
Demystifying the border of depth-3 circuits
Accepted to the 62nd IEEE Symposium on Foundations of Computer Science (FOCS 2021).

Pranjal Dutta (CMI & IIT Kanpur) & Prateek Dwivedi (IIT Kanpur) & Nitin Saxena (IIT

Kanpur).

24th January, 2022

School and Conference on Geometric Complexity Theory
Jan 2022, Chennai (virtual)

Table of Contents

1. Algebraic Complexity Theory

2. Border Complexity and GCT

3. Border depth-3 circuits

4. Derandomizing border depth-3 circuits

5. Conclusion

1

Algebraic Complexity Theory

Basic goal

❑ P versus NP. Proving P ≠ NP is one of the most fundamental open problems at
the intersection of theoretical computer science and mathematics.

❑ Very few techniques are known that could potentially break the 1994
Razborov-Rudich ‘natural proofs barrier’.

❑ In 2001 Mulmuley and Sohoni published Geometric Complexity Theory 1
(GCT1) in which they describe a method that could potentially break the barrier.

➢ It is built on Valiant’s algebraic complexity theory framework (1979) to
prove the algebraic P ≠ NP, namely VP ≠ VNP.

➢ It defines Border Complexity, which was independently defined by
Bürgisser (2001). We will consider ‘algebraic’ notion of border complexity.

➢ It proposes to prove border complexity lower bounds using representation
theory, which is developed further in [GCT2, Mulmuley-Sohoni’08].

❑ [P ?
= NP, Aaronson 2011] calls GCT “The String Theory of Computer Science”.

2

Basic goal

❑ P versus NP. Proving P ≠ NP is one of the most fundamental open problems at
the intersection of theoretical computer science and mathematics.

❑ Very few techniques are known that could potentially break the 1994
Razborov-Rudich ‘natural proofs barrier’.

❑ In 2001 Mulmuley and Sohoni published Geometric Complexity Theory 1
(GCT1) in which they describe a method that could potentially break the barrier.

➢ It is built on Valiant’s algebraic complexity theory framework (1979) to
prove the algebraic P ≠ NP, namely VP ≠ VNP.

➢ It defines Border Complexity, which was independently defined by
Bürgisser (2001). We will consider ‘algebraic’ notion of border complexity.

➢ It proposes to prove border complexity lower bounds using representation
theory, which is developed further in [GCT2, Mulmuley-Sohoni’08].

❑ [P ?
= NP, Aaronson 2011] calls GCT “The String Theory of Computer Science”.

2

Basic goal

❑ P versus NP. Proving P ≠ NP is one of the most fundamental open problems at
the intersection of theoretical computer science and mathematics.

❑ Very few techniques are known that could potentially break the 1994
Razborov-Rudich ‘natural proofs barrier’.

❑ In 2001 Mulmuley and Sohoni published Geometric Complexity Theory 1
(GCT1) in which they describe a method that could potentially break the barrier.

➢ It is built on Valiant’s algebraic complexity theory framework (1979) to
prove the algebraic P ≠ NP, namely VP ≠ VNP.

➢ It defines Border Complexity, which was independently defined by
Bürgisser (2001). We will consider ‘algebraic’ notion of border complexity.

➢ It proposes to prove border complexity lower bounds using representation
theory, which is developed further in [GCT2, Mulmuley-Sohoni’08].

❑ [P ?
= NP, Aaronson 2011] calls GCT “The String Theory of Computer Science”.

2

Basic goal

❑ P versus NP. Proving P ≠ NP is one of the most fundamental open problems at
the intersection of theoretical computer science and mathematics.

❑ Very few techniques are known that could potentially break the 1994
Razborov-Rudich ‘natural proofs barrier’.

❑ In 2001 Mulmuley and Sohoni published Geometric Complexity Theory 1
(GCT1) in which they describe a method that could potentially break the barrier.

➢ It is built on Valiant’s algebraic complexity theory framework (1979) to
prove the algebraic P ≠ NP, namely VP ≠ VNP.

➢ It defines Border Complexity, which was independently defined by
Bürgisser (2001). We will consider ‘algebraic’ notion of border complexity.

➢ It proposes to prove border complexity lower bounds using representation
theory, which is developed further in [GCT2, Mulmuley-Sohoni’08].

❑ [P ?
= NP, Aaronson 2011] calls GCT “The String Theory of Computer Science”.

2

Basic goal

❑ P versus NP. Proving P ≠ NP is one of the most fundamental open problems at
the intersection of theoretical computer science and mathematics.

❑ Very few techniques are known that could potentially break the 1994
Razborov-Rudich ‘natural proofs barrier’.

❑ In 2001 Mulmuley and Sohoni published Geometric Complexity Theory 1
(GCT1) in which they describe a method that could potentially break the barrier.

➢ It is built on Valiant’s algebraic complexity theory framework (1979) to
prove the algebraic P ≠ NP, namely VP ≠ VNP.

➢ It defines Border Complexity, which was independently defined by
Bürgisser (2001).

We will consider ‘algebraic’ notion of border complexity.

➢ It proposes to prove border complexity lower bounds using representation
theory, which is developed further in [GCT2, Mulmuley-Sohoni’08].

❑ [P ?
= NP, Aaronson 2011] calls GCT “The String Theory of Computer Science”.

2

Basic goal

❑ P versus NP. Proving P ≠ NP is one of the most fundamental open problems at
the intersection of theoretical computer science and mathematics.

❑ Very few techniques are known that could potentially break the 1994
Razborov-Rudich ‘natural proofs barrier’.

❑ In 2001 Mulmuley and Sohoni published Geometric Complexity Theory 1
(GCT1) in which they describe a method that could potentially break the barrier.

➢ It is built on Valiant’s algebraic complexity theory framework (1979) to
prove the algebraic P ≠ NP, namely VP ≠ VNP.

➢ It defines Border Complexity, which was independently defined by
Bürgisser (2001). We will consider ‘algebraic’ notion of border complexity.

➢ It proposes to prove border complexity lower bounds using representation
theory, which is developed further in [GCT2, Mulmuley-Sohoni’08].

❑ [P ?
= NP, Aaronson 2011] calls GCT “The String Theory of Computer Science”.

2

Basic goal

❑ P versus NP. Proving P ≠ NP is one of the most fundamental open problems at
the intersection of theoretical computer science and mathematics.

❑ Very few techniques are known that could potentially break the 1994
Razborov-Rudich ‘natural proofs barrier’.

❑ In 2001 Mulmuley and Sohoni published Geometric Complexity Theory 1
(GCT1) in which they describe a method that could potentially break the barrier.

➢ It is built on Valiant’s algebraic complexity theory framework (1979) to
prove the algebraic P ≠ NP, namely VP ≠ VNP.

➢ It defines Border Complexity, which was independently defined by
Bürgisser (2001). We will consider ‘algebraic’ notion of border complexity.

➢ It proposes to prove border complexity lower bounds using representation
theory, which is developed further in [GCT2, Mulmuley-Sohoni’08].

❑ [P ?
= NP, Aaronson 2011] calls GCT “The String Theory of Computer Science”.

2

Basic goal

❑ P versus NP. Proving P ≠ NP is one of the most fundamental open problems at
the intersection of theoretical computer science and mathematics.

❑ Very few techniques are known that could potentially break the 1994
Razborov-Rudich ‘natural proofs barrier’.

❑ In 2001 Mulmuley and Sohoni published Geometric Complexity Theory 1
(GCT1) in which they describe a method that could potentially break the barrier.

➢ It is built on Valiant’s algebraic complexity theory framework (1979) to
prove the algebraic P ≠ NP, namely VP ≠ VNP.

➢ It defines Border Complexity, which was independently defined by
Bürgisser (2001). We will consider ‘algebraic’ notion of border complexity.

➢ It proposes to prove border complexity lower bounds using representation
theory, which is developed further in [GCT2, Mulmuley-Sohoni’08].

❑ [P ?
= NP, Aaronson 2011] calls GCT “The String Theory of Computer Science”.

2

Algebraic circuits

x1 x2 x3 1

+ + + + + +

× × ×

+

4

1/3

f (x1, . . . , xn)

3

Algebraic circuits

x1 x2 x3 1

+ + + + + +

× × ×

+

4

1/3

f (x1, . . . , xn)

3

Algebraic circuits

x1 x2 x3 1

+ + + + + +

× × ×

+

4

1/3

f (x1, . . . , xn)

Size of the circuit = number of nodes + edges

3

Algebraic circuits

x1 x2 x3 1

+ + + + + +

× × ×

+

4

1/3

f (x1, . . . , xn)

size(f) = min size of the circuit computing f

3

Algebraic circuits

x1 x2 x3 1

+ + + + + +

× × ×

+

4

1/3

f (x1, . . . , xn)

Depth

3

Computationally ‘easy’ polynomials

VP = “easy to compute” [Valiant’79]
The class VP is defined as the set of all sequences of polynomials (fn (x1, . . . , xn))n≥1
such that size(fn), deg(fn) are both bounded by nc for some constant c.

Examples:

➢ fn := x1 · · · xn.

➢ fn := xn
1 + . . . + xn

n .

➢ fn :=
∑︁

S⊆[n]

∏
j∈S

xj =

n∏
i=1

(1 + xi).

4

Computationally ‘easy’ polynomials

VP = “easy to compute” [Valiant’79]
The class VP is defined as the set of all sequences of polynomials (fn (x1, . . . , xn))n≥1
such that size(fn), deg(fn) are both bounded by nc for some constant c.

Examples:

➢ fn := x1 · · · xn.

➢ fn := xn
1 + . . . + xn

n .

➢ fn :=
∑︁

S⊆[n]

∏
j∈S

xj =

n∏
i=1

(1 + xi).

4

Computationally ‘easy’ polynomials

VP = “easy to compute” [Valiant’79]
The class VP is defined as the set of all sequences of polynomials (fn (x1, . . . , xn))n≥1
such that size(fn), deg(fn) are both bounded by nc for some constant c.

Examples:

➢ fn := x1 · · · xn.

➢ fn := xn
1 + . . . + xn

n .

➢ fn :=
∑︁

S⊆[n]

∏
j∈S

xj =

n∏
i=1

(1 + xi).

4

Computationally ‘easy’ polynomials

VP = “easy to compute” [Valiant’79]
The class VP is defined as the set of all sequences of polynomials (fn (x1, . . . , xn))n≥1
such that size(fn), deg(fn) are both bounded by nc for some constant c.

Examples:

➢ fn := x1 · · · xn.

➢ fn := xn
1 + . . . + xn

n .

➢ fn :=
∑︁

S⊆[n]

∏
j∈S

xj =

n∏
i=1

(1 + xi).

4

Computationally ‘easy’ polynomials

VP = “easy to compute” [Valiant’79]
The class VP is defined as the set of all sequences of polynomials (fn (x1, . . . , xn))n≥1
such that size(fn), deg(fn) are both bounded by nc for some constant c.

Examples:

➢ fn := x1 · · · xn.

➢ fn := xn
1 + . . . + xn

n .

➢ fn :=
∑︁

S⊆[n]

∏
j∈S

xj

=

n∏
i=1

(1 + xi).

4

Computationally ‘easy’ polynomials

VP = “easy to compute” [Valiant’79]
The class VP is defined as the set of all sequences of polynomials (fn (x1, . . . , xn))n≥1
such that size(fn), deg(fn) are both bounded by nc for some constant c.

Examples:

➢ fn := x1 · · · xn.

➢ fn := xn
1 + . . . + xn

n .

➢ fn :=
∑︁

S⊆[n]

∏
j∈S

xj =

n∏
i=1

(1 + xi).

4

The determinant polynomial

❑ Let Xn = [xi ,j]1≤i ,j≤n be a n × n matrix of distinct variables xi ,j . Let
Sn := {𝜋 | 𝜋 : {1, . . . , n} −→ {1, . . . , n} such that 𝜋 is bĳective }. Define

fn := det(Xn) =
∑︁
𝜋∈Sn

sgn(𝜋)
n∏

i=1
xi , 𝜋 (i) .

❑ det is universal, i.e. any polynomial f (x) can be computed as a determinant of a
square matrix whose entries are polynomials of degree ≤ 1.

❑ The minimum dimension of the matrix to compute f , is called the
determinantal complexity dc(f).

❑ E.g. dc(x1 · · · xn) = n, since

x1 · · · xn = det

©«
x1 0 . . . 0
0 x2 . . . 0
.
.
.

.

.

.
.
.
.

.

.

.

0 0 . . . xn

ª®®®®®¬
.

5

The determinant polynomial

❑ Let Xn = [xi ,j]1≤i ,j≤n be a n × n matrix of distinct variables xi ,j . Let
Sn := {𝜋 | 𝜋 : {1, . . . , n} −→ {1, . . . , n} such that 𝜋 is bĳective }. Define

fn := det(Xn) =
∑︁
𝜋∈Sn

sgn(𝜋)
n∏

i=1
xi , 𝜋 (i) .

❑ det is universal, i.e. any polynomial f (x) can be computed as a determinant of a
square matrix whose entries are polynomials of degree ≤ 1.

❑ The minimum dimension of the matrix to compute f , is called the
determinantal complexity dc(f).

❑ E.g. dc(x1 · · · xn) = n, since

x1 · · · xn = det

©«
x1 0 . . . 0
0 x2 . . . 0
.
.
.

.

.

.
.
.
.

.

.

.

0 0 . . . xn

ª®®®®®¬
.

5

The determinant polynomial

❑ Let Xn = [xi ,j]1≤i ,j≤n be a n × n matrix of distinct variables xi ,j . Let
Sn := {𝜋 | 𝜋 : {1, . . . , n} −→ {1, . . . , n} such that 𝜋 is bĳective }. Define

fn := det(Xn) =
∑︁
𝜋∈Sn

sgn(𝜋)
n∏

i=1
xi , 𝜋 (i) .

❑ det is universal, i.e. any polynomial f (x) can be computed as a determinant of a
square matrix whose entries are polynomials of degree ≤ 1.

❑ The minimum dimension of the matrix to compute f , is called the
determinantal complexity dc(f).

❑ E.g. dc(x1 · · · xn) = n, since

x1 · · · xn = det

©«
x1 0 . . . 0
0 x2 . . . 0
.
.
.

.

.

.
.
.
.

.

.

.

0 0 . . . xn

ª®®®®®¬
.

5

The determinant polynomial

❑ Let Xn = [xi ,j]1≤i ,j≤n be a n × n matrix of distinct variables xi ,j . Let
Sn := {𝜋 | 𝜋 : {1, . . . , n} −→ {1, . . . , n} such that 𝜋 is bĳective }. Define

fn := det(Xn) =
∑︁
𝜋∈Sn

sgn(𝜋)
n∏

i=1
xi , 𝜋 (i) .

❑ det is universal, i.e. any polynomial f (x) can be computed as a determinant of a
square matrix whose entries are polynomials of degree ≤ 1.

❑ The minimum dimension of the matrix to compute f , is called the
determinantal complexity dc(f).

❑ E.g. dc(x1 · · · xn) = n, since

x1 · · · xn = det

©«
x1 0 . . . 0
0 x2 . . . 0
.
.
.

.

.

.
.
.
.

.

.

.

0 0 . . . xn

ª®®®®®¬
.

5

The determinant polynomial

❑ Let Xn = [xi ,j]1≤i ,j≤n be a n × n matrix of distinct variables xi ,j . Let
Sn := {𝜋 | 𝜋 : {1, . . . , n} −→ {1, . . . , n} such that 𝜋 is bĳective }. Define

fn := det(Xn) =
∑︁
𝜋∈Sn

sgn(𝜋)
n∏

i=1
xi , 𝜋 (i) .

❑ det is universal, i.e. any polynomial f (x) can be computed as a determinant of a
square matrix whose entries are polynomials of degree ≤ 1.

❑ The minimum dimension of the matrix to compute f , is called the
determinantal complexity dc(f).

❑ E.g. dc(x1 · · · xn) = n, since

x1 · · · xn = det

©«
x1 0 . . . 0
0 x2 . . . 0
.
.
.

.

.

.
.
.
.

.

.

.

0 0 . . . xn

ª®®®®®¬
.

5

Another ‘easy’ class VBP

❑ VBP: The class VBP is defined as the set of all sequences of polynomials (fn)n
with polynomially bounded dc(fn).

❑ VBP ⊆ VP. It is open whether VBP ?
= VP.

❑ Often we will say f has a small ABP. This just means dc(f) is small.

❑ Connections: Linear algebra, Volume, counting planar matchings.

6

Another ‘easy’ class VBP

❑ VBP: The class VBP is defined as the set of all sequences of polynomials (fn)n
with polynomially bounded dc(fn).

❑ VBP ⊆ VP. It is open whether VBP ?
= VP.

❑ Often we will say f has a small ABP. This just means dc(f) is small.

❑ Connections: Linear algebra, Volume, counting planar matchings.

6

Another ‘easy’ class VBP

❑ VBP: The class VBP is defined as the set of all sequences of polynomials (fn)n
with polynomially bounded dc(fn).

❑ VBP ⊆ VP. It is open whether VBP ?
= VP.

❑ Often we will say f has a small ABP. This just means dc(f) is small.

❑ Connections: Linear algebra, Volume, counting planar matchings.

6

Another ‘easy’ class VBP

❑ VBP: The class VBP is defined as the set of all sequences of polynomials (fn)n
with polynomially bounded dc(fn).

❑ VBP ⊆ VP. It is open whether VBP ?
= VP.

❑ Often we will say f has a small ABP. This just means dc(f) is small.

❑ Connections: Linear algebra, Volume, counting planar matchings.

6

‘Hard’ polynomials?

❑ Are there hard polynomial families (fn)n such that it cannot be computed by an
nc-size circuit, for every constant c? i.e. size(fn) = n𝜔 (1)?

❑ A random polynomial with 0-1 coefficient is hard [Hrubeš-Yehudayoff
ToC’11]. Challenge: Find an explicit one!

❑ Candidate hard polynomial:

perm(Xn) =
∑︁
𝜋∈Sn

n∏
i=1

xi , 𝜋 (i) .

❑ perm is universal, i.e. any polynomial f (x) can be computed as a permanent of a
square matrix whose entries are polynomials of degree ≤ 1.

❑ The minimum dimension of the matrix to compute f , is called the permanental
complexity pc(f).

7

‘Hard’ polynomials?

