).$

In particular, any polynomial in the border of top-fanin-2 size-*s* depth-3 circuits, can also be exactly computed by a linear projection of a $poly(s) \times poly(s)$ determinant.

Remark. The result holds if one replaces the top-fanin-2 by arbitrary constant *k*.

Why k = 2 is hard to analyze?

 $\Box \text{ E.g., } T_1 := \epsilon^{-3} (1 + \epsilon x_1 + \epsilon^2 x_2 + \epsilon^3 x_3 + \ldots),$

 $\square \text{ E.g., } T_1 := \epsilon^{-3}(1 + \epsilon x_1 + \epsilon^2 x_2 + \epsilon^3 x_3 + \ldots), T_2 := \epsilon^{-3}(1 + \epsilon x_1 + \epsilon^2 x_2 + \epsilon^3 x_4 + \ldots).$

 $\begin{array}{l} \square \ \, \text{E.g., } T_1 := \epsilon^{-3}(1 + \epsilon x_1 + \epsilon^2 x_2 + \epsilon^3 x_3 + \ldots), \\ T_2 := \epsilon^{-3}(1 + \epsilon x_1 + \epsilon^2 x_2 + \epsilon^3 x_4 + \ldots). \\ \text{Note, } \lim_{\epsilon \to 0} \ (T_1 - T_2) \ = \ (x_3 - x_4). \end{array}$

 $\label{eq:entropy} \begin{array}{l} \square \ \, \text{E.g.}, \ \, T_1 := \epsilon^{-3}(1+\epsilon x_1+\epsilon^2 x_2+\epsilon^3 x_3+\ldots), \\ T_2 := \epsilon^{-3}(1+\epsilon x_1+\epsilon^2 x_2+\epsilon^3 x_4+\ldots). \\ \text{Note, } \lim_{\epsilon \to 0} \ \, (T_1-T_2) \ \, = \ (x_3-x_4). \end{array}$

 $\square \text{ Note } x^2 \equiv (x - \epsilon^{M/2} \cdot a)(x + \epsilon^{M/2} \cdot a) \mod \epsilon^M, \text{ for any } a \in \mathbb{F}.$

 $\label{eq:entropy} \begin{array}{l} \square \ \, \mathrm{E.g.}, \ \, T_1 := \epsilon^{-3}(1+\epsilon x_1+\epsilon^2 x_2+\epsilon^3 x_3+\ldots), \\ T_2 := \epsilon^{-3}(1+\epsilon x_1+\epsilon^2 x_2+\epsilon^3 x_4+\ldots). \\ \mathrm{Note}, \ \, \lim_{\epsilon \to 0} \ \, (T_1-T_2) \ \, = \ \, (x_3-x_4). \end{array}$

 $\square \text{ Note } x^2 \equiv (x - \epsilon^{M/2} \cdot a)(x + \epsilon^{M/2} \cdot a) \mod \epsilon^M, \text{ for any } a \in \mathbb{F}.$

□ Moreover,

$$\lim_{\epsilon \to 0} \frac{1}{\epsilon^M} \cdot \left(x^2 - (x - \epsilon^{M/2} \cdot a)(x + \epsilon^{M/2} \cdot a) \right) = a^2$$

 $\label{eq:energy} \Box \ \text{E.g.}, \ T_1 := \epsilon^{-3} (1 + \epsilon x_1 + \epsilon^2 x_2 + \epsilon^3 x_3 + \ldots), \\ T_2 := \epsilon^{-3} (1 + \epsilon x_1 + \epsilon^2 x_2 + \epsilon^3 x_4 + \ldots).$ Note, $\lim_{\epsilon \to 0} \ (T_1 - T_2) = (x_3 - x_4).$

 $\Box \text{ Note } x^2 \equiv (x - \epsilon^{M/2} \cdot a)(x + \epsilon^{M/2} \cdot a) \mod \epsilon^M, \text{ for any } a \in \mathbb{F}.$

□ Moreover,

$$\lim_{\epsilon \to 0} \frac{1}{\epsilon^M} \cdot \left(x^2 - (x - \epsilon^{M/2} \cdot a)(x + \epsilon^{M/2} \cdot a) \right) = a^2$$

□ Infinitely many factorizations may give infinitely many limits.

$\Box \ T_1 + T_2 = f(\mathbf{x}) + \epsilon \cdot S(\mathbf{x}, \epsilon), \text{ where } T_i \in \Pi \Sigma \text{ in } \mathbb{F}(\epsilon)[\mathbf{x}]. \text{ Assume } \deg(f) =: d.$
$\Box \ T_1 + T_2 = f(\boldsymbol{x}) + \epsilon \cdot S(\boldsymbol{x}, \epsilon), \text{ where } T_i \in \Pi \Sigma \text{ in } \mathbb{F}(\epsilon)[\boldsymbol{x}]. \text{ Assume } \deg(f) =: d.$

□ High-level idea: Reduce fanin 2 to 1 with a 'nice' form.

