Algebraic Complexity: Structural results
Depth reduction, Homogeneization, Multilinearization, …

Sébastien Tavenas

October 15th, 2021
Overview

1. Why to look at structural results

2. Homogeneization / (Set)-multilinearization
 - Homogeneization
 - Multilinearization

3. Parallelization
 - Classical depth reductions of [Brent] and [VSBR]
 - To constant depth
General roadmap for lower bounds
Four steps in most lower bound proofs

Step 1: Finding a “nice” form for the model
Four steps in most lower bound proofs

Step 1: Finding a “nice” form for the model

Meta Theorem 1

Every small circuit can be equivalently computed as a “nice” triangle.
Four steps in most lower bound proofs

Step 1: Finding a “nice” form for the model

Meta Theorem 1

Every small circuit can be equivalently computed as a “nice” form.
Four steps in most lower bound proofs

Step 1: Finding a “nice” form for the model

Meta Theorem 1
Every small circuit can be equivalently computed as a “nice” △.

Step 2: Constructing a complexity measure

Meta Theorem 2
Find a map $\Gamma : \mathbb{F}[x] \to \mathbb{Z}_{\geq 0}$ such that $\Gamma(\triangle)$ is small.
Four steps in most lower bound proofs

Step 1: Finding a “nice” form for the model

Meta Theorem 1
Every small circuit can be equivalently computed as a “nice” ▲

Step 2: Constructing a complexity measure

Meta Theorem 2
Find a map $\Gamma : F[x] \rightarrow \mathbb{Z}_{\geq 0}$ such that $\Gamma(▲)$ is small.

Step 3: Heuristic estimate for a random polynomial

Meta Theorem 2
Convince yourself that $\Gamma(R)$ must be LARGE for a random polynomial R.
Four steps in most lower bound proofs

Step 1: Finding a “nice” form for the model

Meta Theorem 1

Every small circuit can be equivalently computed as a “nice” form.

Step 2: Constructing a complexity measure

Meta Theorem 2

Find a map $\Gamma : \mathbb{F}[x] \rightarrow \mathbb{Z}_{\geq 0}$ such that $\Gamma (\triangle)$ is small.

Step 3: Heuristic estimate for a random polynomial

Meta Theorem 2

Convince yourself that $\Gamma (R)$ must be LARGE for a random polynomial R.

Step 4: Find a hay in the haystack

Structural results
Four steps in most lower bound proofs

Step 1: Finding a “nice” form for the model

Meta Theorem 1
Every small circuit can be equivalently computed as a “nice”
Four steps in most lower bound proofs

Step 1: Finding a “nice” form for the model

Meta Theorem 1

Every small circuit can be equivalently computed as a “nice” form.

Homogenization, (Set)-multilinearization, Depth reduction
Arithmetic models

Formulas \subseteq ABP \subseteq Circuits
Arithmetic models

Formulas \subseteq ABP \subseteq Circuits

- Reverse inclusions?
Arithmetic models

Formulas \subseteq ABP \subseteq Circuits

- Reverse inclusions?
- Circuit of size $s \leadsto$
Arithmetic models

Formulas \subseteq ABP \subseteq Circuits

- Reverse inclusions?
- Circuit of size $s \rightsquigarrow$ Formula of size $s^{O(\log d)}$.
Few words about fan-ins

If nothing is mentioned:
- For circuits, formula of “large depth”:
 - $+$-gate: unbounded
 - \star-gate: constant
- For circuits, formula of constant depth:
 - $+$-gate: unbounded
 - \star-gate: unbounded
Homogenization (basics)

- All gates compute *homogeneous polynomials*.
Homogenization (basics)

- All gates compute *homogeneous polynomials*.
- Hence, *no gate can compute polynomials of degree larger than output*.
Homogenization (basics)

- All gates compute *homogeneous polynomials*.
- Hence, *no gate can compute polynomials of degree larger than output*.
- For circuits and ABPs, homogeneity can be assumed without loss of generality.
Homogenization (basics)