❑ Are there hard polynomial families (fn)n such that it cannot be computed by an
nc-size circuit, for every constant c? i.e. size(fn) = n𝜔 (1)?

❑ A random polynomial with 0-1 coefficient is hard [Hrubeš-Yehudayoff
ToC’11]. Challenge: Find an explicit one!

❑ Candidate hard polynomial:

perm(Xn) =
∑︁
𝜋∈Sn

n∏
i=1

xi , 𝜋 (i) .

❑ perm is universal, i.e. any polynomial f (x) can be computed as a permanent of a
square matrix whose entries are polynomials of degree ≤ 1.

❑ The minimum dimension of the matrix to compute f , is called the permanental
complexity pc(f).

7

‘Hard’ polynomials?

❑ Are there hard polynomial families (fn)n such that it cannot be computed by an
nc-size circuit, for every constant c? i.e. size(fn) = n𝜔 (1)?

❑ A random polynomial with 0-1 coefficient is hard [Hrubeš-Yehudayoff
ToC’11].

Challenge: Find an explicit one!

❑ Candidate hard polynomial:

perm(Xn) =
∑︁
𝜋∈Sn

n∏
i=1

xi , 𝜋 (i) .

❑ perm is universal, i.e. any polynomial f (x) can be computed as a permanent of a
square matrix whose entries are polynomials of degree ≤ 1.

❑ The minimum dimension of the matrix to compute f , is called the permanental
complexity pc(f).

7

‘Hard’ polynomials?

❑ Are there hard polynomial families (fn)n such that it cannot be computed by an
nc-size circuit, for every constant c? i.e. size(fn) = n𝜔 (1)?

❑ A random polynomial with 0-1 coefficient is hard [Hrubeš-Yehudayoff
ToC’11]. Challenge: Find an explicit one!

❑ Candidate hard polynomial:

perm(Xn) =
∑︁
𝜋∈Sn

n∏
i=1

xi , 𝜋 (i) .

❑ perm is universal, i.e. any polynomial f (x) can be computed as a permanent of a
square matrix whose entries are polynomials of degree ≤ 1.

❑ The minimum dimension of the matrix to compute f , is called the permanental
complexity pc(f).

7

‘Hard’ polynomials?

❑ Are there hard polynomial families (fn)n such that it cannot be computed by an
nc-size circuit, for every constant c? i.e. size(fn) = n𝜔 (1)?

❑ A random polynomial with 0-1 coefficient is hard [Hrubeš-Yehudayoff
ToC’11]. Challenge: Find an explicit one!

❑ Candidate hard polynomial:

perm(Xn) =
∑︁
𝜋∈Sn

n∏
i=1

xi , 𝜋 (i) .

❑ perm is universal, i.e. any polynomial f (x) can be computed as a permanent of a
square matrix whose entries are polynomials of degree ≤ 1.

❑ The minimum dimension of the matrix to compute f , is called the permanental
complexity pc(f).

7

‘Hard’ polynomials?

❑ Are there hard polynomial families (fn)n such that it cannot be computed by an
nc-size circuit, for every constant c? i.e. size(fn) = n𝜔 (1)?

❑ A random polynomial with 0-1 coefficient is hard [Hrubeš-Yehudayoff
ToC’11]. Challenge: Find an explicit one!

❑ Candidate hard polynomial:

perm(Xn) =
∑︁
𝜋∈Sn

n∏
i=1

xi , 𝜋 (i) .

❑ perm is universal, i.e. any polynomial f (x) can be computed as a permanent of a
square matrix whose entries are polynomials of degree ≤ 1.

❑ The minimum dimension of the matrix to compute f , is called the permanental
complexity pc(f).

7

‘Hard’ polynomials?

❑ Are there hard polynomial families (fn)n such that it cannot be computed by an
nc-size circuit, for every constant c? i.e. size(fn) = n𝜔 (1)?

❑ A random polynomial with 0-1 coefficient is hard [Hrubeš-Yehudayoff
ToC’11]. Challenge: Find an explicit one!

❑ Candidate hard polynomial:

perm(Xn) =
∑︁
𝜋∈Sn

n∏
i=1

xi , 𝜋 (i) .

❑ perm is universal, i.e. any polynomial f (x) can be computed as a permanent of a
square matrix whose entries are polynomials of degree ≤ 1.

❑ The minimum dimension of the matrix to compute f , is called the permanental
complexity pc(f).

7

Valiant’s Conjecture

VNP = “hard to compute?” [Valiant 1979]
The class VNP is defined as the set of all sequences of polynomials
(fn (x1, . . . , xn))n≥1 such that pc(fn)is bounded by nc for some constant c.

❑ Connections: Enumeration, counting matchings, Bosons etc.

❑ VBP ⊆ VP ⊆ VNP.

Valiant’s Conjecture [Valiant 1979]
VBP ≠ VNP & VP ≠ VNP. Equivalently, dc(permn) and size(permn) are both
n𝜔 (1) .
[Also, VBP ≠ VP. A candidate?]

8

Valiant’s Conjecture

VNP = “hard to compute?” [Valiant 1979]
The class VNP is defined as the set of all sequences of polynomials
(fn (x1, . . . , xn))n≥1 such that pc(fn)is bounded by nc for some constant c.

❑ Connections: Enumeration, counting matchings, Bosons etc.

❑ VBP ⊆ VP ⊆ VNP.

Valiant’s Conjecture [Valiant 1979]
VBP ≠ VNP & VP ≠ VNP. Equivalently, dc(permn) and size(permn) are both
n𝜔 (1) .
[Also, VBP ≠ VP. A candidate?]

8

Valiant’s Conjecture

VNP = “hard to compute?” [Valiant 1979]
The class VNP is defined as the set of all sequences of polynomials
(fn (x1, . . . , xn))n≥1 such that pc(fn)is bounded by nc for some constant c.

❑ Connections: Enumeration, counting matchings, Bosons etc.

❑ VBP ⊆ VP ⊆ VNP.

Valiant’s Conjecture [Valiant 1979]
VBP ≠ VNP & VP ≠ VNP. Equivalently, dc(permn) and size(permn) are both
n𝜔 (1) .
[Also, VBP ≠ VP. A candidate?]

8

Valiant’s Conjecture

VNP = “hard to compute?” [Valiant 1979]
The class VNP is defined as the set of all sequences of polynomials
(fn (x1, . . . , xn))n≥1 such that pc(fn)is bounded by nc for some constant c.

❑ Connections: Enumeration, counting matchings, Bosons etc.

❑ VBP ⊆ VP ⊆ VNP.

Valiant’s Conjecture [Valiant 1979]
VBP ≠ VNP & VP ≠ VNP. Equivalently, dc(permn) and size(permn) are both
n𝜔 (1) .
[Also, VBP ≠ VP. A candidate?]

8

Valiant’s Conjecture

VNP = “hard to compute?” [Valiant 1979]
The class VNP is defined as the set of all sequences of polynomials
(fn (x1, . . . , xn))n≥1 such that pc(fn)is bounded by nc for some constant c.

❑ Connections: Enumeration, counting matchings, Bosons etc.

❑ VBP ⊆ VP ⊆ VNP.

Valiant’s Conjecture [Valiant 1979]
VBP ≠ VNP & VP ≠ VNP. Equivalently, dc(permn) and size(permn) are both
n𝜔 (1) .
[Also, VBP ≠ VP. A candidate?]

8

Connections to Boolean circuit complexity

❑ Separating algebraic classes are “easier” than separating classes in Boolean
complexity [Bürgisser 1998]:

➢ P/poly ≠ NP/poly =⇒ VBP ≠ VNP and VP ≠ VNP (over finite fields).

➢ Assuming GRH (Generalized Riemann hypothesis), the results hold over C
as well.

9

Connections to Boolean circuit complexity

❑ Separating algebraic classes are “easier” than separating classes in Boolean
complexity [Bürgisser 1998]:

➢ P/poly ≠ NP/poly =⇒ VBP ≠ VNP and VP ≠ VNP (over finite fields).

➢ Assuming GRH (Generalized Riemann hypothesis), the results hold over C
as well.

9

Connections to Boolean circuit complexity

❑ Separating algebraic classes are “easier” than separating classes in Boolean
complexity [Bürgisser 1998]:

➢ P/poly ≠ NP/poly =⇒ VBP ≠ VNP and VP ≠ VNP (over finite fields).

➢ Assuming GRH (Generalized Riemann hypothesis), the results hold over C
as well.

9

Connections to Boolean circuit complexity

❑ Separating algebraic classes are “easier” than separating classes in Boolean
complexity [Bürgisser 1998]:

➢ P/poly ≠ NP/poly =⇒ VBP ≠ VNP and VP ≠ VNP (over finite fields).

➢ Assuming GRH (Generalized Riemann hypothesis), the results hold over C
as well.

9

Summary

❑ A recent breakthrough. [Limaye-Srinivasan-Tavenas FOCS 2021] showed the
first superpolynomial lower bound for general constant-depth algebraic circuits!

❑ Can there be ‘algebraic natural proofs’ to prove VP ≠ VNP? Some
answers: [Chatterjee-Kumar-Ramya-Saptharishi-Tengse 2020,
Kumar-Ramya-Saptharishi-Tengse 2020].

10

Summary

❑ A recent breakthrough. [Limaye-Srinivasan-Tavenas FOCS 2021] showed the
first superpolynomial lower bound for general constant-depth algebraic circuits!

❑ Can there be ‘algebraic natural proofs’ to prove VP ≠ VNP? Some
answers: [Chatterjee-Kumar-Ramya-Saptharishi-Tengse 2020,
Kumar-Ramya-Saptharishi-Tengse 2020].

10

Summary

❑ A recent breakthrough. [Limaye-Srinivasan-Tavenas FOCS 2021] showed the
first superpolynomial lower bound for general constant-depth algebraic circuits!

❑ Can there be ‘algebraic natural proofs’ to prove VP ≠ VNP? Some
answers: [Chatterjee-Kumar-Ramya-Saptharishi-Tengse 2020,
Kumar-Ramya-Saptharishi-Tengse 2020].

10

Border Complexity and GCT

Waring rank

❑ Can ‘approximations’ also help in algebraic computational models?

❑ An important measure is Waring rank, denoted WR(·).

Waring Rank
The smallest r such that a homogeneous degree d polynomial h can be written as a
sum of d-th power of linear forms ℓi , i.e. h =

∑r
i=1 ℓd

i .

❑ Recall: h =
∑

e1 ,..,en ae1 ,...,en xe1
1 · · · xen

n , is called homogeneous degree d
polynomial if

∑
ei = d, for every tupple (e1, . . . , en) such that ae1 ,...,en ≠ 0.

❑ Recall: A linear form ℓ is of the form a1x1 + . . . + anxn.

❑ For any homogeneous polynomial h, WR(h) is finite.

❑ WR(h) ≤ r is denoted as h ∈ Σ[r] ∧Σ (homogeneous depth-3 diagonal circuits).

11

Waring rank

❑ Can ‘approximations’ also help in algebraic computational models?

❑ An important measure is Waring rank, denoted WR(·).

Waring Rank
The smallest r such that a homogeneous degree d polynomial h can be written as a
sum of d-th power of linear forms ℓi , i.e. h =

∑r
i=1 ℓd

i .

❑ Recall: h =
∑

e1 ,..,en ae1 ,...,en xe1
1 · · · xen

n , is called homogeneous degree d
polynomial if

∑
ei = d, for every tupple (e1, . . . , en) such that ae1 ,...,en ≠ 0.

❑ Recall: A linear form ℓ is of the form a1x1 + . . . + anxn.

❑ For any homogeneous polynomial h, WR(h) is finite.

❑ WR(h) ≤ r is denoted as h ∈ Σ[r] ∧Σ (homogeneous depth-3 diagonal circuits).

11

Waring rank

❑ Can ‘approximations’ also help in algebraic computational models?

❑ An important measure is Waring rank, denoted WR(·).

Waring Rank
The smallest r such that a homogeneous degree d polynomial h can be written as a
sum of d-th power of linear forms ℓi , i.e. h =

∑r
i=1 ℓd

i .

❑ Recall: h =
∑

e1 ,..,en ae1 ,...,en xe1
1 · · · xen

n , is called homogeneous degree d
polynomial if

∑
ei = d, for every tupple (e1, . . . , en) such that ae1 ,...,en ≠ 0.

❑ Recall: A linear form ℓ is of the form a1x1 + . . . + anxn.

❑ For any homogeneous polynomial h, WR(h) is finite.

❑ WR(h) ≤ r is denoted as h ∈ Σ[r] ∧Σ (homogeneous depth-3 diagonal circuits).

11

Waring rank

❑ Can ‘approximations’ also help in algebraic computational models?

❑ An important measure is Waring rank, denoted WR(·).

Waring Rank
The smallest r such that a homogeneous degree d polynomial h can be written as a
sum of d-th power of linear forms ℓi , i.e. h =

∑r
i=1 ℓd

i .

❑ Recall: h =
∑

e1 ,..,en ae1 ,...,en xe1
1 · · · xen

n , is called homogeneous degree d
polynomial if

∑
ei = d, for every tupple (e1, . . . , en) such that ae1 ,...,en ≠ 0.

❑ Recall: A linear form ℓ is of the form a1x1 + . . . + anxn.

❑ For any homogeneous polynomial h, WR(h) is finite.

❑ WR(h) ≤ r is denoted as h ∈ Σ[r] ∧Σ (homogeneous depth-3 diagonal circuits).

11

Waring rank

❑ Can ‘approximations’ also help in algebraic computational models?

❑ An important measure is Waring rank, denoted WR(·).

Waring Rank
The smallest r such that a homogeneous degree d polynomial h can be written as a
sum of d-th power of linear forms ℓi , i.e. h =

∑r
i=1 ℓd

i .

❑ Recall: h =
∑

e1 ,..,en ae1 ,...,en xe1
1 · · · xen

n , is called homogeneous degree d
polynomial if

∑
ei = d, for every tupple (e1, . . . , en) such that ae1 ,...,en ≠ 0.

❑ Recall: A linear form ℓ is of the form a1x1 + . . . + anxn.

❑ For any homogeneous polynomial h, WR(h) is finite.

❑ WR(h) ≤ r is denoted as h ∈ Σ[r] ∧Σ (homogeneous depth-3 diagonal circuits).

11

Waring rank

❑ Can ‘approximations’ also help in algebraic computational models?

❑ An important measure is Waring rank, denoted WR(·).

Waring Rank
The smallest r such that a homogeneous degree d polynomial h can be written as a
sum of d-th power of linear forms ℓi , i.e. h =

∑r
i=1 ℓd

i .

❑ Recall: h =
∑

e1 ,..,en ae1 ,...,en xe1
1 · · · xen

n , is called homogeneous degree d
polynomial if

∑
ei = d, for every tupple (e1, . . . , en) such that ae1 ,...,en ≠ 0.

❑ Recall: A linear form ℓ is of the form a1x1 + . . . + anxn.

❑ For any homogeneous polynomial h, WR(h) is finite.

❑ WR(h) ≤ r is denoted as h ∈ Σ[r] ∧Σ (homogeneous depth-3 diagonal circuits).

11

Waring rank

❑ Can ‘approximations’ also help in algebraic computational models?

❑ An important measure is Waring rank, denoted WR(·).

Waring Rank
The smallest r such that a homogeneous degree d polynomial h can be written as a
sum of d-th power of linear forms ℓi , i.e. h =

∑r
i=1 ℓd

i .

❑ Recall: h =
∑

e1 ,..,en ae1 ,...,en xe1
1 · · · xen

n , is called homogeneous degree d
polynomial if

∑
ei = d, for every tupple (e1, . . . , en) such that ae1 ,...,en ≠ 0.

❑ Recall: A linear form ℓ is of the form a1x1 + . . . + anxn.

❑ For any homogeneous polynomial h, WR(h) is finite.

❑ WR(h) ≤ r is denoted as h ∈ Σ[r] ∧Σ (homogeneous depth-3 diagonal circuits).

11

Waring rank

❑ Can ‘approximations’ also help in algebraic computational models?

❑ An important measure is Waring rank, denoted WR(·).

Waring Rank
The smallest r such that a homogeneous degree d polynomial h can be written as a
sum of d-th power of linear forms ℓi , i.e. h =

∑r
i=1 ℓd

i .

❑ Recall: h =
∑

e1 ,..,en ae1 ,...,en xe1
1 · · · xen

n , is called homogeneous degree d
polynomial if

∑
ei = d, for every tupple (e1, . . . , en) such that ae1 ,...,en ≠ 0.

❑ Recall: A linear form ℓ is of the form a1x1 + . . . + anxn.

❑ For any homogeneous polynomial h, WR(h) is finite.

❑ WR(h) ≤ r is denoted as h ∈ Σ[r] ∧Σ (homogeneous depth-3 diagonal circuits).

11

Approximation helps!

❑ Example: WR(x2y) ≤ 3, because

x2y =
1
6
· (x + y)3 − 1

6
· (x − y)3 − 1

3
· y3 .

❑ Prove: WR(x2y) = 3.

❑ Let h𝜖 := 1
3𝜖

(
(x + 𝜖y)3 − x3

)
= x2y + 𝜖xy2 + 𝜖 2

3 y3 𝜖→0→ x2y =: h (coefficient-wise).

❑ Note: WR(h𝜖) ≤ 2, for any fixed non-zero 𝜖 . But WR(h) = 3!

WR(h) ≤ 1WR(h) ≤ 2WR(h) ≤ 3WR(h) ≤ 4

x2y

12

Approximation helps!

❑ Example: WR(x2y) ≤ 3, because

x2y =
1
6
· (x + y)3 − 1

6
· (x − y)3 − 1

3
· y3 .

❑ Prove: WR(x2y) = 3.

❑ Let h𝜖 := 1
3𝜖

(
(x + 𝜖y)3 − x3

)
= x2y + 𝜖xy2 + 𝜖 2

3 y3 𝜖→0→ x2y =: h (coefficient-wise).

❑ Note: WR(h𝜖) ≤ 2, for any fixed non-zero 𝜖 . But WR(h) = 3!

WR(h) ≤ 1WR(h) ≤ 2WR(h) ≤ 3WR(h) ≤ 4

x2y

12

Approximation helps!

❑ Example: WR(x2y) ≤ 3, because

x2y =
1
6
· (x + y)3 − 1

6
· (x − y)3 − 1

3
· y3 .