 $\square T_1 + T_2 = f(\mathbf{x}) + \epsilon \cdot S(\mathbf{x}, \epsilon), \text{ where } T_i \in \Pi \Sigma \text{ in } \mathbb{F}(\epsilon)[\mathbf{x}]. \text{ Assume } \deg(f) =: d.$

 \Box High-level idea: Reduce fanin 2 to 1 with a 'nice' form.

□ Apply a map Φ , defined by $\Phi : x_i \mapsto z \cdot x_i + \alpha_i$, where $\alpha_i \in \mathbb{F}$ are *random*.

 $\square T_1 + T_2 = f(\mathbf{x}) + \epsilon \cdot S(\mathbf{x}, \epsilon), \text{ where } T_i \in \Pi \Sigma \text{ in } \mathbb{F}(\epsilon)[\mathbf{x}]. \text{ Assume } \deg(f) =: d.$

 \Box High-level idea: Reduce fanin 2 to 1 with a 'nice' form.

- □ Apply a map Φ , defined by $\Phi : x_i \mapsto z \cdot x_i + \alpha_i$, where $\alpha_i \in \mathbb{F}$ are *random*.
 - > The variable *z* is the **degree counter** and enables derivation,

 $\Box T_1 + T_2 = f(\mathbf{x}) + \epsilon \cdot S(\mathbf{x}, \epsilon), \text{ where } T_i \in \Pi \Sigma \text{ in } \mathbb{F}(\epsilon)[\mathbf{x}]. \text{ Assume } \deg(f) =: d.$

□ High-level idea: Reduce fanin 2 to 1 with a 'nice' form.

- □ Apply a map Φ , defined by $\Phi : x_i \mapsto z \cdot x_i + \alpha_i$, where $\alpha_i \in \mathbb{F}$ are *random*.
 - > The variable *z* is the **degree counter** and enables derivation,
 - \succ *α_i* to ensure: If *ℓ* | *T_i*, then $Φ(ℓ)|_{z=0} = ℓ(α_1, ..., α_n) ∈ 𝔽(ε) \setminus \{0\}.$

 $\Box T_1 + T_2 = f(\mathbf{x}) + \epsilon \cdot S(\mathbf{x}, \epsilon), \text{ where } T_i \in \Pi \Sigma \text{ in } \mathbb{F}(\epsilon)[\mathbf{x}]. \text{ Assume } \deg(f) =: d.$

□ High-level idea: Reduce fanin 2 to 1 with a 'nice' form.

□ Apply a map Φ , defined by $\Phi : x_i \mapsto z \cdot x_i + \alpha_i$, where $\alpha_i \in \mathbb{F}$ are *random*.

> The variable *z* is the **degree counter** and enables derivation,

 $\succ \alpha_i$ to ensure: If $\ell \mid T_i$, then $\Phi(\ell)|_{z=0} = \ell(\alpha_1, \dots, \alpha_n) \in \mathbb{F}(\epsilon) \setminus \{0\}$.

 \Box It suffices to show that $\Phi(f)$ has small ABP.

 $\Box T_1 + T_2 = f(\mathbf{x}) + \epsilon \cdot S(\mathbf{x}, \epsilon), \text{ where } T_i \in \Pi \Sigma \text{ in } \mathbb{F}(\epsilon)[\mathbf{x}]. \text{ Assume } \deg(f) =: d.$

□ High-level idea: Reduce fanin 2 to 1 with a 'nice' form.

□ Apply a map Φ , defined by $\Phi : x_i \mapsto z \cdot x_i + \alpha_i$, where $\alpha_i \in \mathbb{F}$ are *random*.

 \succ The variable *z* is the **degree counter** and enables derivation,

 $\succ \alpha_i$ to ensure: If $\ell \mid T_i$, then $\Phi(\ell)|_{z=0} = \ell(\alpha_1, \dots, \alpha_n) \in \mathbb{F}(\epsilon) \setminus \{0\}$.

 \Box It suffices to show that $\Phi(f)$ has small ABP.

We devise a technique called DiDIL –
Divide, Derive, Interpolate/ Induct with Limit.

 $\Box \text{ Let } \Phi(T_i) =: \epsilon^{a_i} \cdot \tilde{T}_i, \text{ for } i \in [2], \text{ where } a_i := \text{val}_{\epsilon} (\Phi(T_i)).$

 \Box val_{ϵ}(·) denotes the highest power of ϵ dividing it.

 $\Box \text{ Let } \Phi(T_i) =: \epsilon^{a_i} \cdot \tilde{T}_i, \text{ for } i \in [2], \text{ where } a_i := \text{val}_{\epsilon} (\Phi(T_i)).$

 \Box val_{ϵ}(·) denotes the highest power of ϵ dividing it.

Divide and Derive:

 $\Box \text{ Let } \Phi(T_i) =: \epsilon^{a_i} \cdot \tilde{T}_i, \text{ for } i \in [2], \text{ where } a_i := \text{val}_{\epsilon} (\Phi(T_i)).$

 \Box val_{ϵ}(·) denotes the highest power of ϵ dividing it.