- All gates compute *homogeneous polynomials*.
- Hence, no gate can compute polynomials of degree larger than output.
- For circuits and ABPs, homogeneity can be assumed without loss of generality.
 For formulas, probably not.
Homogenization (basics)

- All gates compute *homogeneous polynomials*.
- Hence, **no gate can compute polynomials of degree larger than output**.
- For circuits and ABPs, homogeneity can be assumed without loss of generality.
 For formulas, probably not.
 For constant depth formulas, certainly not.

\[
\begin{align*}
\text{(Det}_n) & \in \Sigma \Pi \Sigma \Pi \\
\text{non \ hom} & \rightarrow n^{O(\sqrt{n})} \\
\text{hom} & \rightarrow 2^{O(\sqrt{n})}
\end{align*}
\]
Homogenization (basics)

- All gates compute *homogeneous polynomials*.
- Hence, no gate can compute polynomials of degree larger than output.
- For circuits and ABPs, homogeneity can be assumed without loss of generality.
 For formulas, probably not.
 For constant depth formulas, certainly not.

\[
g = g_1 	imes g_2 \rightarrow g^{(i)} = \sum_{j=0}^{i} g_1^{(j)} \times g_2^{(i-j)}
\]

\[
g = \sum_{j} g_j \rightarrow g^{(i)} = \sum_{j} g_j^{(i)}
\]

\[
\text{Structural results}
\]

October 15th, 2021
(Syntactic) (Set)-multilinearization

- Multilinear, Set-multilinear
(Syntactic) (Set)-multilinearization

- Multilinear, Set-multilinear
- Semantic vs. Syntactic

A circuit syntactic set-multilinear

\[* (\emptyset) \to \exists \exists \exists \]
\[* \exists x \to \exists \exists x \exists x \]
\[* (x \cdot y) \to s_1 = s_2 = \ldots = s_p = s \]
\[* (x_1 \cdot x_2) \to s_1 = s_1 + s_2 \]

A circuit is called synt multilinear

\[* (\emptyset) \to \exists \exists \exists \]
\[* \exists x \to \exists \exists x \exists x \]
\[* (x \cdot y) \to s \cup s \]
\[* (x \cdot y) \to s \cup s \]
Multilinear, Set-multilinear

Semantic vs. Syntactic

Expensive!

<table>
<thead>
<tr>
<th></th>
<th>Syn. Multilinear</th>
<th>Syn. Set-multilinear</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circuits</td>
<td>???</td>
<td>$s \cdot 2^{O(d)}$</td>
</tr>
<tr>
<td>Formulas</td>
<td>???</td>
<td>$2^{O(d \log \log s)}$</td>
</tr>
<tr>
<td>Hom. formulas</td>
<td>???</td>
<td>$s \cdot d^{O(d)}$</td>
</tr>
<tr>
<td>of cst depth</td>
<td>Trivial</td>
<td>$\log d 2^{O(d \log d)}$</td>
</tr>
</tbody>
</table>
A short history of depth reduction

<table>
<thead>
<tr>
<th>Class</th>
<th>Depth</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formulas</td>
<td>$O(\log s)$</td>
<td>$\text{poly}(s)$</td>
</tr>
</tbody>
</table>
A short history of depth reduction

<table>
<thead>
<tr>
<th>Class</th>
<th>Depth</th>
<th>Size</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formulas</td>
<td>$O(\log s)$</td>
<td>$\text{poly}(s)$</td>
<td>[Brent]</td>
</tr>
<tr>
<td>Circuits</td>
<td>$O(\log d)$</td>
<td>$s^{\log s}$</td>
<td>[Hyafil]</td>
</tr>
</tbody>
</table>
A short history of depth reduction

<table>
<thead>
<tr>
<th>Class</th>
<th>Depth</th>
<th>Size</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formulas</td>
<td>$O(\log s)$</td>
<td>poly(s)</td>
<td>[Brent]</td>
</tr>
<tr>
<td>Circuits</td>
<td>$O(\log d)$</td>
<td>$s^\log s$</td>
<td>[Hyafil]</td>
</tr>
<tr>
<td>Circuits</td>
<td>$O(\log d)$</td>
<td>poly(s)</td>
<td>[Valiant-Skyum-Berkowitz-Rackoff]</td>
</tr>
</tbody>
</table>
A short history of depth reduction