❑ Prove: WR(x2y) = 3.

❑ Let h𝜖 := 1
3𝜖

(
(x + 𝜖y)3 − x3

)
= x2y + 𝜖xy2 + 𝜖 2

3 y3 𝜖→0→ x2y =: h (coefficient-wise).

❑ Note: WR(h𝜖) ≤ 2, for any fixed non-zero 𝜖 . But WR(h) = 3!

WR(h) ≤ 1WR(h) ≤ 2WR(h) ≤ 3WR(h) ≤ 4

x2y

12

Approximation helps!

❑ Example: WR(x2y) ≤ 3, because

x2y =
1
6
· (x + y)3 − 1

6
· (x − y)3 − 1

3
· y3 .

❑ Prove: WR(x2y) = 3.

❑ Let h𝜖 := 1
3𝜖

(
(x + 𝜖y)3 − x3

)

= x2y + 𝜖xy2 + 𝜖 2

3 y3 𝜖→0→ x2y =: h (coefficient-wise).

❑ Note: WR(h𝜖) ≤ 2, for any fixed non-zero 𝜖 . But WR(h) = 3!

WR(h) ≤ 1WR(h) ≤ 2WR(h) ≤ 3WR(h) ≤ 4

x2y

12

Approximation helps!

❑ Example: WR(x2y) ≤ 3, because

x2y =
1
6
· (x + y)3 − 1

6
· (x − y)3 − 1

3
· y3 .

❑ Prove: WR(x2y) = 3.

❑ Let h𝜖 := 1
3𝜖

(
(x + 𝜖y)3 − x3

)
= x2y + 𝜖xy2 + 𝜖 2

3 y3 𝜖→0→ x2y =: h (coefficient-wise).

❑ Note: WR(h𝜖) ≤ 2, for any fixed non-zero 𝜖 . But WR(h) = 3!

WR(h) ≤ 1WR(h) ≤ 2WR(h) ≤ 3WR(h) ≤ 4

x2y

12

Approximation helps!

❑ Example: WR(x2y) ≤ 3, because

x2y =
1
6
· (x + y)3 − 1

6
· (x − y)3 − 1

3
· y3 .

❑ Prove: WR(x2y) = 3.

❑ Let h𝜖 := 1
3𝜖

(
(x + 𝜖y)3 − x3

)
= x2y + 𝜖xy2 + 𝜖 2

3 y3 𝜖→0→ x2y =: h (coefficient-wise).

❑ Note: WR(h𝜖) ≤ 2, for any fixed non-zero 𝜖 . But WR(h) = 3!

WR(h) ≤ 1WR(h) ≤ 2WR(h) ≤ 3WR(h) ≤ 4

x2y

12

Approximation helps!

❑ Example: WR(x2y) ≤ 3, because

x2y =
1
6
· (x + y)3 − 1

6
· (x − y)3 − 1

3
· y3 .

❑ Prove: WR(x2y) = 3.

❑ Let h𝜖 := 1
3𝜖

(
(x + 𝜖y)3 − x3

)
= x2y + 𝜖xy2 + 𝜖 2

3 y3 𝜖→0→ x2y =: h (coefficient-wise).

❑ Note: WR(h𝜖) ≤ 2, for any fixed non-zero 𝜖 . But WR(h) = 3!

WR(h) ≤ 1WR(h) ≤ 2WR(h) ≤ 3WR(h) ≤ 4

x2y

12

So, Border Waring rank

Border Waring rank

The border Waring rank WR(h) is defined as the smallest n such that h can be
approximated arbitrarily closely by polynomials of Waring rank ≤ n.

❑ WR(x2y) = 2 but WR(x2y) = 3.

❑ The subtlety is gone: Xn := {h | WR(h) ≤ n}, is now a closed set.

❑ On to proving lower bounds: To show WR(p) > n, for some p, it suffices to show
that p ∉ Xn, i.e. find a continuous function f that vanishes on Xn but not on p.

13

So, Border Waring rank

Border Waring rank

The border Waring rank WR(h) is defined as the smallest n such that h can be
approximated arbitrarily closely by polynomials of Waring rank ≤ n.

❑ WR(x2y) = 2 but WR(x2y) = 3.

❑ The subtlety is gone: Xn := {h | WR(h) ≤ n}, is now a closed set.

❑ On to proving lower bounds: To show WR(p) > n, for some p, it suffices to show
that p ∉ Xn, i.e. find a continuous function f that vanishes on Xn but not on p.

13

So, Border Waring rank

Border Waring rank

The border Waring rank WR(h) is defined as the smallest n such that h can be
approximated arbitrarily closely by polynomials of Waring rank ≤ n.

❑ WR(x2y) = 2 but WR(x2y) = 3.

❑ The subtlety is gone: Xn := {h | WR(h) ≤ n}, is now a closed set.

❑ On to proving lower bounds: To show WR(p) > n, for some p, it suffices to show
that p ∉ Xn, i.e. find a continuous function f that vanishes on Xn but not on p.

13

So, Border Waring rank

Border Waring rank

The border Waring rank WR(h) is defined as the smallest n such that h can be
approximated arbitrarily closely by polynomials of Waring rank ≤ n.

❑ WR(x2y) = 2 but WR(x2y) = 3.

❑ The subtlety is gone: Xn := {h | WR(h) ≤ n}, is now a closed set.

❑ On to proving lower bounds: To show WR(p) > n, for some p, it suffices to show
that p ∉ Xn, i.e. find a continuous function f that vanishes on Xn but not on p.

13

So, Border Waring rank

Border Waring rank

The border Waring rank WR(h) is defined as the smallest n such that h can be
approximated arbitrarily closely by polynomials of Waring rank ≤ n.

❑ WR(x2y) = 2 but WR(x2y) = 3.

❑ The subtlety is gone: Xn := {h | WR(h) ≤ n}, is now a closed set.

❑ On to proving lower bounds: To show WR(p) > n, for some p, it suffices to show
that p ∉ Xn, i.e. find a continuous function f that vanishes on Xn but not on p.

13

Border complexity

❑ Replace Waring rank by any sensible measure Γ. It can be size, dc, pc and so on.

❑ For any Γ, we can define the border complexity measure Γ via:
Γ(h) is the smallest n such that h(x) can be approximated arbitrarily closely by
polynomials h𝜖 (x) with Γ(h𝜖) ≤ n. In other words,

lim
𝜖→0

h𝜖 = h (coefficient-wise) .

❑ Important border rank: border tensor rank, related to border Waring rank!
Border tensor rank is directly related to the matrix multiplication exponent
𝜔 [Bini 1980, Coppersmith-Winograd 1990].

14

Border complexity

❑ Replace Waring rank by any sensible measure Γ. It can be size, dc, pc and so on.

❑ For any Γ, we can define the border complexity measure Γ via:
Γ(h) is the smallest n such that h(x) can be approximated arbitrarily closely by
polynomials h𝜖 (x) with Γ(h𝜖) ≤ n.

In other words,

lim
𝜖→0

h𝜖 = h (coefficient-wise) .

❑ Important border rank: border tensor rank, related to border Waring rank!
Border tensor rank is directly related to the matrix multiplication exponent
𝜔 [Bini 1980, Coppersmith-Winograd 1990].

14

Border complexity

❑ Replace Waring rank by any sensible measure Γ. It can be size, dc, pc and so on.

❑ For any Γ, we can define the border complexity measure Γ via:
Γ(h) is the smallest n such that h(x) can be approximated arbitrarily closely by
polynomials h𝜖 (x) with Γ(h𝜖) ≤ n. In other words,

lim
𝜖→0

h𝜖 = h (coefficient-wise) .

❑ Important border rank: border tensor rank, related to border Waring rank!
Border tensor rank is directly related to the matrix multiplication exponent
𝜔 [Bini 1980, Coppersmith-Winograd 1990].

14

Border complexity

❑ Replace Waring rank by any sensible measure Γ. It can be size, dc, pc and so on.

❑ For any Γ, we can define the border complexity measure Γ via:
Γ(h) is the smallest n such that h(x) can be approximated arbitrarily closely by
polynomials h𝜖 (x) with Γ(h𝜖) ≤ n. In other words,

lim
𝜖→0

h𝜖 = h (coefficient-wise) .

❑ Important border rank: border tensor rank, related to border Waring rank!

Border tensor rank is directly related to the matrix multiplication exponent
𝜔 [Bini 1980, Coppersmith-Winograd 1990].

14

Border complexity

❑ Replace Waring rank by any sensible measure Γ. It can be size, dc, pc and so on.

❑ For any Γ, we can define the border complexity measure Γ via:
Γ(h) is the smallest n such that h(x) can be approximated arbitrarily closely by
polynomials h𝜖 (x) with Γ(h𝜖) ≤ n. In other words,

lim
𝜖→0

h𝜖 = h (coefficient-wise) .

❑ Important border rank: border tensor rank, related to border Waring rank!
Border tensor rank is directly related to the matrix multiplication exponent
𝜔 [Bini 1980, Coppersmith-Winograd 1990].

14

Approximative circuits

❑ Coefficients in the earlier definition can be arbitrary depending on the parameter
𝜖 . Can it be ‘nicer’?

❑ Yes! Via ‘approximative circuits’.

15

Approximative circuits

❑ Coefficients in the earlier definition can be arbitrary depending on the parameter
𝜖 . Can it be ‘nicer’?

❑ Yes! Via ‘approximative circuits’.

15

Approximative circuits (continued)

x1 x2 x3 1

+ + + + + +

× × ×

+

1
𝜖3

𝜖

𝜖3+1

g(x1, . . . , xn, 𝜖) ∈ F(𝜖) [x]

F(𝜖) := {p(𝜖)
q(𝜖) | p, q ∈ F[𝜖], q(𝜖) ≠ 0}

16

Algebraic approximation

❑ Suppose, we assume the following:
➢ g(x , 𝜖) ∈ F[x1, . . . , xn, 𝜖], i.e. it is a polynomial of the form

g(x , 𝜖) =

M∑︁
i=0

gi (x1, . . . , xn) · 𝜖 i ,

➢ Can we say anything about the complexity of g0?

❑ Obvious attempt:

➢ Since, g(x , 0) = g0, why not just set 𝜖 = 0?! Setting 𝜖 = 0 may not be
‘legal’ as it could be using 1/𝜖 in the wire. Though it is well-defined!

❑ Summary: g0 is really something non-trivial and being ‘approximated’ by the
circuit since lim𝜖→0 g(x , 𝜖) = g0.

17

Algebraic approximation

❑ Suppose, we assume the following:
➢ g(x , 𝜖) ∈ F[x1, . . . , xn, 𝜖], i.e. it is a polynomial of the form

g(x , 𝜖) =

M∑︁
i=0

gi (x1, . . . , xn) · 𝜖 i ,

➢ Can we say anything about the complexity of g0?

❑ Obvious attempt:

➢ Since, g(x , 0) = g0, why not just set 𝜖 = 0?! Setting 𝜖 = 0 may not be
‘legal’ as it could be using 1/𝜖 in the wire. Though it is well-defined!

❑ Summary: g0 is really something non-trivial and being ‘approximated’ by the
circuit since lim𝜖→0 g(x , 𝜖) = g0.

17

Algebraic approximation

❑ Suppose, we assume the following:
➢ g(x , 𝜖) ∈ F[x1, . . . , xn, 𝜖], i.e. it is a polynomial of the form

g(x , 𝜖) =

M∑︁
i=0

gi (x1, . . . , xn) · 𝜖 i ,

➢ Can we say anything about the complexity of g0?

❑ Obvious attempt:

➢ Since, g(x , 0) = g0, why not just set 𝜖 = 0?! Setting 𝜖 = 0 may not be
‘legal’ as it could be using 1/𝜖 in the wire. Though it is well-defined!

❑ Summary: g0 is really something non-trivial and being ‘approximated’ by the
circuit since lim𝜖→0 g(x , 𝜖) = g0.

17

Algebraic approximation

❑ Suppose, we assume the following:
➢ g(x , 𝜖) ∈ F[x1, . . . , xn, 𝜖], i.e. it is a polynomial of the form

g(x , 𝜖) =

M∑︁
i=0

gi (x1, . . . , xn) · 𝜖 i ,

➢ Can we say anything about the complexity of g0?

❑ Obvious attempt:

➢ Since, g(x , 0) = g0, why not just set 𝜖 = 0?!

Setting 𝜖 = 0 may not be
‘legal’ as it could be using 1/𝜖 in the wire. Though it is well-defined!

❑ Summary: g0 is really something non-trivial and being ‘approximated’ by the
circuit since lim𝜖→0 g(x , 𝜖) = g0.

17

Algebraic approximation

❑ Suppose, we assume the following:
➢ g(x , 𝜖) ∈ F[x1, . . . , xn, 𝜖], i.e. it is a polynomial of the form

g(x , 𝜖) =

M∑︁
i=0

gi (x1, . . . , xn) · 𝜖 i ,

➢ Can we say anything about the complexity of g0?

❑ Obvious attempt:

➢ Since, g(x , 0) = g0, why not just set 𝜖 = 0?! Setting 𝜖 = 0 may not be
‘legal’ as it could be using 1/𝜖 in the wire. Though it is well-defined!

❑ Summary: g0 is really something non-trivial and being ‘approximated’ by the
circuit since lim𝜖→0 g(x , 𝜖) = g0.

17

Algebraic approximation

❑ Suppose, we assume the following:
➢ g(x , 𝜖) ∈ F[x1, . . . , xn, 𝜖], i.e. it is a polynomial of the form

g(x , 𝜖) =

M∑︁
i=0

gi (x1, . . . , xn) · 𝜖 i ,

➢ Can we say anything about the complexity of g0?

❑ Obvious attempt:

➢ Since, g(x , 0) = g0, why not just set 𝜖 = 0?! Setting 𝜖 = 0 may not be
‘legal’ as it could be using 1/𝜖 in the wire. Though it is well-defined!

❑ Summary: g0 is really something non-trivial and being ‘approximated’ by the
circuit since lim𝜖→0 g(x , 𝜖) = g0.

17

Algebraic approximation (continued)

Algebraic Approximation [Bürgisser 2004]
A polynomial h(x) ∈ F[x] has approximative complexity s, if there is a circuit
g(x , 𝜖) ∈ F(𝜖) [x], of size s, over F(𝜖), and a polynomial S(x , 𝜖) ∈ F[𝜖] [x] such that
g(x , 𝜖) = h(x) + 𝜖 · S(x , 𝜖). In other words, lim𝜖→0 g = h.

❑ size(h) ≤ size(h).

❑ If g has circuit of size s over F(𝜖), then one can assume that the highest degree
of 𝜖 in g can be exponentially large 2s2 [Bürgisser 2004, 2020].

❑ Let us assume that g(x , 𝜖) = ∑M
i=0 gi · 𝜖 i , where M = 2s2 . Note: g0 = h.

➢ Pick M + 1 many distinct values from F randomly and interpolate;

➢ size(h) ≤ exp(size(h)).

❑ size(h) ≤ size(h) ≤ exp(size(h))

18

Algebraic approximation (continued)

Algebraic Approximation [Bürgisser 2004]
A polynomial h(x) ∈ F[x] has approximative complexity s, if there is a circuit
g(x , 𝜖) ∈ F(𝜖) [x], of size s, over F(𝜖), and a polynomial S(x , 𝜖) ∈ F[𝜖] [x] such that
g(x , 𝜖) = h(x) + 𝜖 · S(x , 𝜖). In other words, lim𝜖→0 g = h.

❑ size(h) ≤ size(h).

❑ If g has circuit of size s over F(𝜖), then one can assume that the highest degree
of 𝜖 in g can be exponentially large 2s2 [Bürgisser 2004, 2020].

❑ Let us assume that g(x , 𝜖) = ∑M
i=0 gi · 𝜖 i , where M = 2s2 . Note: g0 = h.

➢ Pick M + 1 many distinct values from F randomly and interpolate;

➢ size(h) ≤ exp(size(h)).

❑ size(h) ≤ size(h) ≤ exp(size(h))

18

Algebraic approximation (continued)

Algebraic Approximation [Bürgisser 2004]
A polynomial h(x) ∈ F[x] has approximative complexity s, if there is a circuit
g(x , 𝜖) ∈ F(𝜖) [x], of size s, over F(𝜖), and a polynomial S(x , 𝜖) ∈ F[𝜖] [x] such that
g(x , 𝜖) = h(x) + 𝜖 · S(x , 𝜖). In other words, lim𝜖→0 g = h.

❑ size(h) ≤ size(h).

❑ If g has circuit of size s over F(𝜖), then one can assume that the highest degree
of 𝜖 in g can be exponentially large 2s2 [Bürgisser 2004, 2020].

❑ Let us assume that g(x , 𝜖) = ∑M
i=0 gi · 𝜖 i , where M = 2s2 . Note: g0 = h.

➢ Pick M + 1 many distinct values from F randomly and interpolate;

➢ size(h) ≤ exp(size(h)).

❑ size(h) ≤ size(h) ≤ exp(size(h))

18

Algebraic approximation (continued)

Algebraic Approximation [Bürgisser 2004]
A polynomial h(x) ∈ F[x] has approximative complexity s, if there is a circuit
g(x , 𝜖) ∈ F(𝜖) [x], of size s, over F(𝜖), and a polynomial S(x , 𝜖) ∈ F[𝜖] [x] such that
g(x , 𝜖) = h(x) + 𝜖 · S(x , 𝜖). In other words, lim𝜖→0 g = h.

❑ size(h) ≤ size(h).

❑ If g has circuit of size s over F(𝜖), then one can assume that the highest degree
of 𝜖 in g can be exponentially large 2s2 [Bürgisser 2004, 2020].

❑ Let us assume that g(x , 𝜖) = ∑M
i=0 gi · 𝜖 i , where M = 2s2 . Note: g0 = h.

➢ Pick M + 1 many distinct values from F randomly and interpolate;

➢ size(h) ≤ exp(size(h)).

❑ size(h) ≤ size(h) ≤ exp(size(h))

18

Algebraic approximation (continued)

Algebraic Approximation [Bürgisser 2004]
A polynomial h(x) ∈ F[x] has approximative complexity s, if there is a circuit
g(x , 𝜖) ∈ F(𝜖) [x], of size s, over F(𝜖), and a polynomial S(x , 𝜖) ∈ F[𝜖] [x] such that
g(x , 𝜖) = h(x) + 𝜖 · S(x , 𝜖). In other words, lim𝜖→0 g = h.

