(paper on arxiv)

\[f(x_1, \ldots, x_m) = \sum_{i=1}^n l_i(x_{i1}, \ldots, x_{im})^d \quad \text{deg}(f) = d. \]

Smallest possible \(n \): Waring rank of \(f \).

When \(d, m \to \infty \): exponential lower bounds.

Method: partial derivatives.

This talk: \(d = 3 \). Wanted: \(\Omega(m^2) \) lower bound (worst case).

Current lower bounds: \(O(m) \).

Barren result: Rank method cannot go beyond \(O(m) \).

\[l_i \text{ if } \text{IR}(x_{i1}, \ldots, x_{im}). \]
\[
T = \frac{1}{2} \sum_{i,j} \text{Tr} \left(T_{ij} \otimes \mu_2 \right)
\]

where \(\mu_2 = \text{diag}(-1, 1) \).

The slice: \(T = (16) \).

Proposed approach: method of commuting extensions (Dagani-Schiff, Tannor'85).
A matrix problem: commuting extensions.

Given square matrices \(A_1, \ldots, A_k \), we want to extend them to obtain commuting matrices.

\[
\begin{bmatrix}
 X_1 & \cdots & X_k
\end{bmatrix}
\begin{bmatrix}
 \mathbf{A}_1 & \mathbf{B}_1 \\
 \mathbf{C}_1 & \mathbf{D}_1
\end{bmatrix}
\begin{bmatrix}
 Y_1 \\
 \vdots \\
 Y_k
\end{bmatrix}
\]

What is the smallest possible \(n \)?

Lemma (Strassen'83): \(\frac{1}{2} \text{rank}(A_2 A_2 - A_2 A_2) \geq n \geq m + \frac{1}{2} \text{rank}(A_2 A_2 - A_2 A_2) \).

Theorem (Strassen'83):

For a tensor \(T \) with 3 slices \(A_2, A_2, A_3 \):

\[
\text{rank}_k(T) \geq m + \frac{1}{2} \text{rank}(A_2 A_2^{-1} A_3 - A_2 A_2^{-1} A_2).
\]
Constructions of commuting extensions:

1) \[X_i = \left(\frac{A_i}{A_i} - A_i \right) \] shows that \(n \leq 2m \) due to Jeroen Zuiddam.

\[X_i X_j = 0. \]

2) For \(L \) matrices: \(X_a = \begin{pmatrix} A_a & A_a \\ A_a & A_a \end{pmatrix} \), \(X_e = \begin{pmatrix} A_e & A_e \\ A_e & A_e \end{pmatrix} \), symmetric if \(A_a, A_e \) symmetric.

3) For \(h \) matrices: \(X_h = \begin{pmatrix} A_h & i A_h \\ i A_h & -A_h \end{pmatrix} \) if \(i = -1 \)

\[X_h X_h = 0. \]
Connection to algebraic complexity

Theorem 1: Let \(T \in S^3 \mathbb{R}^n \) with symmetric rank \(\leq n \). There exists a set \(S \) of order 3 and size \(n+m \) such that:

(i) The slices of \(S \) commute.

(ii) \(T \) is a subarray of \(S \): \(T_{ijk} = S_{ijk} \) for \(i,j,k \leq m \).

Contrapositive: lower bound on extension size

\[\Rightarrow \] lower bound on \(n \).

What could go wrong?

1) proving LB on size of commuting extension is hard.

2) Perhaps \(T \) has high rank, but a small commuting extension is impossible.
\[\sum \text{area of } S \text{ as symmetric (T)} \}

Application of Theorem: If \(\exists w \text{ (arg of } S) \),

\[\frac{i=n}{F = 1 \text{ m}^2} \]

From \(\text{horizontal decomposition} \),

The degree of \(S \) component \(\Rightarrow S \text{ has an odd order} \).

Theorem: Let \(S \) be a nodal symmetric beam, \(S \in G \).

Theorem: If \((i) + (ii) \) hold then,

\(\sum \text{area of } S \text{ as symmetric (T)} \),
Theorem 3: T is of symmetric rank $\leq n$ iff there is a real symmetric tensor S of size $n \times n$ such that:

(i) The slices of S commute.

(ii) $T_{i,j,k} = S_{i,j,k}$ for $1 \leq i, j, k \leq n$.

(iii) Any matrix in the subspace spanned by the slices of S is of rank $\leq n$.