<table>
<thead>
<tr>
<th>Class</th>
<th>Depth</th>
<th>Size</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formulas</td>
<td>$O(\log s)$</td>
<td>$\text{poly}(s)$</td>
<td>[Brent]</td>
</tr>
<tr>
<td>Circuits</td>
<td>$O(\log d)$</td>
<td>$s^{\log s}$</td>
<td>[Hyafil]</td>
</tr>
<tr>
<td>Circuits</td>
<td>$O(\log d)$</td>
<td>$\text{poly}(s)$</td>
<td>[Valiant-Skyum-Berkowitz-Rackoff]</td>
</tr>
<tr>
<td>Circuits</td>
<td>4</td>
<td>$2^o(n)$</td>
<td>[Agrawal-Vinay]</td>
</tr>
</tbody>
</table>
A short history of depth reduction

<table>
<thead>
<tr>
<th>Class</th>
<th>Depth</th>
<th>Size</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formulas</td>
<td>$O(\log s)$</td>
<td>$\text{poly}(s)$</td>
<td>[Brent]</td>
</tr>
<tr>
<td>Circuits</td>
<td>$O(\log d)$</td>
<td>$s^{\log s}$</td>
<td>[Hyafil]</td>
</tr>
<tr>
<td>Circuits</td>
<td>$O(\log d)$</td>
<td>$\text{poly}(s)$</td>
<td>[Valiant-Skyum-Berkowitz-Rackoff]</td>
</tr>
<tr>
<td>Circuits</td>
<td>4</td>
<td>$2^{O(\sqrt{N})}$</td>
<td>[Agrawal-Vinay]</td>
</tr>
<tr>
<td>Circuits</td>
<td>4</td>
<td>$s^{O(\sqrt{d \log d})}$</td>
<td>[Koiran]</td>
</tr>
</tbody>
</table>
A short history of depth reduction

<table>
<thead>
<tr>
<th>Class</th>
<th>Depth</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formulas</td>
<td>$O(\log s)$</td>
<td>poly(s)</td>
</tr>
<tr>
<td>Circuits</td>
<td>$O(\log d)$</td>
<td>$s^{\log s}$</td>
</tr>
<tr>
<td>Circuits</td>
<td>$O(\log d)$</td>
<td>poly(s)</td>
</tr>
<tr>
<td>Circuits</td>
<td>4</td>
<td>$2^{o(N)}$ $s^{O(\sqrt{d \log d})}$ $s^{O(\sqrt{d})}$</td>
</tr>
</tbody>
</table>

[Brent] [Hyafil] [Valiant-Skyum-Berkowitz-Rackoff] [Agrawal-Vinay] [Koiran] [T.]
A short history of depth reduction

<table>
<thead>
<tr>
<th>Class</th>
<th>Depth</th>
<th>Size</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formulas</td>
<td>(O(\log s))</td>
<td>(\text{poly}(s))</td>
<td>[Brent]</td>
</tr>
<tr>
<td>Circuits</td>
<td>(O(\log d))</td>
<td>(s^{\log s})</td>
<td>[Hyafil]</td>
</tr>
<tr>
<td>Circuits</td>
<td>(O(\log d))</td>
<td>(\text{poly}(s))</td>
<td>[Valiant-Skyum-Berkowitz-Rackoff]</td>
</tr>
<tr>
<td>Circuits</td>
<td>4</td>
<td>(2^{o(N)})</td>
<td>[Agrawal-Vinay]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(s^{O(\sqrt{d \log d})})</td>
<td>[Koiran]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(s^{O(\sqrt{d})})</td>
<td>[T.]</td>
</tr>
<tr>
<td>Circuits</td>
<td>3(^*)</td>
<td>(s^{O(\sqrt{d})})</td>
<td>[Gupta-Kamath-Kayal-Saptharishi]</td>
</tr>
</tbody>
</table>
A short history of depth reduction