❑ size(h) ≤ size(h).

❑ If g has circuit of size s over F(𝜖), then one can assume that the highest degree
of 𝜖 in g can be exponentially large 2s2 [Bürgisser 2004, 2020].

❑ Let us assume that g(x , 𝜖) = ∑M
i=0 gi · 𝜖 i , where M = 2s2 . Note: g0 = h.

➢ Pick M + 1 many distinct values from F randomly and interpolate;

➢ size(h) ≤ exp(size(h)).

❑ size(h) ≤ size(h) ≤ exp(size(h))

18

Algebraic approximation (continued)

Algebraic Approximation [Bürgisser 2004]
A polynomial h(x) ∈ F[x] has approximative complexity s, if there is a circuit
g(x , 𝜖) ∈ F(𝜖) [x], of size s, over F(𝜖), and a polynomial S(x , 𝜖) ∈ F[𝜖] [x] such that
g(x , 𝜖) = h(x) + 𝜖 · S(x , 𝜖). In other words, lim𝜖→0 g = h.

❑ size(h) ≤ size(h).

❑ If g has circuit of size s over F(𝜖), then one can assume that the highest degree
of 𝜖 in g can be exponentially large 2s2 [Bürgisser 2004, 2020].

❑ Let us assume that g(x , 𝜖) = ∑M
i=0 gi · 𝜖 i , where M = 2s2 . Note: g0 = h.

➢ Pick M + 1 many distinct values from F randomly and interpolate;

➢ size(h) ≤ exp(size(h)).

❑ size(h) ≤ size(h) ≤ exp(size(h))

18

Algebraic approximation (continued)

Algebraic Approximation [Bürgisser 2004]
A polynomial h(x) ∈ F[x] has approximative complexity s, if there is a circuit
g(x , 𝜖) ∈ F(𝜖) [x], of size s, over F(𝜖), and a polynomial S(x , 𝜖) ∈ F[𝜖] [x] such that
g(x , 𝜖) = h(x) + 𝜖 · S(x , 𝜖). In other words, lim𝜖→0 g = h.

❑ size(h) ≤ size(h).

❑ If g has circuit of size s over F(𝜖), then one can assume that the highest degree
of 𝜖 in g can be exponentially large 2s2 [Bürgisser 2004, 2020].

❑ Let us assume that g(x , 𝜖) = ∑M
i=0 gi · 𝜖 i , where M = 2s2 . Note: g0 = h.

➢ Pick M + 1 many distinct values from F randomly and interpolate;

➢ size(h) ≤ exp(size(h)).

❑ size(h) ≤ size(h) ≤ exp(size(h))

18

Algebraic approximation (continued)

Algebraic Approximation [Bürgisser 2004]
A polynomial h(x) ∈ F[x] has approximative complexity s, if there is a circuit
g(x , 𝜖) ∈ F(𝜖) [x], of size s, over F(𝜖), and a polynomial S(x , 𝜖) ∈ F[𝜖] [x] such that
g(x , 𝜖) = h(x) + 𝜖 · S(x , 𝜖). In other words, lim𝜖→0 g = h.

❑ size(h) ≤ size(h).

❑ If g has circuit of size s over F(𝜖), then one can assume that the highest degree
of 𝜖 in g can be exponentially large 2s2 [Bürgisser 2004, 2020].

❑ Let us assume that g(x , 𝜖) = ∑M
i=0 gi · 𝜖 i , where M = 2s2 . Note: g0 = h.

➢ Pick M + 1 many distinct values from F randomly and interpolate;

➢ size(h) ≤ exp(size(h)).

❑ size(h) ≤ size(h) ≤ exp(size(h))

18

De-bordering

❑ De-bordering: Given a ‘nice’ class C, can we de-border C? i.e. find another
‘nice’ class D such that C ⊆ D?

❑ Take C ∈ {VBP,VP, Σ ∧ Σ,VNP, · · · }.

❑ Major open questions from [Mulmuley Sohoni 2001] and [Bürgisser 2001]:

VBP ?
= VBP , VP ?

= VP , VNP ?
= VNP .

19

De-bordering

❑ De-bordering: Given a ‘nice’ class C, can we de-border C? i.e. find another
‘nice’ class D such that C ⊆ D?

❑ Take C ∈ {VBP,VP, Σ ∧ Σ,VNP, · · · }.

❑ Major open questions from [Mulmuley Sohoni 2001] and [Bürgisser 2001]:

VBP ?
= VBP , VP ?

= VP , VNP ?
= VNP .

19

De-bordering

❑ De-bordering: Given a ‘nice’ class C, can we de-border C? i.e. find another
‘nice’ class D such that C ⊆ D?

❑ Take C ∈ {VBP,VP, Σ ∧ Σ,VNP, · · · }.

❑ Major open questions from [Mulmuley Sohoni 2001] and [Bürgisser 2001]:

VBP ?
= VBP , VP ?

= VP , VNP ?
= VNP .

19

De-bordering

❑ De-bordering: Given a ‘nice’ class C, can we de-border C? i.e. find another
‘nice’ class D such that C ⊆ D?

❑ Take C ∈ {VBP,VP, Σ ∧ Σ,VNP, · · · }.

❑ Major open questions from [Mulmuley Sohoni 2001] and [Bürgisser 2001]:

VBP ?
= VBP , VP ?

= VP , VNP ?
= VNP .

19

Strengthening lower bounds and its advantages

Strengthening Valiant’s Conjecture [Milind Sohoni 2001]

VNP ⊄ VBP & VNP ⊄ VP. Equivalently, dc(permn) and size(permn) are both
n𝜔 (1) .

❑ Both det and perm have ‘nice’ symmetries.

❑ Symmetry-characterization avoids the Razborov–Rudich barrier: Very few
functions are symmetry-characterized, so symmetry-characterization violates
the largeness criterion!

20

Strengthening lower bounds and its advantages

Strengthening Valiant’s Conjecture [Milind Sohoni 2001]

VNP ⊄ VBP & VNP ⊄ VP. Equivalently, dc(permn) and size(permn) are both
n𝜔 (1) .

❑ Both det and perm have ‘nice’ symmetries.

❑ Symmetry-characterization avoids the Razborov–Rudich barrier: Very few
functions are symmetry-characterized, so symmetry-characterization violates
the largeness criterion!

20

Strengthening lower bounds and its advantages

Strengthening Valiant’s Conjecture [Milind Sohoni 2001]

VNP ⊄ VBP & VNP ⊄ VP. Equivalently, dc(permn) and size(permn) are both
n𝜔 (1) .

❑ Both det and perm have ‘nice’ symmetries.

❑ Symmetry-characterization avoids the Razborov–Rudich barrier: Very few
functions are symmetry-characterized, so symmetry-characterization violates
the largeness criterion!

20

Strengthening lower bounds and its advantages

Strengthening Valiant’s Conjecture [Milind Sohoni 2001]

VNP ⊄ VBP & VNP ⊄ VP. Equivalently, dc(permn) and size(permn) are both
n𝜔 (1) .

❑ Both det and perm have ‘nice’ symmetries.

❑ Symmetry-characterization avoids the Razborov–Rudich barrier: Very few
functions are symmetry-characterized, so symmetry-characterization violates
the largeness criterion!

20

De-bordering results and their importance

❑ A few known de-bordering results:
➢ VBPnon-com = VBPnon-com, in the noncommutative world [Nisan 1991].

➢ Σ ∧ Σ ⊊ VBP [Forbes 2016, Bläser-Dörfler-Ikenmeyer 2021].

➢ Σ[s]Π = Σ[s]Π and Π [d]Σ = Π [d]Σ.

❑ Upper bounds and lower bounds become more algebro-geometric in nature.

❑ Further potential applications in identity testing and understanding its
‘robustness’.

21

De-bordering results and their importance

❑ A few known de-bordering results:

➢ VBPnon-com = VBPnon-com, in the noncommutative world [Nisan 1991].

➢ Σ ∧ Σ ⊊ VBP [Forbes 2016, Bläser-Dörfler-Ikenmeyer 2021].

➢ Σ[s]Π = Σ[s]Π and Π [d]Σ = Π [d]Σ.

❑ Upper bounds and lower bounds become more algebro-geometric in nature.

❑ Further potential applications in identity testing and understanding its
‘robustness’.

21

De-bordering results and their importance

❑ A few known de-bordering results:
➢ VBPnon-com = VBPnon-com, in the noncommutative world [Nisan 1991].

➢ Σ ∧ Σ ⊊ VBP [Forbes 2016, Bläser-Dörfler-Ikenmeyer 2021].

➢ Σ[s]Π = Σ[s]Π and Π [d]Σ = Π [d]Σ.

❑ Upper bounds and lower bounds become more algebro-geometric in nature.

❑ Further potential applications in identity testing and understanding its
‘robustness’.

21

De-bordering results and their importance

❑ A few known de-bordering results:
➢ VBPnon-com = VBPnon-com, in the noncommutative world [Nisan 1991].

➢ Σ ∧ Σ ⊊ VBP [Forbes 2016, Bläser-Dörfler-Ikenmeyer 2021].

➢ Σ[s]Π = Σ[s]Π and Π [d]Σ = Π [d]Σ.

❑ Upper bounds and lower bounds become more algebro-geometric in nature.

❑ Further potential applications in identity testing and understanding its
‘robustness’.

21

De-bordering results and their importance

❑ A few known de-bordering results:
➢ VBPnon-com = VBPnon-com, in the noncommutative world [Nisan 1991].

➢ Σ ∧ Σ ⊊ VBP [Forbes 2016, Bläser-Dörfler-Ikenmeyer 2021].

➢ Σ[s]Π = Σ[s]Π and Π [d]Σ = Π [d]Σ.

❑ Upper bounds and lower bounds become more algebro-geometric in nature.

❑ Further potential applications in identity testing and understanding its
‘robustness’.

21

De-bordering results and their importance

❑ A few known de-bordering results:
➢ VBPnon-com = VBPnon-com, in the noncommutative world [Nisan 1991].

➢ Σ ∧ Σ ⊊ VBP [Forbes 2016, Bläser-Dörfler-Ikenmeyer 2021].

➢ Σ[s]Π = Σ[s]Π and Π [d]Σ = Π [d]Σ.

❑ Upper bounds and lower bounds become more algebro-geometric in nature.

❑ Further potential applications in identity testing and understanding its
‘robustness’.

21

De-bordering results and their importance

❑ A few known de-bordering results:
➢ VBPnon-com = VBPnon-com, in the noncommutative world [Nisan 1991].

➢ Σ ∧ Σ ⊊ VBP [Forbes 2016, Bläser-Dörfler-Ikenmeyer 2021].

➢ Σ[s]Π = Σ[s]Π and Π [d]Σ = Π [d]Σ.

❑ Upper bounds and lower bounds become more algebro-geometric in nature.

❑ Further potential applications in identity testing and understanding its
‘robustness’.

21

Border depth-3 circuits

Depth-3 circuits

❑ Depth-3 circuits with top fanin k, are denoted as Σ[k]Π [d]Σ. Thus, the size is
trivially bounded by O(knd).

❑ They compute polynomials of the form
∑k

i=1
∏d

j=1 ℓij , where ℓij are linear
polynomials (i.e. a0 + a1x1 + . . . + anxn, for ai ∈ F).

❑ How powerful are Σ[k]Π [d]Σ circuits? Are they universal?

❑ No. E.g. the Inner Product polynomial ⟨x , y⟩ = x1y1 + . . . + xk+1yk+1 cannot
be written as a Σ[k]Π [d]Σ circuit, regardless of the product fanin d!

22

Depth-3 circuits

❑ Depth-3 circuits with top fanin k, are denoted as Σ[k]Π [d]Σ. Thus, the size is
trivially bounded by O(knd).

❑ They compute polynomials of the form
∑k

i=1
∏d

j=1 ℓij , where ℓij are linear
polynomials (i.e. a0 + a1x1 + . . . + anxn, for ai ∈ F).

❑ How powerful are Σ[k]Π [d]Σ circuits? Are they universal?

❑ No. E.g. the Inner Product polynomial ⟨x , y⟩ = x1y1 + . . . + xk+1yk+1 cannot
be written as a Σ[k]Π [d]Σ circuit, regardless of the product fanin d!

22

Depth-3 circuits

❑ Depth-3 circuits with top fanin k, are denoted as Σ[k]Π [d]Σ. Thus, the size is
trivially bounded by O(knd).

❑ They compute polynomials of the form
∑k

i=1
∏d

j=1 ℓij , where ℓij are linear
polynomials (i.e. a0 + a1x1 + . . . + anxn, for ai ∈ F).

❑ How powerful are Σ[k]Π [d]Σ circuits? Are they universal?

❑ No. E.g. the Inner Product polynomial ⟨x , y⟩ = x1y1 + . . . + xk+1yk+1 cannot
be written as a Σ[k]Π [d]Σ circuit, regardless of the product fanin d!

22

Depth-3 circuits

❑ Depth-3 circuits with top fanin k, are denoted as Σ[k]Π [d]Σ. Thus, the size is
trivially bounded by O(knd).

❑ They compute polynomials of the form
∑k

i=1
∏d

j=1 ℓij , where ℓij are linear
polynomials (i.e. a0 + a1x1 + . . . + anxn, for ai ∈ F).

❑ How powerful are Σ[k]Π [d]Σ circuits? Are they universal?

❑ No. E.g. the Inner Product polynomial ⟨x , y⟩ = x1y1 + . . . + xk+1yk+1 cannot
be written as a Σ[k]Π [d]Σ circuit, regardless of the product fanin d!

22

Depth-3 circuits

❑ Depth-3 circuits with top fanin k, are denoted as Σ[k]Π [d]Σ. Thus, the size is
trivially bounded by O(knd).

❑ They compute polynomials of the form
∑k

i=1
∏d

j=1 ℓij , where ℓij are linear
polynomials (i.e. a0 + a1x1 + . . . + anxn, for ai ∈ F).

❑ How powerful are Σ[k]Π [d]Σ circuits? Are they universal?

❑ No.

E.g. the Inner Product polynomial ⟨x , y⟩ = x1y1 + . . . + xk+1yk+1 cannot
be written as a Σ[k]Π [d]Σ circuit, regardless of the product fanin d!

22

Depth-3 circuits

❑ Depth-3 circuits with top fanin k, are denoted as Σ[k]Π [d]Σ. Thus, the size is
trivially bounded by O(knd).

❑ They compute polynomials of the form
∑k

i=1
∏d

j=1 ℓij , where ℓij are linear
polynomials (i.e. a0 + a1x1 + . . . + anxn, for ai ∈ F).

❑ How powerful are Σ[k]Π [d]Σ circuits? Are they universal?

❑ No. E.g. the Inner Product polynomial ⟨x , y⟩ = x1y1 + . . . + xk+1yk+1 cannot
be written as a Σ[k]Π [d]Σ circuit, regardless of the product fanin d!

22

Power of border depth-3 circuits

❑ What about Σ[k]Π [d]Σ circuits?

❑ Recall: h ∈ Σ[k]Π [d]Σ of size s if there exists a circuit g such that

g(x , 𝜖) = h(x) + 𝜖 · S(x , 𝜖) ,

where g can be computed by a Σ[k]Π [d]Σ circuit, over F(𝜖), of size s.

Border depth-3 fanin 2 circuits are ‘universal’ [Kumar 2020]

Let P be any homogeneous n-variate degree d polynomial. Then, P ∈ Σ[2]Π [D]Σ,
where D := exp(n, d).

23

Power of border depth-3 circuits

❑ What about Σ[k]Π [d]Σ circuits?

❑ Recall: h ∈ Σ[k]Π [d]Σ of size s if there exists a circuit g such that

g(x , 𝜖) = h(x) + 𝜖 · S(x , 𝜖) ,

where g can be computed by a Σ[k]Π [d]Σ circuit, over F(𝜖), of size s.

Border depth-3 fanin 2 circuits are ‘universal’ [Kumar 2020]

Let P be any homogeneous n-variate degree d polynomial. Then, P ∈ Σ[2]Π [D]Σ,
where D := exp(n, d).

23

Power of border depth-3 circuits

❑ What about Σ[k]Π [d]Σ circuits?

❑ Recall: h ∈ Σ[k]Π [d]Σ of size s if there exists a circuit g such that

g(x , 𝜖) = h(x) + 𝜖 · S(x , 𝜖) ,

where g can be computed by a Σ[k]Π [d]Σ circuit, over F(𝜖), of size s.

Border depth-3 fanin 2 circuits are ‘universal’ [Kumar 2020]

Let P be any homogeneous n-variate degree d polynomial. Then, P ∈ Σ[2]Π [D]Σ,
where D := exp(n, d).

23

Power of border depth-3 circuits

❑ What about Σ[k]Π [d]Σ circuits?

❑ Recall: h ∈ Σ[k]Π [d]Σ of size s if there exists a circuit g such that

g(x , 𝜖) = h(x) + 𝜖 · S(x , 𝜖) ,

where g can be computed by a Σ[k]Π [d]Σ circuit, over F(𝜖), of size s.

Border depth-3 fanin 2 circuits are ‘universal’ [Kumar 2020]

Let P be any homogeneous n-variate degree d polynomial. Then, P ∈ Σ[2]Π [D]Σ,
where D := exp(n, d).

23

Power of border depth-3 circuits

❑ What about Σ[k]Π [d]Σ circuits?

❑ Recall: h ∈ Σ[k]Π [d]Σ of size s if there exists a circuit g such that

g(x , 𝜖) = h(x) + 𝜖 · S(x , 𝜖) ,

where g can be computed by a Σ[k]Π [d]Σ circuit, over F(𝜖), of size s.

Border depth-3 fanin 2 circuits are ‘universal’ [Kumar 2020]

Let P be any homogeneous n-variate degree d polynomial. Then, P ∈ Σ[2]Π [D]Σ,
where D := exp(n, d).

23

Power of border depth-3 circuits

❑ What about Σ[k]Π [d]Σ circuits?

❑ Recall: h ∈ Σ[k]Π [d]Σ of size s if there exists a circuit g such that

g(x , 𝜖) = h(x) + 𝜖 · S(x , 𝜖) ,

where g can be computed by a Σ[k]Π [d]Σ circuit, over F(𝜖), of size s.