Divide and Derive:

$$\begin{aligned} f + \epsilon \cdot S &= T_1 + T_2 \\ \implies & \Phi(f) + \epsilon \cdot \Phi(S) = \Phi(T_1) + \Phi(T_2) \\ \implies & \Phi(f) / \tilde{T}_2 + \epsilon \cdot \Phi(S) / \tilde{T}_2 = \Phi(T_1) / \tilde{T}_2 + \epsilon^{a_2} \\ \implies & \partial_z \left(\Phi(f) / \tilde{T}_2 \right) + \epsilon \cdot \partial_z \left(\Phi(S) / \tilde{T}_2 \right) = \partial_z \left(\Phi(T_1) / \tilde{T}_2 \right) =: g_1 . \quad (1) \end{aligned}$$

 $\Box \text{ Let } \Phi(T_i) =: \epsilon^{a_i} \cdot \tilde{T}_i, \text{ for } i \in [2], \text{ where } a_i := \text{val}_{\epsilon} (\Phi(T_i)).$

 \Box val_{ϵ}(·) denotes the highest power of ϵ dividing it.

Divide and Derive:

$$\begin{aligned} f + \epsilon \cdot S &= T_1 + T_2 \\ \implies & \Phi(f) + \epsilon \cdot \Phi(S) = \Phi(T_1) + \Phi(T_2) \\ \implies & \Phi(f)/\tilde{T}_2 + \epsilon \cdot \Phi(S)/\tilde{T}_2 = \Phi(T_1)/\tilde{T}_2 + \epsilon^{a_2} \\ \implies & \partial_z \left(\Phi(f)/\tilde{T}_2 \right) + \epsilon \cdot \partial_z \left(\Phi(S)/\tilde{T}_2 \right) = \partial_z \left(\Phi(T_1)/\tilde{T}_2 \right) =: g_1 . \quad (1) \end{aligned}$$

 $\Box \lim_{\epsilon \to 0} g_1 = \partial_Z(\Phi(f)/t_2), \text{ where } t_2 := \lim_{\epsilon \to 0} \tilde{T}_2.$

 \Box First target: compute $\lim_{\epsilon \to 0} g_1 = \partial_z(\Phi(f)/t_2)$.

□ First target: compute $\lim_{\epsilon \to 0} g_1 = \partial_z (\Phi(f)/t_2)$.

□ Logarithmic derivative: $dlog_z(h) := \partial_z(h)/h$.

- □ First target: compute $\lim_{\epsilon \to 0} g_1 = \partial_z (\Phi(f)/t_2)$.
- □ Logarithmic derivative: $dlog_z(h) := \partial_z(h)/h$.
- $\Box \text{ dlog } linearizes \text{ product: } dlog(h_1h_2) = dlog(h_1) + dlog(h_2).$

- □ First target: compute $\lim_{\epsilon \to 0} g_1 = \partial_z (\Phi(f)/t_2)$.
- □ Logarithmic derivative: $dlog_z(h) := \partial_z(h)/h$.

□ dlog *linearizes* product: $dlog(h_1h_2) = dlog(h_1) + dlog(h_2)$. Note:

$$\begin{split} \partial_z \left(\Phi(T_1) / \tilde{T}_2 \right) &= \Phi(T_1) / \tilde{T}_2 \cdot \operatorname{dlog} \left(\Phi(T_1) / \tilde{T}_2 \right) \\ &= (\Pi \Sigma / \Pi \Sigma) \cdot \operatorname{dlog} \left(\Pi \Sigma / \Pi \Sigma \right) \\ &= \Pi \Sigma / \Pi \Sigma \cdot \left(\pm \sum \operatorname{dlog}(\Sigma) \right). \end{split}$$

□ First target: compute $\lim_{\epsilon \to 0} g_1 = \partial_z (\Phi(f)/t_2)$.

□ Logarithmic derivative: $dlog_z(h) := \partial_z(h)/h$.

□ dlog *linearizes* product: $dlog(h_1h_2) = dlog(h_1) + dlog(h_2)$. Note:

$$\begin{split} \partial_{z} \left(\Phi(T_{1})/\tilde{T}_{2} \right) &= \Phi(T_{1})/\tilde{T}_{2} \cdot \operatorname{dlog} \left(\Phi(T_{1})/\tilde{T}_{2} \right) \\ &= (\Pi \Sigma/\Pi \Sigma) \cdot \operatorname{dlog} \left(\Pi \Sigma/\Pi \Sigma \right) \\ &= \Pi \Sigma/\Pi \Sigma \cdot \left(\pm \sum \operatorname{dlog}(\Sigma) \right). \end{split}$$

 \Box Here Σ means just a linear polynomial ℓ .

k = 2 proof continued: Quick recap

 $\square \operatorname{Recap:} \partial_{Z}(\Phi(f)/t_{2}) = \lim_{\epsilon \to 0} g_{1} = \lim_{\epsilon \to 0} (\Pi \Sigma / \Pi \Sigma) \cdot (\pm \Sigma \operatorname{dlog}(\Sigma)).$

 $\square \operatorname{Recap:} \partial_{Z}(\Phi(f)/t_{2}) = \lim_{\epsilon \to 0} g_{1} = \lim_{\epsilon \to 0} (\Pi \Sigma / \Pi \Sigma) \cdot (\pm \Sigma \operatorname{dlog}(\Sigma)).$