<table>
<thead>
<tr>
<th>Class</th>
<th>Depth</th>
<th>Size</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formulas</td>
<td>$O(\log s)$</td>
<td>$\text{poly}(s)$</td>
<td>[Brent]</td>
</tr>
<tr>
<td>Circuits</td>
<td>$O(\log d)$</td>
<td>$s^{\log s}$</td>
<td>[Hyafil]</td>
</tr>
<tr>
<td>Circuits</td>
<td>$O(\log d)$</td>
<td>$\text{poly}(s)$</td>
<td>[Valiant-Skyum-Berkowitz-Rackoff]</td>
</tr>
<tr>
<td>Circuits</td>
<td>4</td>
<td>$2^o(N)$</td>
<td>[Agrawal-Vinay]</td>
</tr>
<tr>
<td>Circuits</td>
<td>$O(\sqrt{d \log d})$</td>
<td>$s^{O(\sqrt{d})}$</td>
<td>[Koiran]</td>
</tr>
<tr>
<td>Circuits</td>
<td>$O(d^{1/3})$</td>
<td>$s^{O(\sqrt{d})}$</td>
<td>[Gupta-Kamath-Kayal-Saptharishi]</td>
</tr>
<tr>
<td>Circuits</td>
<td>3*</td>
<td>$s^{O(\sqrt{d})}$</td>
<td>[Gupta-Kamath-Kayal-Saptharishi]</td>
</tr>
</tbody>
</table>
Other depth reductions in lower bounds

Multilinear formulas

\[f = \sum_{i=1}^{s} g_{i1} \cdot g_{i2} \cdots g_{i\ell}, \quad \left(\frac{1}{3}\right)^j \cdot n \leq \text{Var}(g_{ij}) \leq \left(\frac{2}{3}\right)^j \cdot n \]

[\text{Raz, Raz-Yehudayoff}]
Other depth reductions in lower bounds

<table>
<thead>
<tr>
<th>Multilinear formulas</th>
<th>[Raz, Raz-Yehudayoff]</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f = \sum_{i=1}^{s} g_{i1} \cdot g_{i2} \cdots g_{i\ell}$, $(1/3)^j \cdot n \leq \text{Var}(g_{ij}) \leq (2/3)^j \cdot n$</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Homogeneous formulas</th>
<th>[Hrubes-Yehudayoff]</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f = \sum_{i=1}^{s} g_{i1} \cdot g_{i2} \cdots g_{i\ell}$, $(1/3)^j \cdot d \leq \text{deg}(g_{ij}) \leq (2/3)^j \cdot d$</td>
<td></td>
</tr>
</tbody>
</table>
Depth reducing formulas

\[\phi \]
Depth reducing formulas

\[\frac{s}{3} \leq |\text{subtree}| \leq \frac{2s}{3} \]
Depth reducing formulas

\[\Phi_1 \]

\[\Phi_2 \]
Depth reducing formulas

\[\Phi_1(z) = A \cdot z + B \]

\[\Phi = A \cdot \Phi_2 + B \]
Depth reducing formulas

\[\Phi_1(z) = A \cdot z + B \]
\[\Phi = A \cdot \Phi_2 + B = (\Phi_1(1) - \Phi_1(0)) \cdot \Phi_2 + \Phi_1(0) \]
Depth reducing formulas

\[
\Phi_1(z) = A \cdot z + B \\
\Phi = A \cdot \Phi_2 + B = (\Phi_1(1) - \Phi_1(0)) \cdot \Phi_2 + \Phi_1(0)
\]
Depth reducing formulas

\[
\begin{align*}
\text{Size}(s) & \leq 4 \cdot \text{Size}(2s/3) + O(1) \\
\text{Depth}(s) & \leq \text{Depth}(2s/3) + O(1)
\end{align*}
\]
Depth reducing formulas