Border depth-3 fanin 2 circuits are ‘universal’ [Kumar 2020]

Let P be any homogeneous n-variate degree d polynomial. Then, P ∈ Σ[2]Π [D]Σ,
where D := exp(n, d).

23

Proof of Kumar’s result

Proof.
1. Let WR(P) =: m. Then, there are linear forms ℓi such that

P =

m∑︁
i=1

ℓd
i [m can be as large as exp(n, d)] .

2. Consider A(x) := ∏m
i=1 (1 + ℓd

i) =
∏m

i=1
∏d

j=1 (𝛼j + ℓi), for 𝛼j ∈ C. Note that

A(x) = 1 + P + B where deg(B) ≥ 2d .

3. Replace xi by 𝜖 · xi to get that

m∏
i=1

d∏
j=1

(𝛼j + 𝜖 · ℓi) = 1 + 𝜖d · P + 𝜖2d · R(x , 𝜖) .

4. Divide by 𝜖d and rearrange to get

P + 𝜖d · R(x , 𝜖) = −𝜖−d + 𝜖−d ·
m∏

i=1

d∏
j=1

(𝛼j + 𝜖 · ℓi) ∈ Σ[2]Π [md]Σ .

□

24

Proof of Kumar’s result

Proof.
1. Let WR(P) =: m. Then, there are linear forms ℓi such that

P =

m∑︁
i=1

ℓd
i [m can be as large as exp(n, d)] .

2. Consider A(x) := ∏m
i=1 (1 + ℓd

i) =
∏m

i=1
∏d

j=1 (𝛼j + ℓi), for 𝛼j ∈ C. Note that

A(x) = 1 + P + B where deg(B) ≥ 2d .

3. Replace xi by 𝜖 · xi to get that

m∏
i=1

d∏
j=1

(𝛼j + 𝜖 · ℓi) = 1 + 𝜖d · P + 𝜖2d · R(x , 𝜖) .

4. Divide by 𝜖d and rearrange to get

P + 𝜖d · R(x , 𝜖) = −𝜖−d + 𝜖−d ·
m∏

i=1

d∏
j=1

(𝛼j + 𝜖 · ℓi) ∈ Σ[2]Π [md]Σ .

□

24

Proof of Kumar’s result

Proof.
1. Let WR(P) =: m. Then, there are linear forms ℓi such that

P =

m∑︁
i=1

ℓd
i [m can be as large as exp(n, d)] .

2. Consider A(x) := ∏m
i=1 (1 + ℓd

i) =
∏m

i=1
∏d

j=1 (𝛼j + ℓi), for 𝛼j ∈ C.

Note that

A(x) = 1 + P + B where deg(B) ≥ 2d .

3. Replace xi by 𝜖 · xi to get that

m∏
i=1

d∏
j=1

(𝛼j + 𝜖 · ℓi) = 1 + 𝜖d · P + 𝜖2d · R(x , 𝜖) .

4. Divide by 𝜖d and rearrange to get

P + 𝜖d · R(x , 𝜖) = −𝜖−d + 𝜖−d ·
m∏

i=1

d∏
j=1

(𝛼j + 𝜖 · ℓi) ∈ Σ[2]Π [md]Σ .

□

24

Proof of Kumar’s result

Proof.
1. Let WR(P) =: m. Then, there are linear forms ℓi such that

P =

m∑︁
i=1

ℓd
i [m can be as large as exp(n, d)] .

2. Consider A(x) := ∏m
i=1 (1 + ℓd

i) =
∏m

i=1
∏d

j=1 (𝛼j + ℓi), for 𝛼j ∈ C. Note that

A(x) = 1 + P + B where deg(B) ≥ 2d .

3. Replace xi by 𝜖 · xi to get that

m∏
i=1

d∏
j=1

(𝛼j + 𝜖 · ℓi) = 1 + 𝜖d · P + 𝜖2d · R(x , 𝜖) .

4. Divide by 𝜖d and rearrange to get

P + 𝜖d · R(x , 𝜖) = −𝜖−d + 𝜖−d ·
m∏

i=1

d∏
j=1

(𝛼j + 𝜖 · ℓi) ∈ Σ[2]Π [md]Σ .

□

24

Proof of Kumar’s result

Proof.
1. Let WR(P) =: m. Then, there are linear forms ℓi such that

P =

m∑︁
i=1

ℓd
i [m can be as large as exp(n, d)] .

2. Consider A(x) := ∏m
i=1 (1 + ℓd

i) =
∏m

i=1
∏d

j=1 (𝛼j + ℓi), for 𝛼j ∈ C. Note that

A(x) = 1 + P + B where deg(B) ≥ 2d .

3. Replace xi by 𝜖 · xi to get that

m∏
i=1

d∏
j=1

(𝛼j + 𝜖 · ℓi) = 1 + 𝜖d · P + 𝜖2d · R(x , 𝜖) .

4. Divide by 𝜖d and rearrange to get

P + 𝜖d · R(x , 𝜖) = −𝜖−d + 𝜖−d ·
m∏

i=1

d∏
j=1

(𝛼j + 𝜖 · ℓi) ∈ Σ[2]Π [md]Σ .

□

24

Proof of Kumar’s result

Proof.
1. Let WR(P) =: m. Then, there are linear forms ℓi such that

P =

m∑︁
i=1

ℓd
i [m can be as large as exp(n, d)] .

2. Consider A(x) := ∏m
i=1 (1 + ℓd

i) =
∏m

i=1
∏d

j=1 (𝛼j + ℓi), for 𝛼j ∈ C. Note that

A(x) = 1 + P + B where deg(B) ≥ 2d .

3. Replace xi by 𝜖 · xi to get that

m∏
i=1

d∏
j=1

(𝛼j + 𝜖 · ℓi) = 1 + 𝜖d · P + 𝜖2d · R(x , 𝜖) .

4. Divide by 𝜖d and rearrange to get

P + 𝜖d · R(x , 𝜖) = −𝜖−d + 𝜖−d ·
m∏

i=1

d∏
j=1

(𝛼j + 𝜖 · ℓi) ∈ Σ[2]Π [md]Σ .

□

24

Proof of Kumar’s result

Proof.
1. Let WR(P) =: m. Then, there are linear forms ℓi such that

P =

m∑︁
i=1

ℓd
i [m can be as large as exp(n, d)] .

2. Consider A(x) := ∏m
i=1 (1 + ℓd

i) =
∏m

i=1
∏d

j=1 (𝛼j + ℓi), for 𝛼j ∈ C. Note that

A(x) = 1 + P + B where deg(B) ≥ 2d .

3. Replace xi by 𝜖 · xi to get that

m∏
i=1

d∏
j=1

(𝛼j + 𝜖 · ℓi) = 1 + 𝜖d · P + 𝜖2d · R(x , 𝜖) .

4. Divide by 𝜖d and rearrange to get

P + 𝜖d · R(x , 𝜖) = −𝜖−d + 𝜖−d ·
m∏

i=1

d∏
j=1

(𝛼j + 𝜖 · ℓi) ∈ Σ[2]Π [md]Σ .

□ 24

De-bordering Σ[2]ΠΣ circuits

❑ If h is approximated by a Σ[2]Π [d]Σ circuit with d = poly(n), what’s the exact
complexity of h?

➢ Is it even explicit? If yes, Σ[2]Π [d]Σ ⊆ VNP?

Theorem 1 (Border of depth-3 top-fanin-2 circuit is ‘easy’)
[Dutta-Dwivedi-Saxena FOCS 2021].

Σ[2]Π [d]Σ ⊆ VBP, for d = poly(n).
In particular, any polynomial in the border of top-fanin-2 size-s depth-3 circuits, can
also be exactly computed by a linear projection of a poly(s) × poly(s) determinant.

Remark. The result holds if one replaces the top-fanin-2 by arbitrary constant k.

25

De-bordering Σ[2]ΠΣ circuits

❑ If h is approximated by a Σ[2]Π [d]Σ circuit with d = poly(n), what’s the exact
complexity of h?

➢ Is it even explicit? If yes, Σ[2]Π [d]Σ ⊆ VNP?

Theorem 1 (Border of depth-3 top-fanin-2 circuit is ‘easy’)
[Dutta-Dwivedi-Saxena FOCS 2021].

Σ[2]Π [d]Σ ⊆ VBP, for d = poly(n).
In particular, any polynomial in the border of top-fanin-2 size-s depth-3 circuits, can
also be exactly computed by a linear projection of a poly(s) × poly(s) determinant.

Remark. The result holds if one replaces the top-fanin-2 by arbitrary constant k.

25

De-bordering Σ[2]ΠΣ circuits

❑ If h is approximated by a Σ[2]Π [d]Σ circuit with d = poly(n), what’s the exact
complexity of h?

➢ Is it even explicit?

If yes, Σ[2]Π [d]Σ ⊆ VNP?

Theorem 1 (Border of depth-3 top-fanin-2 circuit is ‘easy’)
[Dutta-Dwivedi-Saxena FOCS 2021].

Σ[2]Π [d]Σ ⊆ VBP, for d = poly(n).
In particular, any polynomial in the border of top-fanin-2 size-s depth-3 circuits, can
also be exactly computed by a linear projection of a poly(s) × poly(s) determinant.

Remark. The result holds if one replaces the top-fanin-2 by arbitrary constant k.

25

De-bordering Σ[2]ΠΣ circuits

❑ If h is approximated by a Σ[2]Π [d]Σ circuit with d = poly(n), what’s the exact
complexity of h?

➢ Is it even explicit? If yes, Σ[2]Π [d]Σ ⊆ VNP?

Theorem 1 (Border of depth-3 top-fanin-2 circuit is ‘easy’)
[Dutta-Dwivedi-Saxena FOCS 2021].

Σ[2]Π [d]Σ ⊆ VBP, for d = poly(n).
In particular, any polynomial in the border of top-fanin-2 size-s depth-3 circuits, can
also be exactly computed by a linear projection of a poly(s) × poly(s) determinant.

Remark. The result holds if one replaces the top-fanin-2 by arbitrary constant k.

25

De-bordering Σ[2]ΠΣ circuits

❑ If h is approximated by a Σ[2]Π [d]Σ circuit with d = poly(n), what’s the exact
complexity of h?

➢ Is it even explicit? If yes, Σ[2]Π [d]Σ ⊆ VNP?

Theorem 1 (Border of depth-3 top-fanin-2 circuit is ‘easy’)
[Dutta-Dwivedi-Saxena FOCS 2021].

Σ[2]Π [d]Σ ⊆ VBP, for d = poly(n).
In particular, any polynomial in the border of top-fanin-2 size-s depth-3 circuits, can
also be exactly computed by a linear projection of a poly(s) × poly(s) determinant.

Remark. The result holds if one replaces the top-fanin-2 by arbitrary constant k.

25

De-bordering Σ[2]ΠΣ circuits

❑ If h is approximated by a Σ[2]Π [d]Σ circuit with d = poly(n), what’s the exact
complexity of h?

➢ Is it even explicit? If yes, Σ[2]Π [d]Σ ⊆ VNP?

Theorem 1 (Border of depth-3 top-fanin-2 circuit is ‘easy’)
[Dutta-Dwivedi-Saxena FOCS 2021].

Σ[2]Π [d]Σ ⊆ VBP, for d = poly(n).
In particular, any polynomial in the border of top-fanin-2 size-s depth-3 circuits, can
also be exactly computed by a linear projection of a poly(s) × poly(s) determinant.

Remark. The result holds if one replaces the top-fanin-2 by arbitrary constant k.

25

Why k = 2 is hard to analyze?

❑ Deep cancellations for k = 2 make things harder.

❑ E.g., T1 := 𝜖−3 (1+𝜖x1+𝜖2x2+𝜖3x3+ . . .),T2 := 𝜖−3 (1+𝜖x1+𝜖2x2+𝜖3x4+ . . .).
Note, lim𝜖→0 (T1 − T2) = (x3 − x4).

❑ Note x2 ≡ (x − 𝜖M/2 · a) (x + 𝜖M/2 · a) mod 𝜖M , for any a ∈ F.

❑ Moreover,

lim
𝜖→0

1
𝜖M ·

(
x2 − (x − 𝜖M/2 · a) (x + 𝜖M/2 · a)

)
= a2 .

❑ Infinitely many factorizations may give infinitely many limits.

26

Why k = 2 is hard to analyze?

❑ Deep cancellations for k = 2 make things harder.

❑ E.g., T1 := 𝜖−3 (1+𝜖x1+𝜖2x2+𝜖3x3+ . . .),T2 := 𝜖−3 (1+𝜖x1+𝜖2x2+𝜖3x4+ . . .).
Note, lim𝜖→0 (T1 − T2) = (x3 − x4).

❑ Note x2 ≡ (x − 𝜖M/2 · a) (x + 𝜖M/2 · a) mod 𝜖M , for any a ∈ F.

❑ Moreover,

lim
𝜖→0

1
𝜖M ·

(
x2 − (x − 𝜖M/2 · a) (x + 𝜖M/2 · a)

)
= a2 .

❑ Infinitely many factorizations may give infinitely many limits.

26

Why k = 2 is hard to analyze?

❑ Deep cancellations for k = 2 make things harder.

❑ E.g., T1 := 𝜖−3 (1+𝜖x1+𝜖2x2+𝜖3x3+ . . .),

T2 := 𝜖−3 (1+𝜖x1+𝜖2x2+𝜖3x4+ . . .).
Note, lim𝜖→0 (T1 − T2) = (x3 − x4).

❑ Note x2 ≡ (x − 𝜖M/2 · a) (x + 𝜖M/2 · a) mod 𝜖M , for any a ∈ F.

❑ Moreover,

lim
𝜖→0

1
𝜖M ·

(
x2 − (x − 𝜖M/2 · a) (x + 𝜖M/2 · a)

)
= a2 .

❑ Infinitely many factorizations may give infinitely many limits.

26

Why k = 2 is hard to analyze?

❑ Deep cancellations for k = 2 make things harder.

❑ E.g., T1 := 𝜖−3 (1+𝜖x1+𝜖2x2+𝜖3x3+ . . .),T2 := 𝜖−3 (1+𝜖x1+𝜖2x2+𝜖3x4+ . . .).

Note, lim𝜖→0 (T1 − T2) = (x3 − x4).

❑ Note x2 ≡ (x − 𝜖M/2 · a) (x + 𝜖M/2 · a) mod 𝜖M , for any a ∈ F.

❑ Moreover,

lim
𝜖→0

1
𝜖M ·

(
x2 − (x − 𝜖M/2 · a) (x + 𝜖M/2 · a)

)
= a2 .

❑ Infinitely many factorizations may give infinitely many limits.

26

Why k = 2 is hard to analyze?

❑ Deep cancellations for k = 2 make things harder.

❑ E.g., T1 := 𝜖−3 (1+𝜖x1+𝜖2x2+𝜖3x3+ . . .),T2 := 𝜖−3 (1+𝜖x1+𝜖2x2+𝜖3x4+ . . .).
Note, lim𝜖→0 (T1 − T2) = (x3 − x4).

❑ Note x2 ≡ (x − 𝜖M/2 · a) (x + 𝜖M/2 · a) mod 𝜖M , for any a ∈ F.

❑ Moreover,

lim
𝜖→0

1
𝜖M ·

(
x2 − (x − 𝜖M/2 · a) (x + 𝜖M/2 · a)

)
= a2 .

❑ Infinitely many factorizations may give infinitely many limits.

26

Why k = 2 is hard to analyze?

❑ Deep cancellations for k = 2 make things harder.

❑ E.g., T1 := 𝜖−3 (1+𝜖x1+𝜖2x2+𝜖3x3+ . . .),T2 := 𝜖−3 (1+𝜖x1+𝜖2x2+𝜖3x4+ . . .).
Note, lim𝜖→0 (T1 − T2) = (x3 − x4).

❑ Note x2 ≡ (x − 𝜖M/2 · a) (x + 𝜖M/2 · a) mod 𝜖M , for any a ∈ F.

❑ Moreover,

lim
𝜖→0

1
𝜖M ·

(
x2 − (x − 𝜖M/2 · a) (x + 𝜖M/2 · a)

)
= a2 .

❑ Infinitely many factorizations may give infinitely many limits.

26

Why k = 2 is hard to analyze?

❑ Deep cancellations for k = 2 make things harder.

❑ E.g., T1 := 𝜖−3 (1+𝜖x1+𝜖2x2+𝜖3x3+ . . .),T2 := 𝜖−3 (1+𝜖x1+𝜖2x2+𝜖3x4+ . . .).
Note, lim𝜖→0 (T1 − T2) = (x3 − x4).

❑ Note x2 ≡ (x − 𝜖M/2 · a) (x + 𝜖M/2 · a) mod 𝜖M , for any a ∈ F.

❑ Moreover,

lim
𝜖→0

1
𝜖M ·

(
x2 − (x − 𝜖M/2 · a) (x + 𝜖M/2 · a)

)
= a2 .

❑ Infinitely many factorizations may give infinitely many limits.

26

Why k = 2 is hard to analyze?

❑ Deep cancellations for k = 2 make things harder.

❑ E.g., T1 := 𝜖−3 (1+𝜖x1+𝜖2x2+𝜖3x3+ . . .),T2 := 𝜖−3 (1+𝜖x1+𝜖2x2+𝜖3x4+ . . .).
Note, lim𝜖→0 (T1 − T2) = (x3 − x4).

❑ Note x2 ≡ (x − 𝜖M/2 · a) (x + 𝜖M/2 · a) mod 𝜖M , for any a ∈ F.

❑ Moreover,

lim
𝜖→0

1
𝜖M ·

(
x2 − (x − 𝜖M/2 · a) (x + 𝜖M/2 · a)

)
= a2 .

❑ Infinitely many factorizations may give infinitely many limits.

26

Proof sketch for k = 2

❑ T1 + T2 = f (x) + 𝜖 · S(x , 𝜖), where Ti ∈ ΠΣ in F(𝜖) [x]. Assume deg(f) =: d.

❑ High-level idea: Reduce fanin 2 to 1 with a ‘nice’ form.

❑ Apply a map Φ, defined by Φ : xi ↦→ z · xi + 𝛼i , where 𝛼i ∈ F are random.