 $\Box \ \deg(f) = d \implies \deg_Z(\Phi(f)) = d \implies \deg_Z(\partial_Z(\Phi(f))) = d - 1.$

 $\square \text{ Recap: } \partial_{Z}(\Phi(f)/t_{2}) = \lim_{\epsilon \to 0} g_{1} = \lim_{\epsilon \to 0} (\Pi \Sigma / \Pi \Sigma) \cdot (\pm \Sigma \operatorname{dlog}(\Sigma)).$

 $\Box \ \deg(f) = d \implies \deg_Z(\Phi(f)) = d \implies \deg_Z(\partial_Z(\Phi(f))) = d - 1.$

□ Suffices to compute $\lim_{\epsilon \to 0} g_1 \mod z^d$.

k = 2 proof: dlog strikes!

□ What is $dlog(\ell)$ for a linear polynomial $\ell = A - z \cdot B$?

□ What is $dlog(\ell)$ for a linear polynomial $\ell = A - z \cdot B$?

$$dlog(A - zB) = \frac{-B}{A(1 - z \cdot B/A)}$$
$$= -\frac{B}{A} \cdot \sum_{j=0}^{d-1} \left(\frac{z \cdot B}{A}\right)^j \mod z^d$$
$$\in \Sigma \land \Sigma .$$

□ What is $dlog(\ell)$ for a linear polynomial $\ell = A - z \cdot B$?

$$dlog(A - zB) = \frac{-B}{A(1 - z \cdot B/A)}$$
$$= -\frac{B}{A} \cdot \sum_{j=0}^{d-1} \left(\frac{z \cdot B}{A}\right)^j \mod z^d$$
$$\in \Sigma \land \Sigma .$$

Thus,

$$\begin{split} \lim_{\epsilon \to 0} g_1 \mod z^d &\equiv \lim_{\epsilon \to 0} \Pi \Sigma / \Pi \Sigma \cdot \left(\sum \mathsf{dlog}(\Sigma) \right) \mod z^d \\ &\equiv \lim_{\epsilon \to 0} \left(\Pi \Sigma / \Pi \Sigma \right) \cdot \left(\Sigma \wedge \Sigma \right) \mod z^d \\ &\in \overline{\left(\Pi \Sigma / \Pi \Sigma \right) \cdot \left(\Sigma \wedge \Sigma \right)} \mod z^d \,. \end{split}$$

$\overline{(\Pi\Sigma/\Pi\Sigma) \cdot (\Sigma \land \Sigma)} \subseteq \overline{(\Pi\Sigma/\Pi\Sigma) \cdot \overline{\Sigma \land \Sigma}}$ $\subseteq (ABP/ABP) \cdot ABP$ = ABP/ABP .

$\overline{(\Pi\Sigma/\Pi\Sigma) \cdot (\Sigma \land \Sigma)} \subseteq \overline{(\Pi\Sigma/\Pi\Sigma)} \cdot \overline{\Sigma \land \Sigma}$ $\subseteq (ABP/ABP) \cdot ABP$ = ABP/ABP .

□ Eliminate division to get: $\lim_{\epsilon \to 0} g_1 \mod z^d \equiv ABP/ABP \mod z^d = ABP$.

$$\overline{(\Pi\Sigma/\Pi\Sigma)} \cdot (\Sigma \land \Sigma) \subseteq \overline{(\Pi\Sigma/\Pi\Sigma)} \cdot \overline{\Sigma \land \Sigma}$$
$$\subseteq (ABP/ABP) \cdot ABP$$
$$= ABP/ABP .$$

□ Eliminate division to get: $\lim_{\epsilon \to 0} g_1 \mod z^d \equiv ABP/ABP \mod z^d = ABP$.

□ Thus, $\partial_{z}(\Phi(f)/t_{2}) = \lim_{\epsilon \to 0} g_{1} = ABP$.

$$\begin{split} (\Pi\Sigma/\Pi\Sigma)\cdot(\Sigma\wedge\Sigma) &\subseteq \overline{(\Pi\Sigma/\Pi\Sigma)}\cdot\overline{\Sigma\wedge\Sigma} \\ &\subseteq (\mathsf{ABP}/\mathsf{ABP})\cdot\mathsf{ABP} \\ &= \mathsf{ABP}/\mathsf{ABP} \;. \end{split}$$

□ Eliminate division to get: $\lim_{\epsilon \to 0} g_1 \mod z^d \equiv ABP/ABP \mod z^d = ABP$.

□ Thus, $\partial_z(\Phi(f)/t_2) = \lim_{\epsilon \to 0} g_1 = ABP$. Interpolate/ Induct with Limit:

$$\begin{aligned} (\Pi\Sigma/\Pi\Sigma) \cdot (\Sigma \land \Sigma) &\subseteq \overline{(\Pi\Sigma/\Pi\Sigma)} \cdot \overline{\Sigma \land \Sigma} \\ &\subseteq (\mathsf{ABP}/\mathsf{ABP}) \cdot \mathsf{ABP} \\ &= \mathsf{ABP}/\mathsf{ABP} \; . \end{aligned}$$

□ Eliminate division to get: $\lim_{\epsilon \to 0} g_1 \mod z^d \equiv ABP/ABP \mod z^d = ABP$.