\[
\begin{align*}
\text{Size}(s) & \leq 4 \cdot \text{Size}(2s/3) + O(1) \implies \text{poly}(s) \\
\text{Depth}(s) & \leq \text{Depth}(2s/3) + O(1)
\end{align*}
\]
Depth reducing formulas

\[
\begin{align*}
\text{Size}(s) \leq & \quad 4 \cdot \text{Size}(2s/3) + O(1) \implies \text{poly}(s) \\
\text{Depth}(s) \leq & \quad \text{Depth}(2s/3) + O(1) \implies O(\log s)
\end{align*}
\]
Depth reducing formulas

\[
\begin{align*}
\text{Size}(s) & \leq 4 \cdot \text{Size}(2s/3) + O(1) \implies \text{poly}(s) \\
\text{Depth}(s) & \leq \text{Depth}(2s/3) + O(1) \implies O(\log s)
\end{align*}
\]
Adapting to circuits
Adapting to circuits

\[\frac{s}{3} \leq \text{size} \leq \frac{2s}{3} \]
Adapting to circuits

\[\frac{s}{3} \leq \text{size} \leq \frac{2s}{3} \]

Not true for circuits!
Adapting to circuits

\[\frac{d}{3} \leq \text{degree} \leq \frac{2d}{3} \] (start with a homogeneous circuit)
Adapting to circuits

\[\frac{d}{3} \leq \text{degree} \leq \frac{2d}{3} \] (start with a homogeneous circuit)

Multiple paths from root!
Adapting to circuits: Attempt 1
Adapting to circuits: Attempt 1

\[
\mathcal{F} = \left\{ v \in \Phi \mid \frac{d}{3} < \deg(v) \leq \frac{2d}{3} \right\}
\]
Adapting to circuits: Attempt 1

\[F = \left\{ v \in \Phi \mid \frac{d}{3} < \text{deg}(v) \leq \frac{2d}{3} \right\} \]

\[\Phi = \sum_{v_i \in F} A_i \Phi_{v_i} + \sum_{v_i, v_j \in F} A_i,j \Phi_{v_i} \Phi_{v_j} \]
Adapting to circuits: Attempt 1

\[\mathcal{F} = \left\{ \nu \in \Phi \mid \frac{d}{3} < \deg(\nu) \leq \frac{2d}{3} \right\} \]

\[\Phi = \sum_{\nu_i \in \mathcal{F}} A_i \Phi_{\nu_i} + \sum_{\nu_i, \nu_j \in \mathcal{F}} A_{i,j} \Phi_{\nu_i} \Phi_{\nu_j} \]

each have degree at most \(2d/3\)
Adapting to circuits: Attempt 1

\[\mathcal{F} = \left\{ v \in \Phi \mid \frac{d}{3} < \deg(v) \leq \frac{2d}{3} \right\} \]

\[\Phi = \sum_{v_i \in \mathcal{F}} A_i \Phi_{v_i} + \sum_{v_i, v_j \in \mathcal{F}} A_{i,j} \Phi_{v_i} \Phi_{v_j} \]

each have degree at most \(2d/3 \)

Interpolate!
Adapting to circuits: Attempt 1

\[\Phi \]

Degree \(> 2d/3 \)

Degree \(\leq d/3 \)

\[\mathcal{F} = \left\{ v \in \Phi \mid \frac{d}{3} < \text{deg}(v) \leq \frac{2d}{3} \right\} \]

\[\Phi = \sum_{v_i \in \mathcal{F}} A_i \Phi_{v_i} + \sum_{v_i, v_j \in \mathcal{F}} A_{i,j} \Phi_{v_i} \Phi_{v_j} \]

\[\text{Depth}(d) = \text{Depth}(2d/3) + O(1) \]
Adapting to circuits: Attempt 1

\begin{align*}
\mathcal{F} &= \left\{ v \in \Phi \mid \frac{d}{3} < \deg(v) \leq \frac{2d}{3} \right\} \\
\Phi &= \sum_{v_i \in \mathcal{F}} A_i \Phi_{v_i} + \sum_{v_i, v_j \in \mathcal{F}} A_{i,j} \Phi_{v_i} \Phi_{v_j} \\
\text{Depth}(d) &= O(\log d)
\end{align*}
Adapting to circuits: Attempt 1