➢ The variable z is the degree counter and enables derivation,

➢ 𝛼i to ensure: If ℓ | Ti , then Φ(ℓ) |z=0 = ℓ(𝛼1, . . . , 𝛼n) ∈ F(𝜖)\{0}.

❑ It suffices to show that Φ(f) has small ABP.

❑ We devise a technique called DiDIL –
Divide, Derive, Interpolate/ Induct with Limit.

27

Proof sketch for k = 2

❑ T1 + T2 = f (x) + 𝜖 · S(x , 𝜖), where Ti ∈ ΠΣ in F(𝜖) [x]. Assume deg(f) =: d.

❑ High-level idea: Reduce fanin 2 to 1 with a ‘nice’ form.

❑ Apply a map Φ, defined by Φ : xi ↦→ z · xi + 𝛼i , where 𝛼i ∈ F are random.

➢ The variable z is the degree counter and enables derivation,

➢ 𝛼i to ensure: If ℓ | Ti , then Φ(ℓ) |z=0 = ℓ(𝛼1, . . . , 𝛼n) ∈ F(𝜖)\{0}.

❑ It suffices to show that Φ(f) has small ABP.

❑ We devise a technique called DiDIL –
Divide, Derive, Interpolate/ Induct with Limit.

27

Proof sketch for k = 2

❑ T1 + T2 = f (x) + 𝜖 · S(x , 𝜖), where Ti ∈ ΠΣ in F(𝜖) [x]. Assume deg(f) =: d.

❑ High-level idea: Reduce fanin 2 to 1 with a ‘nice’ form.

❑ Apply a map Φ, defined by Φ : xi ↦→ z · xi + 𝛼i , where 𝛼i ∈ F are random.

➢ The variable z is the degree counter and enables derivation,

➢ 𝛼i to ensure: If ℓ | Ti , then Φ(ℓ) |z=0 = ℓ(𝛼1, . . . , 𝛼n) ∈ F(𝜖)\{0}.

❑ It suffices to show that Φ(f) has small ABP.

❑ We devise a technique called DiDIL –
Divide, Derive, Interpolate/ Induct with Limit.

27

Proof sketch for k = 2

❑ T1 + T2 = f (x) + 𝜖 · S(x , 𝜖), where Ti ∈ ΠΣ in F(𝜖) [x]. Assume deg(f) =: d.

❑ High-level idea: Reduce fanin 2 to 1 with a ‘nice’ form.

❑ Apply a map Φ, defined by Φ : xi ↦→ z · xi + 𝛼i , where 𝛼i ∈ F are random.

➢ The variable z is the degree counter and enables derivation,

➢ 𝛼i to ensure: If ℓ | Ti , then Φ(ℓ) |z=0 = ℓ(𝛼1, . . . , 𝛼n) ∈ F(𝜖)\{0}.

❑ It suffices to show that Φ(f) has small ABP.

❑ We devise a technique called DiDIL –
Divide, Derive, Interpolate/ Induct with Limit.

27

Proof sketch for k = 2

❑ T1 + T2 = f (x) + 𝜖 · S(x , 𝜖), where Ti ∈ ΠΣ in F(𝜖) [x]. Assume deg(f) =: d.

❑ High-level idea: Reduce fanin 2 to 1 with a ‘nice’ form.

❑ Apply a map Φ, defined by Φ : xi ↦→ z · xi + 𝛼i , where 𝛼i ∈ F are random.

➢ The variable z is the degree counter and enables derivation,

➢ 𝛼i to ensure: If ℓ | Ti , then Φ(ℓ) |z=0 = ℓ(𝛼1, . . . , 𝛼n) ∈ F(𝜖)\{0}.

❑ It suffices to show that Φ(f) has small ABP.

❑ We devise a technique called DiDIL –
Divide, Derive, Interpolate/ Induct with Limit.

27

Proof sketch for k = 2

❑ T1 + T2 = f (x) + 𝜖 · S(x , 𝜖), where Ti ∈ ΠΣ in F(𝜖) [x]. Assume deg(f) =: d.

❑ High-level idea: Reduce fanin 2 to 1 with a ‘nice’ form.

❑ Apply a map Φ, defined by Φ : xi ↦→ z · xi + 𝛼i , where 𝛼i ∈ F are random.

➢ The variable z is the degree counter and enables derivation,

➢ 𝛼i to ensure: If ℓ | Ti , then Φ(ℓ) |z=0 = ℓ(𝛼1, . . . , 𝛼n) ∈ F(𝜖)\{0}.

❑ It suffices to show that Φ(f) has small ABP.

❑ We devise a technique called DiDIL –
Divide, Derive, Interpolate/ Induct with Limit.

27

Proof sketch for k = 2

❑ T1 + T2 = f (x) + 𝜖 · S(x , 𝜖), where Ti ∈ ΠΣ in F(𝜖) [x]. Assume deg(f) =: d.

❑ High-level idea: Reduce fanin 2 to 1 with a ‘nice’ form.

❑ Apply a map Φ, defined by Φ : xi ↦→ z · xi + 𝛼i , where 𝛼i ∈ F are random.

➢ The variable z is the degree counter and enables derivation,

➢ 𝛼i to ensure: If ℓ | Ti , then Φ(ℓ) |z=0 = ℓ(𝛼1, . . . , 𝛼n) ∈ F(𝜖)\{0}.

❑ It suffices to show that Φ(f) has small ABP.

❑ We devise a technique called DiDIL –
Divide, Derive, Interpolate/ Induct with Limit.

27

Proof sketch for k = 2

❑ T1 + T2 = f (x) + 𝜖 · S(x , 𝜖), where Ti ∈ ΠΣ in F(𝜖) [x]. Assume deg(f) =: d.

❑ High-level idea: Reduce fanin 2 to 1 with a ‘nice’ form.

❑ Apply a map Φ, defined by Φ : xi ↦→ z · xi + 𝛼i , where 𝛼i ∈ F are random.

➢ The variable z is the degree counter and enables derivation,

➢ 𝛼i to ensure: If ℓ | Ti , then Φ(ℓ) |z=0 = ℓ(𝛼1, . . . , 𝛼n) ∈ F(𝜖)\{0}.

❑ It suffices to show that Φ(f) has small ABP.

❑ We devise a technique called DiDIL –
Divide, Derive, Interpolate/ Induct with Limit.

27

k = 2 proof continued: Divide and Derive

❑ Let Φ(Ti) =: 𝜖ai · T̃i , for i ∈ [2], where ai := val𝜖 (Φ(Ti)).

❑ val𝜖 (·) denotes the highest power of 𝜖 dividing it.

❑ Divide and Derive:

f + 𝜖 · S = T1 + T2

=⇒ Φ(f) + 𝜖 · Φ(S) = Φ(T1) +Φ(T2)
=⇒ Φ(f)/T̃2 + 𝜖 · Φ(S)/T̃2 = Φ(T1)/T̃2 + 𝜖a2

=⇒ 𝜕z
(
Φ(f)/T̃2

)
+ 𝜖 · 𝜕z

(
Φ(S)/T̃2

)
= 𝜕z

(
Φ(T1)/T̃2

)
=: g1 . (1)

❑ lim𝜖→0 g1 = 𝜕z (Φ(f)/t2), where t2 := lim𝜖→0 T̃2.

28

k = 2 proof continued: Divide and Derive

❑ Let Φ(Ti) =: 𝜖ai · T̃i , for i ∈ [2], where ai := val𝜖 (Φ(Ti)).

❑ val𝜖 (·) denotes the highest power of 𝜖 dividing it.

❑ Divide and Derive:

f + 𝜖 · S = T1 + T2

=⇒ Φ(f) + 𝜖 · Φ(S) = Φ(T1) +Φ(T2)
=⇒ Φ(f)/T̃2 + 𝜖 · Φ(S)/T̃2 = Φ(T1)/T̃2 + 𝜖a2

=⇒ 𝜕z
(
Φ(f)/T̃2

)
+ 𝜖 · 𝜕z

(
Φ(S)/T̃2

)
= 𝜕z

(
Φ(T1)/T̃2

)
=: g1 . (1)

❑ lim𝜖→0 g1 = 𝜕z (Φ(f)/t2), where t2 := lim𝜖→0 T̃2.

28

k = 2 proof continued: Divide and Derive

❑ Let Φ(Ti) =: 𝜖ai · T̃i , for i ∈ [2], where ai := val𝜖 (Φ(Ti)).

❑ val𝜖 (·) denotes the highest power of 𝜖 dividing it.

❑ Divide and Derive:

f + 𝜖 · S = T1 + T2

=⇒ Φ(f) + 𝜖 · Φ(S) = Φ(T1) +Φ(T2)
=⇒ Φ(f)/T̃2 + 𝜖 · Φ(S)/T̃2 = Φ(T1)/T̃2 + 𝜖a2

=⇒ 𝜕z
(
Φ(f)/T̃2

)
+ 𝜖 · 𝜕z

(
Φ(S)/T̃2

)
= 𝜕z

(
Φ(T1)/T̃2

)
=: g1 . (1)

❑ lim𝜖→0 g1 = 𝜕z (Φ(f)/t2), where t2 := lim𝜖→0 T̃2.

28

k = 2 proof continued: Divide and Derive

❑ Let Φ(Ti) =: 𝜖ai · T̃i , for i ∈ [2], where ai := val𝜖 (Φ(Ti)).

❑ val𝜖 (·) denotes the highest power of 𝜖 dividing it.

❑ Divide and Derive:

f + 𝜖 · S = T1 + T2

=⇒ Φ(f) + 𝜖 · Φ(S) = Φ(T1) +Φ(T2)
=⇒ Φ(f)/T̃2 + 𝜖 · Φ(S)/T̃2 = Φ(T1)/T̃2 + 𝜖a2

=⇒ 𝜕z
(
Φ(f)/T̃2

)
+ 𝜖 · 𝜕z

(
Φ(S)/T̃2

)
= 𝜕z

(
Φ(T1)/T̃2

)
=: g1 . (1)

❑ lim𝜖→0 g1 = 𝜕z (Φ(f)/t2), where t2 := lim𝜖→0 T̃2.

28

k = 2 proof continued: Divide and Derive

❑ Let Φ(Ti) =: 𝜖ai · T̃i , for i ∈ [2], where ai := val𝜖 (Φ(Ti)).

❑ val𝜖 (·) denotes the highest power of 𝜖 dividing it.

❑ Divide and Derive:

f + 𝜖 · S = T1 + T2

=⇒ Φ(f) + 𝜖 · Φ(S) = Φ(T1) +Φ(T2)
=⇒ Φ(f)/T̃2 + 𝜖 · Φ(S)/T̃2 = Φ(T1)/T̃2 + 𝜖a2

=⇒ 𝜕z
(
Φ(f)/T̃2

)
+ 𝜖 · 𝜕z

(
Φ(S)/T̃2

)
= 𝜕z

(
Φ(T1)/T̃2

)
=: g1 . (1)

❑ lim𝜖→0 g1 = 𝜕z (Φ(f)/t2), where t2 := lim𝜖→0 T̃2.

28

k = 2 proof continued

❑ First target: compute lim𝜖→0 g1 = 𝜕z (Φ(f)/t2).

❑ Logarithmic derivative: dlogz (h) := 𝜕z (h)/h.

❑ dlog linearizes product: dlog(h1h2) = dlog(h1) + dlog(h2). Note:

𝜕z
(
Φ(T1)/T̃2

)
= Φ(T1)/T̃2 · dlog

(
Φ(T1)/T̃2

)
= (ΠΣ/ΠΣ) · dlog (ΠΣ/ΠΣ)

= ΠΣ/ΠΣ ·
(
±
∑︁

dlog(Σ)
)
.

❑ Here Σ means just a linear polynomial ℓ.

29

k = 2 proof continued

❑ First target: compute lim𝜖→0 g1 = 𝜕z (Φ(f)/t2).

❑ Logarithmic derivative: dlogz (h) := 𝜕z (h)/h.

❑ dlog linearizes product: dlog(h1h2) = dlog(h1) + dlog(h2). Note:

𝜕z
(
Φ(T1)/T̃2

)
= Φ(T1)/T̃2 · dlog

(
Φ(T1)/T̃2

)
= (ΠΣ/ΠΣ) · dlog (ΠΣ/ΠΣ)

= ΠΣ/ΠΣ ·
(
±
∑︁

dlog(Σ)
)
.

❑ Here Σ means just a linear polynomial ℓ.

29

k = 2 proof continued

❑ First target: compute lim𝜖→0 g1 = 𝜕z (Φ(f)/t2).

❑ Logarithmic derivative: dlogz (h) := 𝜕z (h)/h.

❑ dlog linearizes product: dlog(h1h2) = dlog(h1) + dlog(h2). Note:

𝜕z
(
Φ(T1)/T̃2

)
= Φ(T1)/T̃2 · dlog

(
Φ(T1)/T̃2

)
= (ΠΣ/ΠΣ) · dlog (ΠΣ/ΠΣ)

= ΠΣ/ΠΣ ·
(
±
∑︁

dlog(Σ)
)
.

❑ Here Σ means just a linear polynomial ℓ.

29

k = 2 proof continued

❑ First target: compute lim𝜖→0 g1 = 𝜕z (Φ(f)/t2).

❑ Logarithmic derivative: dlogz (h) := 𝜕z (h)/h.

❑ dlog linearizes product: dlog(h1h2) = dlog(h1) + dlog(h2).

Note:

𝜕z
(
Φ(T1)/T̃2

)
= Φ(T1)/T̃2 · dlog

(
Φ(T1)/T̃2

)
= (ΠΣ/ΠΣ) · dlog (ΠΣ/ΠΣ)

= ΠΣ/ΠΣ ·
(
±
∑︁

dlog(Σ)
)
.

❑ Here Σ means just a linear polynomial ℓ.

29

k = 2 proof continued

❑ First target: compute lim𝜖→0 g1 = 𝜕z (Φ(f)/t2).

❑ Logarithmic derivative: dlogz (h) := 𝜕z (h)/h.

❑ dlog linearizes product: dlog(h1h2) = dlog(h1) + dlog(h2). Note:

𝜕z
(
Φ(T1)/T̃2

)
= Φ(T1)/T̃2 · dlog

(
Φ(T1)/T̃2

)
= (ΠΣ/ΠΣ) · dlog (ΠΣ/ΠΣ)

= ΠΣ/ΠΣ ·
(
±
∑︁

dlog(Σ)
)
.

❑ Here Σ means just a linear polynomial ℓ.

29

k = 2 proof continued

❑ First target: compute lim𝜖→0 g1 = 𝜕z (Φ(f)/t2).

❑ Logarithmic derivative: dlogz (h) := 𝜕z (h)/h.

❑ dlog linearizes product: dlog(h1h2) = dlog(h1) + dlog(h2). Note:

𝜕z
(
Φ(T1)/T̃2

)
= Φ(T1)/T̃2 · dlog

(
Φ(T1)/T̃2

)
= (ΠΣ/ΠΣ) · dlog (ΠΣ/ΠΣ)

= ΠΣ/ΠΣ ·
(
±
∑︁

dlog(Σ)
)
.

❑ Here Σ means just a linear polynomial ℓ.

29

k = 2 proof continued: Quick recap

❑ Recap: 𝜕z (Φ(f)/t2) = lim𝜖→0 g1 = lim𝜖→0 (ΠΣ/ΠΣ) · (±∑
dlog(Σ)).

❑ deg(f) = d =⇒ degz (Φ(f)) = d =⇒ degz (𝜕z (Φ(f))) = d − 1.

❑ Suffices to compute lim𝜖→0 g1 mod zd .

30

k = 2 proof continued: Quick recap

❑ Recap: 𝜕z (Φ(f)/t2) = lim𝜖→0 g1 = lim𝜖→0 (ΠΣ/ΠΣ) · (±∑
dlog(Σ)).

❑ deg(f) = d =⇒ degz (Φ(f)) = d =⇒ degz (𝜕z (Φ(f))) = d − 1.

❑ Suffices to compute lim𝜖→0 g1 mod zd .

30

k = 2 proof continued: Quick recap

❑ Recap: 𝜕z (Φ(f)/t2) = lim𝜖→0 g1 = lim𝜖→0 (ΠΣ/ΠΣ) · (±∑
dlog(Σ)).

❑ deg(f) = d =⇒ degz (Φ(f)) = d =⇒ degz (𝜕z (Φ(f))) = d − 1.

❑ Suffices to compute lim𝜖→0 g1 mod zd .

30

k = 2 proof continued: Quick recap

❑ Recap: 𝜕z (Φ(f)/t2) = lim𝜖→0 g1 = lim𝜖→0 (ΠΣ/ΠΣ) · (±∑
dlog(Σ)).

❑ deg(f) = d =⇒ degz (Φ(f)) = d =⇒ degz (𝜕z (Φ(f))) = d − 1.

❑ Suffices to compute lim𝜖→0 g1 mod zd .

30

k = 2 proof: dlog strikes!

❑ What is dlog(ℓ) for a linear polynomial ℓ = A − z · B?

dlog(A − zB) = −B
A (1 − z · B/A)

= −B
A

·
d−1∑︁
j=0

(
z · B

A

) j
mod zd

∈ Σ ∧ Σ .

Thus,

lim
𝜖→0

g1 mod zd ≡ lim
𝜖→0

ΠΣ/ΠΣ ·
(∑︁

dlog(Σ)
)

mod zd

≡ lim
𝜖→0

(ΠΣ/ΠΣ) · (Σ ∧ Σ) mod zd

∈ (ΠΣ/ΠΣ) · (Σ ∧ Σ) mod zd .

31

k = 2 proof: dlog strikes!

❑ What is dlog(ℓ) for a linear polynomial ℓ = A − z · B?

dlog(A − zB) = −B
A (1 − z · B/A)

= −B
A

·
d−1∑︁
j=0

(
z · B

A

) j
mod zd

∈ Σ ∧ Σ .

Thus,

lim
𝜖→0

g1 mod zd ≡ lim
𝜖→0

ΠΣ/ΠΣ ·
(∑︁

dlog(Σ)
)

mod zd

≡ lim
𝜖→0

(ΠΣ/ΠΣ) · (Σ ∧ Σ) mod zd

∈ (ΠΣ/ΠΣ) · (Σ ∧ Σ) mod zd .

31

k = 2 proof: dlog strikes!