□ Thus, $\partial_z(\Phi(f)/t_2) = \lim_{\epsilon \to 0} g_1 = ABP$. Interpolate/ Induct with Limit:

 $\Box \text{ Thus, } \Phi(f)/t_2 = \mathsf{ABP} \implies \Phi(f) = \mathsf{ABP} \implies f = \mathsf{ABP}.$

Derandomizing border depth-3 circuits

Polynomial Identity Testing

□ **Polynomial Identity Testing (PIT):** Given a circuit *C*, test whether *C* computes the *zero* polynomial (*deterministically*).

Polynomial Identity Testing

□ **Polynomial Identity Testing (PIT):** Given a circuit *C*, test whether *C* computes the *zero* polynomial (*deterministically*).

Blackbox-PIT asks for an algorithm to test the zeroness of a given algebraic circuit via mere query access.
□ **Polynomial Identity Testing (PIT):** Given a circuit *C*, test whether *C* computes the *zero* polynomial (*deterministically*).

Blackbox-PIT asks for an algorithm to test the zeroness of a given algebraic circuit via mere query access.

Polynomial Identity Lemma [Ore, Demillo-Lipton, Schwartz, Zippel]

- □ **Polynomial Identity Testing (PIT):** Given a circuit *C*, test whether *C* computes the *zero* polynomial (*deterministically*).
 - Blackbox-PIT asks for an algorithm to test the zeroness of a given algebraic circuit via mere query access.

Polynomial Identity Lemma [Ore, Demillo-Lipton, Schwartz, Zippel]

If $P(\mathbf{x})$ is a nonzero polynomial of degree d, and $S \subseteq \mathbb{F}$ of size at least d + 1, then $P(\mathbf{a}) \neq 0$ for some $\mathbf{a} \in S^n$.

□ **Polynomial Identity Testing (PIT):** Given a circuit *C*, test whether *C* computes the *zero* polynomial (*deterministically*).

Blackbox-PIT asks for an algorithm to test the zeroness of a given algebraic circuit via mere query access.

Polynomial Identity Lemma [Ore, Demillo-Lipton, Schwartz, Zippel]

If $P(\mathbf{x})$ is a nonzero polynomial of degree d, and $S \subseteq \mathbb{F}$ of size at least d + 1, then $P(\mathbf{a}) \neq 0$ for some $\mathbf{a} \in S^n$.

□ **Polynomial Identity Testing (PIT):** Given a circuit *C*, test whether *C* computes the *zero* polynomial (*deterministically*).

Blackbox-PIT asks for an algorithm to test the zeroness of a given algebraic circuit via mere query access.

Polynomial Identity Lemma [Ore, Demillo-Lipton, Schwartz, Zippel]

If $P(\mathbf{x})$ is a nonzero polynomial of degree d, and $S \subseteq \mathbb{F}$ of size at least d + 1, then $P(\mathbf{a}) \neq 0$ for some $\mathbf{a} \in S^n$.

□ This above lemma puts $PIT \in RP$.

□ Can we *derandomize* blackbox-PIT?

- □ **Polynomial Identity Testing (PIT):** Given a circuit *C*, test whether *C* computes the *zero* polynomial (*deterministically*).
 - Blackbox-PIT asks for an algorithm to test the zeroness of a given algebraic circuit via mere query access.

Polynomial Identity Lemma [Ore, Demillo-Lipton, Schwartz, Zippel]

If $P(\mathbf{x})$ is a nonzero polynomial of degree d, and $S \subseteq \mathbb{F}$ of size at least d + 1, then $P(\mathbf{a}) \neq 0$ for some $\mathbf{a} \in S^n$.

□ This above lemma puts $PIT \in RP$.

□ Can we *derandomize* blackbox-PIT? Some special cases are derandomized.

- □ **Polynomial Identity Testing (PIT):** Given a circuit *C*, test whether *C* computes the *zero* polynomial (*deterministically*).
 - Blackbox-PIT asks for an algorithm to test the zeroness of a given algebraic circuit via mere query access.

Polynomial Identity Lemma [Ore, Demillo-Lipton, Schwartz, Zippel]

If $P(\mathbf{x})$ is a nonzero polynomial of degree d, and $S \subseteq \mathbb{F}$ of size at least d + 1, then $P(\mathbf{a}) \neq 0$ for some $\mathbf{a} \in S^n$.

- □ Can we *derandomize* blackbox-PIT? Some special cases are derandomized.
- Derandomizing PIT, for restricted cases, has many algorithmic applications:

- □ **Polynomial Identity Testing (PIT):** Given a circuit *C*, test whether *C* computes the *zero* polynomial (*deterministically*).
 - Blackbox-PIT asks for an algorithm to test the zeroness of a given algebraic circuit via mere query access.