\[\Phi \]

\[\text{Degree} > \frac{2d}{3} \]

\[\text{Degree} \leq \frac{d}{3} \]

\[\mathcal{F} = \left\{ v \in \Phi \mid \frac{d}{3} < \deg(v) \leq \frac{2d}{3} \right\} \]

\[\Phi = \sum_{v_i \in \mathcal{F}} A_i \Phi_{v_i} + \sum_{v_i, v_j \in \mathcal{F}} A_{i,j} \Phi_{v_i} \Phi_{v_j} \]

\[\text{Depth}(d) = O(\log d) \]

\[\text{Size}(s, d) = \]

\[? \]
Adapting to circuits: Attempt 1

\[\mathcal{F} = \left\{ v \in \Phi \mid \frac{d}{3} < \deg(v) \leq \frac{2d}{3} \right\} \]

\[\Phi = \sum_{v_i \in \mathcal{F}} A_i \Phi_{v_i} + \sum_{v_i, v_j \in \mathcal{F}} A_{i,j} \Phi_{v_i} \Phi_{v_j} \]

Depth\((d) = O(\log d)\)

Size\((s, d) = s^O(\log d)\)
Adapting to circuits: [Hyafil]

\[\Phi \]

Degree > \(\frac{2d}{3} \)

Degree ≤ \(\frac{d}{3} \)

\[\mathcal{F} = \left\{ v \in \Phi \mid \frac{d}{3} < \deg(v) \leq \frac{2d}{3} \right\} \]

\[\Phi = \sum_{v_i \in \mathcal{F}} A_i \Phi_v + \sum_{v_i, v_j \in \mathcal{F}} A_{i,j} \Phi_{v_i} \Phi_{v_j} \]

\[\text{Depth}(d) = O(\log d) \]

\[\text{Size}(s, d) = sO(\log d) \]
Adapting to circuits: Attempt 2

- Want an analogue of $\Phi = A \cdot \Phi_v + B$.
Adapting to circuits: Attempt 2

- Want an analogue of $\Phi = A \cdot \Phi_v + B$.
- Problem is that there are multiple paths to v.

```markdown
\[ V \text{SBR}: \text{Do not look at all paths. Only take a canonical path, like say taking the right-edge out of every } \rightarrow \text{-gate.} \]
\[ u: v = 0 \text{ if } u = v \text{ other wise if } u \text{ is a leaf} \]
\[ u_1: v + u_2: v \text{ if } u = u_1 + u_2 \]
\[ u_1: v \cdot u_2: v \text{ if } u_1 = u_1 \rightarrow u_2 \]
```
Adapting to circuits: Attempt 2

- Want an analogue of $\Phi = A \cdot \Phi_v + B$.
- Problem is that there are multiple paths to v. Φ isn’t really an affine function in Φ_v.

Adapting to circuits: Attempt 2

- Want an analogue of $\Phi = A \cdot \Phi_v + B$.
- Problem is that there are multiple paths to v.
 Φ isn’t really an affine function in Φ_v.

[VSBR]: Do not look at all paths. Only take a canonical path, like say taking the right-edge out of every \times-gate.
Adapting to circuits: Attempt 2

- Want an analogue of $\Phi = A \cdot \Phi_v + B$.
- Problem is that there are multiple paths to v.
 Φ isn’t really an affine function in Φ_v.

[VSBR]: Do not look at all paths. Only take a canonical path, like say taking the right-edge out of every \times-gate. More like “suffixes”
Adapting to circuits: Attempt 2

- Want an analogue of $\Phi = A \cdot \Phi_v + B$.
- Problem is that there are multiple paths to v.
 Φ isn’t really an affine function in Φ_v.