❑ What is dlog(ℓ) for a linear polynomial ℓ = A − z · B?

dlog(A − zB) = −B
A (1 − z · B/A)

= −B
A

·
d−1∑︁
j=0

(
z · B

A

) j
mod zd

∈ Σ ∧ Σ .

Thus,

lim
𝜖→0

g1 mod zd ≡ lim
𝜖→0

ΠΣ/ΠΣ ·
(∑︁

dlog(Σ)
)

mod zd

≡ lim
𝜖→0

(ΠΣ/ΠΣ) · (Σ ∧ Σ) mod zd

∈ (ΠΣ/ΠΣ) · (Σ ∧ Σ) mod zd .

31

k = 2 proof: dlog strikes!

❑ What is dlog(ℓ) for a linear polynomial ℓ = A − z · B?

dlog(A − zB) = −B
A (1 − z · B/A)

= −B
A

·
d−1∑︁
j=0

(
z · B

A

) j
mod zd

∈ Σ ∧ Σ .

Thus,

lim
𝜖→0

g1 mod zd ≡ lim
𝜖→0

ΠΣ/ΠΣ ·
(∑︁

dlog(Σ)
)

mod zd

≡ lim
𝜖→0

(ΠΣ/ΠΣ) · (Σ ∧ Σ) mod zd

∈ (ΠΣ/ΠΣ) · (Σ ∧ Σ) mod zd .

31

Finishing the proof

❑ C · D ⊆ C · D. Therefore,

(ΠΣ/ΠΣ) · (Σ ∧ Σ) ⊆ (ΠΣ/ΠΣ) · Σ ∧ Σ

⊆ (ABP/ABP) · ABP

= ABP/ABP .

❑ Eliminate division to get: lim𝜖→0 g1 mod zd ≡ ABP/ABP mod zd = ABP.

❑ Thus, 𝜕z (Φ(f)/t2) = lim𝜖→0 g1 = ABP. Interpolate/ Induct with Limit:

❑ Thus, Φ(f)/t2 = ABP =⇒ Φ(f) = ABP =⇒ f = ABP.

32

Finishing the proof

❑ C · D ⊆ C · D. Therefore,

(ΠΣ/ΠΣ) · (Σ ∧ Σ) ⊆ (ΠΣ/ΠΣ) · Σ ∧ Σ

⊆ (ABP/ABP) · ABP

= ABP/ABP .

❑ Eliminate division to get: lim𝜖→0 g1 mod zd ≡ ABP/ABP mod zd = ABP.

❑ Thus, 𝜕z (Φ(f)/t2) = lim𝜖→0 g1 = ABP. Interpolate/ Induct with Limit:

❑ Thus, Φ(f)/t2 = ABP =⇒ Φ(f) = ABP =⇒ f = ABP.

32

Finishing the proof

❑ C · D ⊆ C · D. Therefore,

(ΠΣ/ΠΣ) · (Σ ∧ Σ) ⊆ (ΠΣ/ΠΣ) · Σ ∧ Σ

⊆ (ABP/ABP) · ABP

= ABP/ABP .

❑ Eliminate division to get: lim𝜖→0 g1 mod zd ≡ ABP/ABP mod zd = ABP.

❑ Thus, 𝜕z (Φ(f)/t2) = lim𝜖→0 g1 = ABP. Interpolate/ Induct with Limit:

❑ Thus, Φ(f)/t2 = ABP =⇒ Φ(f) = ABP =⇒ f = ABP.

32

Finishing the proof

❑ C · D ⊆ C · D. Therefore,

(ΠΣ/ΠΣ) · (Σ ∧ Σ) ⊆ (ΠΣ/ΠΣ) · Σ ∧ Σ

⊆ (ABP/ABP) · ABP

= ABP/ABP .

❑ Eliminate division to get: lim𝜖→0 g1 mod zd ≡ ABP/ABP mod zd = ABP.

❑ Thus, 𝜕z (Φ(f)/t2) = lim𝜖→0 g1 = ABP. Interpolate/ Induct with Limit:

❑ Thus, Φ(f)/t2 = ABP =⇒ Φ(f) = ABP =⇒ f = ABP.

32

Finishing the proof

❑ C · D ⊆ C · D. Therefore,

(ΠΣ/ΠΣ) · (Σ ∧ Σ) ⊆ (ΠΣ/ΠΣ) · Σ ∧ Σ

⊆ (ABP/ABP) · ABP

= ABP/ABP .

❑ Eliminate division to get: lim𝜖→0 g1 mod zd ≡ ABP/ABP mod zd = ABP.

❑ Thus, 𝜕z (Φ(f)/t2) = lim𝜖→0 g1 = ABP.

Interpolate/ Induct with Limit:

❑ Thus, Φ(f)/t2 = ABP =⇒ Φ(f) = ABP =⇒ f = ABP.

32

Finishing the proof

❑ C · D ⊆ C · D. Therefore,

(ΠΣ/ΠΣ) · (Σ ∧ Σ) ⊆ (ΠΣ/ΠΣ) · Σ ∧ Σ

⊆ (ABP/ABP) · ABP

= ABP/ABP .

❑ Eliminate division to get: lim𝜖→0 g1 mod zd ≡ ABP/ABP mod zd = ABP.

❑ Thus, 𝜕z (Φ(f)/t2) = lim𝜖→0 g1 = ABP. Interpolate/ Induct with Limit:

❑ Thus, Φ(f)/t2 = ABP =⇒ Φ(f) = ABP =⇒ f = ABP.

32

Finishing the proof

❑ C · D ⊆ C · D. Therefore,

(ΠΣ/ΠΣ) · (Σ ∧ Σ) ⊆ (ΠΣ/ΠΣ) · Σ ∧ Σ

⊆ (ABP/ABP) · ABP

= ABP/ABP .

❑ Eliminate division to get: lim𝜖→0 g1 mod zd ≡ ABP/ABP mod zd = ABP.

❑ Thus, 𝜕z (Φ(f)/t2) = lim𝜖→0 g1 = ABP. Interpolate/ Induct with Limit:

❑ Thus, Φ(f)/t2 = ABP =⇒ Φ(f) = ABP =⇒ f = ABP.

32

Derandomizing border depth-3 circuits

Polynomial Identity Testing

❑ Polynomial Identity Testing (PIT): Given a circuit C, test whether C computes
the zero polynomial (deterministically).

➢ Blackbox-PIT asks for an algorithm to test the zeroness of a given algebraic
circuit via mere query access.

Polynomial Identity Lemma [Ore, Demillo-Lipton, Schwartz, Zippel]
If P(x) is a nonzero polynomial of degree d, and S ⊆ F of size at least d + 1, then
P(a) ≠ 0 for some a ∈ Sn.

❑ This above lemma puts PIT ∈ RP.

❑ Can we derandomize blackbox-PIT? Some special cases are derandomized.

❑ Derandomizing PIT, for restricted cases, has many algorithmic applications:
➢ Graph Theory [Lovasz’79], [Fenner-Gurjar-Theirauf’19]
➢ Primality Testing [Agrawal-Kayal-Saxena’04].

33

Polynomial Identity Testing

❑ Polynomial Identity Testing (PIT): Given a circuit C, test whether C computes
the zero polynomial (deterministically).

➢ Blackbox-PIT asks for an algorithm to test the zeroness of a given algebraic
circuit via mere query access.

Polynomial Identity Lemma [Ore, Demillo-Lipton, Schwartz, Zippel]
If P(x) is a nonzero polynomial of degree d, and S ⊆ F of size at least d + 1, then
P(a) ≠ 0 for some a ∈ Sn.

❑ This above lemma puts PIT ∈ RP.

❑ Can we derandomize blackbox-PIT? Some special cases are derandomized.

❑ Derandomizing PIT, for restricted cases, has many algorithmic applications:
➢ Graph Theory [Lovasz’79], [Fenner-Gurjar-Theirauf’19]
➢ Primality Testing [Agrawal-Kayal-Saxena’04].

33

Polynomial Identity Testing

❑ Polynomial Identity Testing (PIT): Given a circuit C, test whether C computes
the zero polynomial (deterministically).

➢ Blackbox-PIT asks for an algorithm to test the zeroness of a given algebraic
circuit via mere query access.

Polynomial Identity Lemma [Ore, Demillo-Lipton, Schwartz, Zippel]
If P(x) is a nonzero polynomial of degree d, and S ⊆ F of size at least d + 1, then
P(a) ≠ 0 for some a ∈ Sn.

❑ This above lemma puts PIT ∈ RP.

❑ Can we derandomize blackbox-PIT? Some special cases are derandomized.

❑ Derandomizing PIT, for restricted cases, has many algorithmic applications:
➢ Graph Theory [Lovasz’79], [Fenner-Gurjar-Theirauf’19]
➢ Primality Testing [Agrawal-Kayal-Saxena’04].

33

Polynomial Identity Testing

❑ Polynomial Identity Testing (PIT): Given a circuit C, test whether C computes
the zero polynomial (deterministically).

➢ Blackbox-PIT asks for an algorithm to test the zeroness of a given algebraic
circuit via mere query access.

Polynomial Identity Lemma [Ore, Demillo-Lipton, Schwartz, Zippel]

If P(x) is a nonzero polynomial of degree d, and S ⊆ F of size at least d + 1, then
P(a) ≠ 0 for some a ∈ Sn.

❑ This above lemma puts PIT ∈ RP.

❑ Can we derandomize blackbox-PIT? Some special cases are derandomized.

❑ Derandomizing PIT, for restricted cases, has many algorithmic applications:
➢ Graph Theory [Lovasz’79], [Fenner-Gurjar-Theirauf’19]
➢ Primality Testing [Agrawal-Kayal-Saxena’04].

33

Polynomial Identity Testing

❑ Polynomial Identity Testing (PIT): Given a circuit C, test whether C computes
the zero polynomial (deterministically).

➢ Blackbox-PIT asks for an algorithm to test the zeroness of a given algebraic
circuit via mere query access.

Polynomial Identity Lemma [Ore, Demillo-Lipton, Schwartz, Zippel]
If P(x) is a nonzero polynomial of degree d, and S ⊆ F of size at least d + 1, then
P(a) ≠ 0 for some a ∈ Sn.

❑ This above lemma puts PIT ∈ RP.

❑ Can we derandomize blackbox-PIT? Some special cases are derandomized.

❑ Derandomizing PIT, for restricted cases, has many algorithmic applications:
➢ Graph Theory [Lovasz’79], [Fenner-Gurjar-Theirauf’19]
➢ Primality Testing [Agrawal-Kayal-Saxena’04].

33

Polynomial Identity Testing

❑ Polynomial Identity Testing (PIT): Given a circuit C, test whether C computes
the zero polynomial (deterministically).

➢ Blackbox-PIT asks for an algorithm to test the zeroness of a given algebraic
circuit via mere query access.

Polynomial Identity Lemma [Ore, Demillo-Lipton, Schwartz, Zippel]
If P(x) is a nonzero polynomial of degree d, and S ⊆ F of size at least d + 1, then
P(a) ≠ 0 for some a ∈ Sn.

❑ This above lemma puts PIT ∈ RP.

❑ Can we derandomize blackbox-PIT? Some special cases are derandomized.

❑ Derandomizing PIT, for restricted cases, has many algorithmic applications:
➢ Graph Theory [Lovasz’79], [Fenner-Gurjar-Theirauf’19]
➢ Primality Testing [Agrawal-Kayal-Saxena’04].

33

Polynomial Identity Testing

❑ Polynomial Identity Testing (PIT): Given a circuit C, test whether C computes
the zero polynomial (deterministically).

➢ Blackbox-PIT asks for an algorithm to test the zeroness of a given algebraic
circuit via mere query access.

Polynomial Identity Lemma [Ore, Demillo-Lipton, Schwartz, Zippel]
If P(x) is a nonzero polynomial of degree d, and S ⊆ F of size at least d + 1, then
P(a) ≠ 0 for some a ∈ Sn.

❑ This above lemma puts PIT ∈ RP.

❑ Can we derandomize blackbox-PIT?

Some special cases are derandomized.

❑ Derandomizing PIT, for restricted cases, has many algorithmic applications:
➢ Graph Theory [Lovasz’79], [Fenner-Gurjar-Theirauf’19]
➢ Primality Testing [Agrawal-Kayal-Saxena’04].

33

Polynomial Identity Testing

❑ Polynomial Identity Testing (PIT): Given a circuit C, test whether C computes
the zero polynomial (deterministically).

➢ Blackbox-PIT asks for an algorithm to test the zeroness of a given algebraic
circuit via mere query access.

Polynomial Identity Lemma [Ore, Demillo-Lipton, Schwartz, Zippel]
If P(x) is a nonzero polynomial of degree d, and S ⊆ F of size at least d + 1, then
P(a) ≠ 0 for some a ∈ Sn.

❑ This above lemma puts PIT ∈ RP.

❑ Can we derandomize blackbox-PIT? Some special cases are derandomized.

❑ Derandomizing PIT, for restricted cases, has many algorithmic applications:
➢ Graph Theory [Lovasz’79], [Fenner-Gurjar-Theirauf’19]
➢ Primality Testing [Agrawal-Kayal-Saxena’04].

33

Polynomial Identity Testing

❑ Polynomial Identity Testing (PIT): Given a circuit C, test whether C computes
the zero polynomial (deterministically).

➢ Blackbox-PIT asks for an algorithm to test the zeroness of a given algebraic
circuit via mere query access.

Polynomial Identity Lemma [Ore, Demillo-Lipton, Schwartz, Zippel]
If P(x) is a nonzero polynomial of degree d, and S ⊆ F of size at least d + 1, then
P(a) ≠ 0 for some a ∈ Sn.

❑ This above lemma puts PIT ∈ RP.

❑ Can we derandomize blackbox-PIT? Some special cases are derandomized.

❑ Derandomizing PIT, for restricted cases, has many algorithmic applications:

➢ Graph Theory [Lovasz’79], [Fenner-Gurjar-Theirauf’19]
➢ Primality Testing [Agrawal-Kayal-Saxena’04].

33

Polynomial Identity Testing

❑ Polynomial Identity Testing (PIT): Given a circuit C, test whether C computes
the zero polynomial (deterministically).

➢ Blackbox-PIT asks for an algorithm to test the zeroness of a given algebraic
circuit via mere query access.

Polynomial Identity Lemma [Ore, Demillo-Lipton, Schwartz, Zippel]
If P(x) is a nonzero polynomial of degree d, and S ⊆ F of size at least d + 1, then
P(a) ≠ 0 for some a ∈ Sn.

❑ This above lemma puts PIT ∈ RP.

❑ Can we derandomize blackbox-PIT? Some special cases are derandomized.

❑ Derandomizing PIT, for restricted cases, has many algorithmic applications:
➢ Graph Theory [Lovasz’79], [Fenner-Gurjar-Theirauf’19]

➢ Primality Testing [Agrawal-Kayal-Saxena’04].

33

Polynomial Identity Testing

❑ Polynomial Identity Testing (PIT): Given a circuit C, test whether C computes
the zero polynomial (deterministically).

➢ Blackbox-PIT asks for an algorithm to test the zeroness of a given algebraic
circuit via mere query access.

Polynomial Identity Lemma [Ore, Demillo-Lipton, Schwartz, Zippel]
If P(x) is a nonzero polynomial of degree d, and S ⊆ F of size at least d + 1, then
P(a) ≠ 0 for some a ∈ Sn.

❑ This above lemma puts PIT ∈ RP.

❑ Can we derandomize blackbox-PIT? Some special cases are derandomized.

❑ Derandomizing PIT, for restricted cases, has many algorithmic applications:
➢ Graph Theory [Lovasz’79], [Fenner-Gurjar-Theirauf’19]
➢ Primality Testing [Agrawal-Kayal-Saxena’04].

33

Border PIT

Border hitting set

H is a hitting set for a class C, if g(x, 𝜖) ∈ CF(𝜖) approximates a non-zero
polynomial h(x), then ∃a ∈ H such that g(a, 𝜖) ∉ 𝜖 · F[𝜖], i.e. h(a) ≠ 0.

❑ Finding a ∈ Fn such that g(a, 𝜖) ≠ 0 does not suffice.

❑ h could have really high (exact) complexity compared to g.

❑ We know
➢ polynomial-time hitting set for ΠΣ = ΠΣ [Klivans-Spielman 2001],
➢ quasipolynomial-time hitting set for Σ ∧ Σ [Forbes-Shpilka 2013].

❑ nO (k) -time hitting set is known for Σ[k]ΠΣ [Saxena-Seshadri 2012].
Unfortunately, it does not work for Σ[k]ΠΣ.

❑ General PIT for det is not known!

Theorem 2 (Derandomizing polynomal-sized depth-3 top-fanin-k circuits)
[Dutta-Dwivedi-Saxena 2021]

There exists an explicit quasipolynomial-time (sO (log log s)) hitting set for size-s
Σ[k]ΠΣ circuits, for any constant k.

34

Border PIT

Border hitting set

H is a hitting set for a class C, if g(x, 𝜖) ∈ CF(𝜖) approximates a non-zero
polynomial h(x), then ∃a ∈ H such that g(a, 𝜖) ∉ 𝜖 · F[𝜖], i.e. h(a) ≠ 0.

❑ Finding a ∈ Fn such that g(a, 𝜖) ≠ 0 does not suffice.

❑ h could have really high (exact) complexity compared to g.

❑ We know
➢ polynomial-time hitting set for ΠΣ = ΠΣ [Klivans-Spielman 2001],
➢ quasipolynomial-time hitting set for Σ ∧ Σ [Forbes-Shpilka 2013].

❑ nO (k) -time hitting set is known for Σ[k]ΠΣ [Saxena-Seshadri 2012].
Unfortunately, it does not work for Σ[k]ΠΣ.

❑ General PIT for det is not known!

Theorem 2 (Derandomizing polynomal-sized depth-3 top-fanin-k circuits)
[Dutta-Dwivedi-Saxena 2021]

There exists an explicit quasipolynomial-time (sO (log log s)) hitting set for size-s
Σ[k]ΠΣ circuits, for any constant k.

34

Border PIT

Border hitting set

H is a hitting set for a class C, if g(x, 𝜖) ∈ CF(𝜖) approximates a non-zero
polynomial h(x), then ∃a ∈ H such that g(a, 𝜖) ∉ 𝜖 · F[𝜖], i.e. h(a) ≠ 0.