Polynomial Identity Lemma [Ore, Demillo-Lipton, Schwartz, Zippel]

If $P(\mathbf{x})$ is a nonzero polynomial of degree d, and $S \subseteq \mathbb{F}$ of size at least d + 1, then $P(\mathbf{a}) \neq 0$ for some $\mathbf{a} \in S^n$.

- □ Can we *derandomize* blackbox-PIT? Some special cases are derandomized.
- Derandomizing PIT, for restricted cases, has many algorithmic applications:
 - Graph Theory [Lovasz'79], [Fenner-Gurjar-Theirauf'19]

- □ **Polynomial Identity Testing (PIT):** Given a circuit *C*, test whether *C* computes the *zero* polynomial (*deterministically*).
 - Blackbox-PIT asks for an algorithm to test the zeroness of a given algebraic circuit via mere query access.

Polynomial Identity Lemma [Ore, Demillo-Lipton, Schwartz, Zippel]

If $P(\mathbf{x})$ is a nonzero polynomial of degree d, and $S \subseteq \mathbb{F}$ of size at least d + 1, then $P(\mathbf{a}) \neq 0$ for some $\mathbf{a} \in S^n$.

- □ Can we *derandomize* blackbox-PIT? Some special cases are derandomized.
- Derandomizing PIT, for restricted cases, has many algorithmic applications:
 - Graph Theory [Lovasz'79], [Fenner-Gurjar-Theirauf'19]
 - Primality Testing [Agrawal-Kayal-Saxena'04].

Border hitting set

Border hitting set

 \mathcal{H} is a hitting set for a class \overline{C} , if $g(x, \epsilon) \in C_{\mathbb{F}(\epsilon)}$ approximates a non-zero polynomial $h(\mathbf{x})$, then $\exists \mathbf{a} \in \mathcal{H}$ such that $g(\mathbf{a}, \epsilon) \notin \epsilon \cdot \mathbb{F}[\epsilon]$, i.e. $h(\mathbf{a}) \neq 0$.

□ Finding $\boldsymbol{a} \in \mathbb{F}^n$ such that $g(\boldsymbol{a}, \epsilon) \neq 0$ does not suffice.

Border hitting set

 \mathcal{H} is a hitting set for a class \overline{C} , if $g(x, \epsilon) \in C_{\mathbb{F}(\epsilon)}$ approximates a non-zero polynomial $h(\mathbf{x})$, then $\exists \mathbf{a} \in \mathcal{H}$ such that $g(\mathbf{a}, \epsilon) \notin \epsilon \cdot \mathbb{F}[\epsilon]$, i.e. $h(\mathbf{a}) \neq 0$.

□ Finding $\boldsymbol{a} \in \mathbb{F}^n$ such that $g(\boldsymbol{a}, \epsilon) \neq 0$ does not suffice.

 \Box *h* could have really high (exact) complexity compared to *g*.

Border hitting set

- □ Finding $\boldsymbol{a} \in \mathbb{F}^n$ such that $g(\boldsymbol{a}, \epsilon) \neq 0$ does not suffice.
- \Box *h* could have really high (exact) complexity compared to *g*.
- □ We know

Border hitting set

- □ Finding $\boldsymbol{a} \in \mathbb{F}^n$ such that $g(\boldsymbol{a}, \epsilon) \neq 0$ does not suffice.
- \Box *h* could have really high (exact) complexity compared to *g*.
- □ We know
 - > polynomial-time hitting set for $\overline{\Pi\Sigma} = \Pi\Sigma$ [Klivans-Spielman 2001],

Border hitting set

- □ Finding $\boldsymbol{a} \in \mathbb{F}^n$ such that $g(\boldsymbol{a}, \epsilon) \neq 0$ does not suffice.
- \Box *h* could have really high (exact) complexity compared to *g*.
- □ We know
 - > polynomial-time hitting set for $\overline{\Pi\Sigma} = \Pi\Sigma$ [Klivans-Spielman 2001],
 - > quasipolynomial-time hitting set for $\overline{\Sigma \wedge \Sigma}$ [Forbes-Shpilka 2013].

Border hitting set

 \mathcal{H} is a hitting set for a class \overline{C} , if $g(x, \epsilon) \in C_{\mathbb{F}(\epsilon)}$ approximates a non-zero polynomial $h(\mathbf{x})$, then $\exists \mathbf{a} \in \mathcal{H}$ such that $g(\mathbf{a}, \epsilon) \notin \epsilon \cdot \mathbb{F}[\epsilon]$, i.e. $h(\mathbf{a}) \neq 0$.

□ Finding $\boldsymbol{a} \in \mathbb{F}^n$ such that $g(\boldsymbol{a}, \epsilon) \neq 0$ does not suffice.

 \Box *h* could have really high (exact) complexity compared to *g*.

- U We know
 - > polynomial-time hitting set for $\overline{\Pi\Sigma} = \Pi\Sigma$ [Klivans-Spielman 2001],
 - > quasipolynomial-time hitting set for $\overline{\Sigma \land \Sigma}$ [Forbes-Shpilka 2013].

 \square $n^{O(k)}$ -time hitting set is known for $\Sigma^{[k]}\Pi\Sigma$ [Saxena-Seshadri 2012].