[VSBR]: Do not look at all paths. Only take a canonical path, like say taking the right-edge out of every \times-gate. More like “suffixes”

$$[u : v] = \begin{cases}
1 & \text{if } u = v \\
0 & \text{o/w if } u \text{ is a leaf} \\
[u_1 : v] + [u_2 : v] & \text{if } u = u_1 + u_2 \\
[u_1] \cdot [u_2 : v] & \text{if } u = u_1 \times u_2
\end{cases}$$
An example

\[
\begin{bmatrix}
 v_1 \\
 v_2 \\
 v_3 \\
 v_4 \\
 v_5 \\
 v_6 \\
 v_7 \\
 v_8 \\
\end{bmatrix} = \\
\begin{bmatrix}
 v_1 \\
 v_2 \\
 v_3 \\
 v_4 \\
 v_5 \\
 v_6 \\
 v_7 \\
 v_8 \\
\end{bmatrix}
\]
An example

\[[v_1 : v_8] = [v_2 : v_8] + [v_3 : v_8] \]

\[
= [v_5 : v_8] \cdot [v_6 : v_8] + [v_9 : v_8] + [v_{10} : v_8] + [x_3 : x_4 : x_5 : v_8]
\]

\[= 0 \]
An example

\[
\begin{align*}
[v_1 : v_8] &= [v_2 : v_8] + [v_3 : v_8]
\end{align*}
\]
An example

\[
[v_1 : v_8] = [v_2 : v_8] + [v_3 : v_8] \\
= [v_4] \cdot [v_5 : v_8]
\]
An example

\[
\begin{align*}
[v_1 : v_8] &= [v_2 : v_8] + [v_3 : v_8] \\
&= [v_4] \cdot [v_5 : v_8] \\
&= (x_1 x_2 + x_2 x_3) \cdot [v_5 : v_8]
\end{align*}
\]
An example

\[
\begin{align*}
[v_1 : v_8] &= [v_2 : v_8] + [v_3 : v_8] \\
&= [v_4] \cdot [v_5 : v_8] \\
&= (x_1 x_2 + x_2 x_3) \cdot [v_5 : v_8] \\
&= (x_1 x_2 + x_2 x_3) \cdot ([v_8 : v_8] + [v_9 : v_8])
\end{align*}
\]
An example

\[
\begin{align*}
[v_1 : v_8] &= [v_2 : v_8] + [v_3 : v_8] \\
&= [v_4] \cdot [v_5 : v_8] \\
&= (x_1x_2 + x_2x_3) \cdot [v_5 : v_8] \\
&= (x_1x_2 + x_2x_3) \cdot ([v_8 : v_8] + [v_9 : v_8])
\end{align*}
\]
An example

\[
\begin{align*}
[v_1 : v_8] &= [v_2 : v_8] + [v_3 : v_8] \\
&= [v_4] \cdot [v_5 : v_8] \\
&= (x_1x_2 + x_2x_3) \cdot [v_5 : v_8] \\
&= (x_1x_2 + x_2x_3) \cdot ([v_8 : v_8] + [v_9 : v_8]) \\
&= (x_1x_2 + x_2x_3)
\end{align*}
\]
We want a set of nodes \mathcal{F} such that

$$[u] = \sum_{v \in \mathcal{F}} [u : v] \cdot [v]$$

What are candidates for \mathcal{F}?
We want a set of nodes \mathcal{F} such that

$$[u] = \sum_{v \in \mathcal{F}} [u : v] \cdot [v]$$

What are candidates for \mathcal{F}?
We want a set of nodes \mathcal{F} such that

$$[u] = \sum_{v \in \mathcal{F}} [u : v] \cdot [v]$$

What are candidates for \mathcal{F}? Every “right-path” must pass through exactly one $v \in \mathcal{F}$.
We want a set of nodes F such that

$$[u] = \sum_{v \in F} [u : v] \cdot [v]$$

What are candidates for F? Every “right-path” must pass through exactly one $v \in F$

$$F_a = \{ v \mid \deg(v) \geq a, \deg(v_L), \deg(v_R) < a \}$$
We want a set of nodes \mathcal{F} such that

$$[u] = \sum_{v \in \mathcal{F}} [u : v] \cdot [v]$$

What are candidates for \mathcal{F}? Every “right-path” must pass through exactly one $v \in \mathcal{F}$