❑ Finding a ∈ Fn such that g(a, 𝜖) ≠ 0 does not suffice.

❑ h could have really high (exact) complexity compared to g.

❑ We know
➢ polynomial-time hitting set for ΠΣ = ΠΣ [Klivans-Spielman 2001],
➢ quasipolynomial-time hitting set for Σ ∧ Σ [Forbes-Shpilka 2013].

❑ nO (k) -time hitting set is known for Σ[k]ΠΣ [Saxena-Seshadri 2012].
Unfortunately, it does not work for Σ[k]ΠΣ.

❑ General PIT for det is not known!

Theorem 2 (Derandomizing polynomal-sized depth-3 top-fanin-k circuits)
[Dutta-Dwivedi-Saxena 2021]

There exists an explicit quasipolynomial-time (sO (log log s)) hitting set for size-s
Σ[k]ΠΣ circuits, for any constant k.

34

Border PIT

Border hitting set

H is a hitting set for a class C, if g(x, 𝜖) ∈ CF(𝜖) approximates a non-zero
polynomial h(x), then ∃a ∈ H such that g(a, 𝜖) ∉ 𝜖 · F[𝜖], i.e. h(a) ≠ 0.

❑ Finding a ∈ Fn such that g(a, 𝜖) ≠ 0 does not suffice.

❑ h could have really high (exact) complexity compared to g.

❑ We know
➢ polynomial-time hitting set for ΠΣ = ΠΣ [Klivans-Spielman 2001],
➢ quasipolynomial-time hitting set for Σ ∧ Σ [Forbes-Shpilka 2013].

❑ nO (k) -time hitting set is known for Σ[k]ΠΣ [Saxena-Seshadri 2012].
Unfortunately, it does not work for Σ[k]ΠΣ.

❑ General PIT for det is not known!

Theorem 2 (Derandomizing polynomal-sized depth-3 top-fanin-k circuits)
[Dutta-Dwivedi-Saxena 2021]

There exists an explicit quasipolynomial-time (sO (log log s)) hitting set for size-s
Σ[k]ΠΣ circuits, for any constant k.

34

Border PIT

Border hitting set

H is a hitting set for a class C, if g(x, 𝜖) ∈ CF(𝜖) approximates a non-zero
polynomial h(x), then ∃a ∈ H such that g(a, 𝜖) ∉ 𝜖 · F[𝜖], i.e. h(a) ≠ 0.

❑ Finding a ∈ Fn such that g(a, 𝜖) ≠ 0 does not suffice.

❑ h could have really high (exact) complexity compared to g.

❑ We know

➢ polynomial-time hitting set for ΠΣ = ΠΣ [Klivans-Spielman 2001],
➢ quasipolynomial-time hitting set for Σ ∧ Σ [Forbes-Shpilka 2013].

❑ nO (k) -time hitting set is known for Σ[k]ΠΣ [Saxena-Seshadri 2012].
Unfortunately, it does not work for Σ[k]ΠΣ.

❑ General PIT for det is not known!

Theorem 2 (Derandomizing polynomal-sized depth-3 top-fanin-k circuits)
[Dutta-Dwivedi-Saxena 2021]

There exists an explicit quasipolynomial-time (sO (log log s)) hitting set for size-s
Σ[k]ΠΣ circuits, for any constant k.

34

Border PIT

Border hitting set

H is a hitting set for a class C, if g(x, 𝜖) ∈ CF(𝜖) approximates a non-zero
polynomial h(x), then ∃a ∈ H such that g(a, 𝜖) ∉ 𝜖 · F[𝜖], i.e. h(a) ≠ 0.

❑ Finding a ∈ Fn such that g(a, 𝜖) ≠ 0 does not suffice.

❑ h could have really high (exact) complexity compared to g.

❑ We know
➢ polynomial-time hitting set for ΠΣ = ΠΣ [Klivans-Spielman 2001],

➢ quasipolynomial-time hitting set for Σ ∧ Σ [Forbes-Shpilka 2013].

❑ nO (k) -time hitting set is known for Σ[k]ΠΣ [Saxena-Seshadri 2012].
Unfortunately, it does not work for Σ[k]ΠΣ.

❑ General PIT for det is not known!

Theorem 2 (Derandomizing polynomal-sized depth-3 top-fanin-k circuits)
[Dutta-Dwivedi-Saxena 2021]

There exists an explicit quasipolynomial-time (sO (log log s)) hitting set for size-s
Σ[k]ΠΣ circuits, for any constant k.

34

Border PIT

Border hitting set

H is a hitting set for a class C, if g(x, 𝜖) ∈ CF(𝜖) approximates a non-zero
polynomial h(x), then ∃a ∈ H such that g(a, 𝜖) ∉ 𝜖 · F[𝜖], i.e. h(a) ≠ 0.

❑ Finding a ∈ Fn such that g(a, 𝜖) ≠ 0 does not suffice.

❑ h could have really high (exact) complexity compared to g.

❑ We know
➢ polynomial-time hitting set for ΠΣ = ΠΣ [Klivans-Spielman 2001],
➢ quasipolynomial-time hitting set for Σ ∧ Σ [Forbes-Shpilka 2013].

❑ nO (k) -time hitting set is known for Σ[k]ΠΣ [Saxena-Seshadri 2012].
Unfortunately, it does not work for Σ[k]ΠΣ.

❑ General PIT for det is not known!

Theorem 2 (Derandomizing polynomal-sized depth-3 top-fanin-k circuits)
[Dutta-Dwivedi-Saxena 2021]

There exists an explicit quasipolynomial-time (sO (log log s)) hitting set for size-s
Σ[k]ΠΣ circuits, for any constant k.

34

Border PIT

Border hitting set

H is a hitting set for a class C, if g(x, 𝜖) ∈ CF(𝜖) approximates a non-zero
polynomial h(x), then ∃a ∈ H such that g(a, 𝜖) ∉ 𝜖 · F[𝜖], i.e. h(a) ≠ 0.

❑ Finding a ∈ Fn such that g(a, 𝜖) ≠ 0 does not suffice.

❑ h could have really high (exact) complexity compared to g.

❑ We know
➢ polynomial-time hitting set for ΠΣ = ΠΣ [Klivans-Spielman 2001],
➢ quasipolynomial-time hitting set for Σ ∧ Σ [Forbes-Shpilka 2013].

❑ nO (k) -time hitting set is known for Σ[k]ΠΣ [Saxena-Seshadri 2012].

Unfortunately, it does not work for Σ[k]ΠΣ.

❑ General PIT for det is not known!

Theorem 2 (Derandomizing polynomal-sized depth-3 top-fanin-k circuits)
[Dutta-Dwivedi-Saxena 2021]

There exists an explicit quasipolynomial-time (sO (log log s)) hitting set for size-s
Σ[k]ΠΣ circuits, for any constant k.

34

Border PIT

Border hitting set

H is a hitting set for a class C, if g(x, 𝜖) ∈ CF(𝜖) approximates a non-zero
polynomial h(x), then ∃a ∈ H such that g(a, 𝜖) ∉ 𝜖 · F[𝜖], i.e. h(a) ≠ 0.

❑ Finding a ∈ Fn such that g(a, 𝜖) ≠ 0 does not suffice.

❑ h could have really high (exact) complexity compared to g.

❑ We know
➢ polynomial-time hitting set for ΠΣ = ΠΣ [Klivans-Spielman 2001],
➢ quasipolynomial-time hitting set for Σ ∧ Σ [Forbes-Shpilka 2013].

❑ nO (k) -time hitting set is known for Σ[k]ΠΣ [Saxena-Seshadri 2012].
Unfortunately, it does not work for Σ[k]ΠΣ.

❑ General PIT for det is not known!

Theorem 2 (Derandomizing polynomal-sized depth-3 top-fanin-k circuits)
[Dutta-Dwivedi-Saxena 2021]

There exists an explicit quasipolynomial-time (sO (log log s)) hitting set for size-s
Σ[k]ΠΣ circuits, for any constant k.

34

Border PIT

Border hitting set

H is a hitting set for a class C, if g(x, 𝜖) ∈ CF(𝜖) approximates a non-zero
polynomial h(x), then ∃a ∈ H such that g(a, 𝜖) ∉ 𝜖 · F[𝜖], i.e. h(a) ≠ 0.

❑ Finding a ∈ Fn such that g(a, 𝜖) ≠ 0 does not suffice.

❑ h could have really high (exact) complexity compared to g.

❑ We know
➢ polynomial-time hitting set for ΠΣ = ΠΣ [Klivans-Spielman 2001],
➢ quasipolynomial-time hitting set for Σ ∧ Σ [Forbes-Shpilka 2013].

❑ nO (k) -time hitting set is known for Σ[k]ΠΣ [Saxena-Seshadri 2012].
Unfortunately, it does not work for Σ[k]ΠΣ.

❑ General PIT for det is not known!

Theorem 2 (Derandomizing polynomal-sized depth-3 top-fanin-k circuits)
[Dutta-Dwivedi-Saxena 2021]

There exists an explicit quasipolynomial-time (sO (log log s)) hitting set for size-s
Σ[k]ΠΣ circuits, for any constant k.

34

Border PIT

Border hitting set

H is a hitting set for a class C, if g(x, 𝜖) ∈ CF(𝜖) approximates a non-zero
polynomial h(x), then ∃a ∈ H such that g(a, 𝜖) ∉ 𝜖 · F[𝜖], i.e. h(a) ≠ 0.

❑ Finding a ∈ Fn such that g(a, 𝜖) ≠ 0 does not suffice.

❑ h could have really high (exact) complexity compared to g.

❑ We know
➢ polynomial-time hitting set for ΠΣ = ΠΣ [Klivans-Spielman 2001],
➢ quasipolynomial-time hitting set for Σ ∧ Σ [Forbes-Shpilka 2013].

❑ nO (k) -time hitting set is known for Σ[k]ΠΣ [Saxena-Seshadri 2012].
Unfortunately, it does not work for Σ[k]ΠΣ.

❑ General PIT for det is not known!

Theorem 2 (Derandomizing polynomal-sized depth-3 top-fanin-k circuits)
[Dutta-Dwivedi-Saxena 2021]

There exists an explicit quasipolynomial-time (sO (log log s)) hitting set for size-s
Σ[k]ΠΣ circuits, for any constant k.

34

Conclusion

Concluding remarks

❑ Can we show Σ[k]Π [d]Σ ≠ VBP, for d = poly(n)?

Upcoming result by [Dutta-Saxena 2021, Preprint]
There is an explicit n-variate and < n degree polynomial f computed by size-O(n)
Σ[k+1]ΠΣ circuit, such that f requires 2Ω(n) -size Σ[k]ΠΣ circuits.

➢ This refined separation also establishes: Σ[k]Π [d]Σ ≠ VBP,VNP.

❑ [Dutta-Dwivedi-Saxena 2021] showed a quasipolynomial-time hitting set for
Σ[k]Π [d]Σ circuits. Can we improve it to polynomial?
In fact, it’s poly-time for log-variate Σ[k]Π [d]Σ circuits.

❑ Does our technique extend to arbitrary constant-depth border circuits? Currently
it extends to restricted depth-4 circuits.

Thank you. Questions?

35

Concluding remarks

❑ Can we show Σ[k]Π [d]Σ ≠ VBP, for d = poly(n)?

Upcoming result by [Dutta-Saxena 2021, Preprint]
There is an explicit n-variate and < n degree polynomial f computed by size-O(n)
Σ[k+1]ΠΣ circuit, such that f requires 2Ω(n) -size Σ[k]ΠΣ circuits.

➢ This refined separation also establishes: Σ[k]Π [d]Σ ≠ VBP,VNP.

❑ [Dutta-Dwivedi-Saxena 2021] showed a quasipolynomial-time hitting set for
Σ[k]Π [d]Σ circuits. Can we improve it to polynomial?
In fact, it’s poly-time for log-variate Σ[k]Π [d]Σ circuits.

❑ Does our technique extend to arbitrary constant-depth border circuits? Currently
it extends to restricted depth-4 circuits.

Thank you. Questions?

35

Concluding remarks

❑ Can we show Σ[k]Π [d]Σ ≠ VBP, for d = poly(n)?

Upcoming result by [Dutta-Saxena 2021, Preprint]
There is an explicit n-variate and < n degree polynomial f computed by size-O(n)
Σ[k+1]ΠΣ circuit, such that f requires 2Ω(n) -size Σ[k]ΠΣ circuits.

➢ This refined separation also establishes: Σ[k]Π [d]Σ ≠ VBP,VNP.

❑ [Dutta-Dwivedi-Saxena 2021] showed a quasipolynomial-time hitting set for
Σ[k]Π [d]Σ circuits. Can we improve it to polynomial?
In fact, it’s poly-time for log-variate Σ[k]Π [d]Σ circuits.

❑ Does our technique extend to arbitrary constant-depth border circuits? Currently
it extends to restricted depth-4 circuits.

Thank you. Questions?

35

Concluding remarks

❑ Can we show Σ[k]Π [d]Σ ≠ VBP, for d = poly(n)?

Upcoming result by [Dutta-Saxena 2021, Preprint]
There is an explicit n-variate and < n degree polynomial f computed by size-O(n)
Σ[k+1]ΠΣ circuit, such that f requires 2Ω(n) -size Σ[k]ΠΣ circuits.

➢ This refined separation also establishes: Σ[k]Π [d]Σ ≠ VBP,VNP.

❑ [Dutta-Dwivedi-Saxena 2021] showed a quasipolynomial-time hitting set for
Σ[k]Π [d]Σ circuits. Can we improve it to polynomial?
In fact, it’s poly-time for log-variate Σ[k]Π [d]Σ circuits.

❑ Does our technique extend to arbitrary constant-depth border circuits? Currently
it extends to restricted depth-4 circuits.

Thank you. Questions?

35

Concluding remarks

❑ Can we show Σ[k]Π [d]Σ ≠ VBP, for d = poly(n)?

Upcoming result by [Dutta-Saxena 2021, Preprint]
There is an explicit n-variate and < n degree polynomial f computed by size-O(n)
Σ[k+1]ΠΣ circuit, such that f requires 2Ω(n) -size Σ[k]ΠΣ circuits.

➢ This refined separation also establishes: Σ[k]Π [d]Σ ≠ VBP,VNP.

❑ [Dutta-Dwivedi-Saxena 2021] showed a quasipolynomial-time hitting set for
Σ[k]Π [d]Σ circuits. Can we improve it to polynomial?

In fact, it’s poly-time for log-variate Σ[k]Π [d]Σ circuits.

❑ Does our technique extend to arbitrary constant-depth border circuits? Currently
it extends to restricted depth-4 circuits.

Thank you. Questions?

35

Concluding remarks

❑ Can we show Σ[k]Π [d]Σ ≠ VBP, for d = poly(n)?

Upcoming result by [Dutta-Saxena 2021, Preprint]
There is an explicit n-variate and < n degree polynomial f computed by size-O(n)
Σ[k+1]ΠΣ circuit, such that f requires 2Ω(n) -size Σ[k]ΠΣ circuits.

➢ This refined separation also establishes: Σ[k]Π [d]Σ ≠ VBP,VNP.

❑ [Dutta-Dwivedi-Saxena 2021] showed a quasipolynomial-time hitting set for
Σ[k]Π [d]Σ circuits. Can we improve it to polynomial?
In fact, it’s poly-time for log-variate Σ[k]Π [d]Σ circuits.

❑ Does our technique extend to arbitrary constant-depth border circuits? Currently
it extends to restricted depth-4 circuits.

Thank you. Questions?

35

Concluding remarks

❑ Can we show Σ[k]Π [d]Σ ≠ VBP, for d = poly(n)?

Upcoming result by [Dutta-Saxena 2021, Preprint]
There is an explicit n-variate and < n degree polynomial f computed by size-O(n)
Σ[k+1]ΠΣ circuit, such that f requires 2Ω(n) -size Σ[k]ΠΣ circuits.

➢ This refined separation also establishes: Σ[k]Π [d]Σ ≠ VBP,VNP.

❑ [Dutta-Dwivedi-Saxena 2021] showed a quasipolynomial-time hitting set for
Σ[k]Π [d]Σ circuits. Can we improve it to polynomial?
In fact, it’s poly-time for log-variate Σ[k]Π [d]Σ circuits.

❑ Does our technique extend to arbitrary constant-depth border circuits? Currently
it extends to restricted depth-4 circuits.

Thank you. Questions?

35

Concluding remarks

❑ Can we show Σ[k]Π [d]Σ ≠ VBP, for d = poly(n)?

Upcoming result by [Dutta-Saxena 2021, Preprint]
There is an explicit n-variate and < n degree polynomial f computed by size-O(n)
Σ[k+1]ΠΣ circuit, such that f requires 2Ω(n) -size Σ[k]ΠΣ circuits.

➢ This refined separation also establishes: Σ[k]Π [d]Σ ≠ VBP,VNP.

❑ [Dutta-Dwivedi-Saxena 2021] showed a quasipolynomial-time hitting set for
Σ[k]Π [d]Σ circuits. Can we improve it to polynomial?
In fact, it’s poly-time for log-variate Σ[k]Π [d]Σ circuits.

❑ Does our technique extend to arbitrary constant-depth border circuits? Currently
it extends to restricted depth-4 circuits.

Thank you.

Questions?

35

Concluding remarks

❑ Can we show Σ[k]Π [d]Σ ≠ VBP, for d = poly(n)?

Upcoming result by [Dutta-Saxena 2021, Preprint]
There is an explicit n-variate and < n degree polynomial f computed by size-O(n)
Σ[k+1]ΠΣ circuit, such that f requires 2Ω(n) -size Σ[k]ΠΣ circuits.

➢ This refined separation also establishes: Σ[k]Π [d]Σ ≠ VBP,VNP.

❑ [Dutta-Dwivedi-Saxena 2021] showed a quasipolynomial-time hitting set for
Σ[k]Π [d]Σ circuits. Can we improve it to polynomial?
In fact, it’s poly-time for log-variate Σ[k]Π [d]Σ circuits.

❑ Does our technique extend to arbitrary constant-depth border circuits? Currently
it extends to restricted depth-4 circuits.

Thank you. Questions?

35

	Algebraic Complexity Theory
	Border Complexity and GCT
	Border depth-3 circuits
	Derandomizing border depth-3 circuits
	Conclusion