Border hitting set

 \mathcal{H} is a hitting set for a class \overline{C} , if $g(x, \epsilon) \in C_{\mathbb{F}(\epsilon)}$ approximates a non-zero polynomial $h(\mathbf{x})$, then $\exists \mathbf{a} \in \mathcal{H}$ such that $g(\mathbf{a}, \epsilon) \notin \epsilon \cdot \mathbb{F}[\epsilon]$, i.e. $h(\mathbf{a}) \neq 0$.

□ Finding $\boldsymbol{a} \in \mathbb{F}^n$ such that $g(\boldsymbol{a}, \epsilon) \neq 0$ does not suffice.

 \Box *h* could have really high (exact) complexity compared to *g*.

- □ We know
 - > polynomial-time hitting set for $\overline{\Pi\Sigma} = \Pi\Sigma$ [Klivans-Spielman 2001],
 - > quasipolynomial-time hitting set for $\overline{\Sigma \wedge \Sigma}$ [Forbes-Shpilka 2013].
- $\square n^{O(k)} \text{-time hitting set is known for } \Sigma^{[k]}\Pi\Sigma \text{ [Saxena-Seshadri 2012].}$ Unfortunately, it *does not* work for $\Sigma^{[k]}\Pi\Sigma$.

Border hitting set

 \mathcal{H} is a hitting set for a class \overline{C} , if $g(x, \epsilon) \in C_{\mathbb{F}(\epsilon)}$ approximates a non-zero polynomial $h(\mathbf{x})$, then $\exists \mathbf{a} \in \mathcal{H}$ such that $g(\mathbf{a}, \epsilon) \notin \epsilon \cdot \mathbb{F}[\epsilon]$, i.e. $h(\mathbf{a}) \neq 0$.

□ Finding $\boldsymbol{a} \in \mathbb{F}^n$ such that $g(\boldsymbol{a}, \epsilon) \neq 0$ does not suffice.

 \Box *h* could have really high (exact) complexity compared to *g*.

- □ We know
 - > polynomial-time hitting set for $\overline{\Pi\Sigma} = \Pi\Sigma$ [Klivans-Spielman 2001],
 - > quasipolynomial-time hitting set for $\overline{\Sigma \wedge \Sigma}$ [Forbes-Shpilka 2013].
- □ $n^{O(k)}$ -time hitting set is known for $\Sigma^{[k]}\Pi\Sigma$ [Saxena-Seshadri 2012]. Unfortunately, it *does not* work for $\Sigma^{[k]}\Pi\Sigma$.
- General PIT for det is not known!

Border hitting set

 \mathcal{H} is a hitting set for a class \overline{C} , if $g(x, \epsilon) \in C_{\mathbb{F}(\epsilon)}$ approximates a non-zero polynomial $h(\mathbf{x})$, then $\exists \mathbf{a} \in \mathcal{H}$ such that $g(\mathbf{a}, \epsilon) \notin \epsilon \cdot \mathbb{F}[\epsilon]$, i.e. $h(\mathbf{a}) \neq 0$.

□ Finding $\boldsymbol{a} \in \mathbb{F}^n$ such that $g(\boldsymbol{a}, \epsilon) \neq 0$ does not suffice.

 \Box *h* could have really high (exact) complexity compared to *g*.

- □ We know
 - > polynomial-time hitting set for $\overline{\Pi\Sigma} = \Pi\Sigma$ [Klivans-Spielman 2001],
 - > quasipolynomial-time hitting set for $\overline{\Sigma \land \Sigma}$ [Forbes-Shpilka 2013].
- $\square n^{O(k)} \text{-time hitting set is known for } \Sigma^{[k]}\Pi\Sigma \text{ [Saxena-Seshadri 2012].}$ Unfortunately, it *does not* work for $\Sigma^{[k]}\Pi\Sigma$.
- General PIT for **det** is not known!

Theorem 2 (Derandomizing polynomal-sized depth-3 top-fanin-k circuits) [Dutta-Dwivedi-Saxena 2021]

There exists an explicit quasipolynomial-time $(s^{O(\log \log s)})$ hitting set for size-*s* $\Sigma^{[k]}\Pi\Sigma$ circuits, for any constant *k*.

Conclusion

Concluding remarks

□ Can we show $\Sigma^{[k]}\Pi^{[d]}\Sigma \neq VBP$, for d = poly(n)?

Upcoming result by [Dutta-Saxena 2021, Preprint]

There is an explicit *n*-variate and < n degree polynomial *f* computed by size-O(n) $\overline{\Sigma^{[k+1]}\Pi\Sigma}$ circuit, such that *f* requires $2^{\Omega(n)}$ -size $\overline{\Sigma^{[k]}\Pi\Sigma}$ circuits.

Concluding remarks

□ Can we show $\overline{\Sigma^{[k]}\Pi^{[d]}\Sigma} \neq \text{VBP}$, for d = poly(n)?

Upcoming result by [Dutta-Saxena 2021, Preprint]

There is an explicit *n*-variate and < n degree polynomial *f* computed by size-O(n) $\overline{\Sigma^{[k+1]}\Pi\Sigma}$ circuit, such that *f* requires $2^{\Omega(n)}$ -size $\overline{\Sigma^{[k]}\Pi\Sigma}$ circuits.

> This refined separation also establishes: $\overline{\Sigma^{[k]}\Pi^{[d]}\Sigma} \neq \text{VBP}, \text{VNP}.$

Concluding remarks

□ Can we show $\Sigma^{[k]}\Pi^{[d]}\Sigma \neq VBP$, for d = poly(n)?

Upcoming result by [Dutta-Saxena 2021, Preprint]

There is an explicit *n*-variate and < n degree polynomial *f* computed by size-O(n) $\overline{\Sigma^{[k+1]}\Pi\Sigma}$ circuit, such that *f* requires $2^{\Omega(n)}$ -size $\overline{\Sigma^{[k]}\Pi\Sigma}$ circuits.

> This refined separation also establishes: $\Sigma^{[k]}\Pi^{[d]}\Sigma \neq \text{VBP}, \text{VNP}.$

□ [Dutta-Dwivedi-Saxena 2021] showed a *quasi*polynomial-time hitting set for $\Sigma^{[k]}\Pi^{[d]}\Sigma$ circuits. Can we improve it to polynomial?

Upcoming result by [Dutta-Saxena 2021, Preprint]

There is an explicit *n*-variate and < n degree polynomial *f* computed by size-O(n) $\overline{\Sigma^{[k+1]}\Pi\Sigma}$ circuit, such that *f* requires $2^{\Omega(n)}$ -size $\overline{\Sigma^{[k]}\Pi\Sigma}$ circuits.

> This refined separation also establishes: $\Sigma^{[k]}\Pi^{[d]}\Sigma \neq \text{VBP}, \text{VNP}.$

□ [Dutta-Dwivedi-Saxena 2021] showed a *quasi*polynomial-time hitting set for $\Sigma^{[k]}\Pi^{[d]}\Sigma$ circuits. Can we improve it to polynomial? In fact, it's poly-time for log-variate $\Sigma^{[k]}\Pi^{[d]}\Sigma$ circuits.

Upcoming result by [Dutta-Saxena 2021, Preprint]

There is an explicit *n*-variate and < n degree polynomial *f* computed by size-O(n) $\overline{\Sigma^{[k+1]}\Pi\Sigma}$ circuit, such that *f* requires $2^{\Omega(n)}$ -size $\overline{\Sigma^{[k]}\Pi\Sigma}$ circuits.

> This refined separation also establishes: $\Sigma^{[k]}\Pi^{[d]}\Sigma \neq \text{VBP}, \text{VNP}.$

- □ [Dutta-Dwivedi-Saxena 2021] showed a *quasi*polynomial-time hitting set for $\Sigma^{[k]}\Pi^{[d]}\Sigma$ circuits. Can we improve it to polynomial? In fact, it's poly-time for log-variate $\Sigma^{[k]}\Pi^{[d]}\Sigma$ circuits.
- □ Does our technique extend to arbitrary constant-depth border circuits? Currently it extends to restricted depth-4 circuits.

Upcoming result by [Dutta-Saxena 2021, Preprint]

There is an explicit *n*-variate and < n degree polynomial *f* computed by size-O(n) $\overline{\Sigma^{[k+1]}\Pi\Sigma}$ circuit, such that *f* requires $2^{\Omega(n)}$ -size $\overline{\Sigma^{[k]}\Pi\Sigma}$ circuits.

> This refined separation also establishes: $\Sigma^{[k]}\Pi^{[d]}\Sigma \neq \text{VBP}, \text{VNP}.$

- □ [Dutta-Dwivedi-Saxena 2021] showed a *quasi*polynomial-time hitting set for $\Sigma^{[k]}\Pi^{[d]}\Sigma$ circuits. Can we improve it to polynomial? In fact, it's poly-time for log-variate $\Sigma^{[k]}\Pi^{[d]}\Sigma$ circuits.
- □ Does our technique extend to arbitrary constant-depth border circuits? Currently it extends to restricted depth-4 circuits.

Thank you.

Upcoming result by [Dutta-Saxena 2021, Preprint]

There is an explicit *n*-variate and < n degree polynomial *f* computed by size-O(n) $\Sigma^{[k+1]}\Pi\Sigma$ circuit, such that *f* requires $2^{\Omega(n)}$ -size $\overline{\Sigma^{[k]}\Pi\Sigma}$ circuits.

> This refined separation also establishes: $\Sigma^{[k]}\Pi^{[d]}\Sigma \neq \text{VBP}, \text{VNP}.$

- □ [Dutta-Dwivedi-Saxena 2021] showed a *quasi*polynomial-time hitting set for $\Sigma^{[k]}\Pi^{[d]}\Sigma$ circuits. Can we improve it to polynomial? In fact, it's poly-time for log-variate $\Sigma^{[k]}\Pi^{[d]}\Sigma$ circuits.
- □ Does our technique extend to arbitrary constant-depth border circuits? Currently it extends to restricted depth-4 circuits.

Thank you. Questions?