$$\mathcal{F}_a = \{ v \mid \deg(v) \geq a, \deg(v_L), \deg(v_R) < a \}$$
We want a set of nodes \mathcal{F} such that

$$[u] = \sum_{v \in \mathcal{F}} [u : v] \cdot [v]$$

What are candidates for \mathcal{F}? Every “right-path” must pass through exactly one $v \in \mathcal{F}$

$$\mathcal{F}_a = \{ v \mid \deg(v) \geq a, \deg(v_L), \deg(v_R) < a \}$$

Make the circuit *right heavy*.
We want a set of nodes \mathcal{F} such that

$$[u] = \sum_{v \in \mathcal{F}} [u : v] \cdot [v]$$

What are candidates for \mathcal{F}? Every “right-path” must pass through exactly one $v \in \mathcal{F}$

$$\mathcal{F}_a = \{ v \mid \deg(v) \geq a, \deg(v_L), \deg(v_R) < a \}$$

Make the circuit right heavy.
We want a set of nodes \mathcal{F} such that

$$[u] = \sum_{v \in \mathcal{F}} [u : v] \cdot [v]$$

What are candidates for \mathcal{F}? Every “right-path” must pass through exactly one $v \in \mathcal{F}$

$$\mathcal{F}_a = \{ v \mid \deg(v) \geq a, \deg(v_L), \deg(v_R) < a \}$$

Lemma

$$[u] = \sum_{v \in \mathcal{F}_a} [u : v] \cdot [v]$$

$$[u : w] = \sum_{v \in \mathcal{F}_a} [u : v] \cdot [v : w]$$
\[F_a = \{ v \mid \deg(v) \geq a, \ \deg(v_L), \deg(v_R) < a \} \]

\[[u] = \sum_{v \in F_a[u]} [u : v] \cdot [v] \]
\[\mathcal{F}_a = \{ v \mid \deg(v) \geq a, \deg(v_L), \deg(v_R) < a \} \]

\[[u] = \sum_{v \in \mathcal{F}_a[u]} [u : v] \cdot [v_L] \cdot [v_R] \]
\[\mathcal{F}_a = \{ v \mid \deg(v) \geq a, \deg(v_L), \deg(v_R) < a \} \]

\[[u] = \sum_{v \in \mathcal{F}_{a[u]}} [u : v] \cdot [v_L] \cdot [v_R] \quad a_{[u]} = \frac{\deg(u)}{2} \]
继续...

\[\mathcal{F}_a = \{ v \mid \deg(v) \geq a, \deg(v_L), \deg(v_R) < a \} \]

\[[u] = \sum_{v \in \mathcal{F}_a[u]} [u : v] \cdot [v_L] \cdot [v_R] \quad a_{[u]} = \deg(u)/2 \]
\[\mathcal{F}_a = \{ v \mid \deg(v) \geq a, \deg(v_L), \deg(v_R) < a \} \]

\[[u] = \sum_{v \in \mathcal{F}_{a[u]} } [u : v] \cdot [v_L] \cdot [v_R] \quad a_{[u]} = \deg(u)/2 \]
$$\mathcal{F}_a = \{ v \mid \deg(v) \geq a, \deg(v_L), \deg(v_R) < a \}$$

$$[u] = \sum_{v \in \mathcal{F}_a[u]} [u : v] \cdot [v_L] \cdot [v_R] \quad a[u] = \deg(u)/2$$
\[\mathcal{F}_a = \{ v \mid \deg(v) \geq a, \deg(v_L), \deg(v_R) < a \} \]

\[[u] = \sum_{v \in \mathcal{F}_{a[u]}} [u : v] \cdot [v_L] \cdot [v_R] \quad a[u] = \frac{\deg(u)}{2} \]

\[[u : w] = \sum_{v \in \mathcal{F}_{a[u:w]}} [u : v] \cdot [v : w] \]
\[
\mathcal{F}_a = \{ v \mid \text{deg}(v) \geq a, \text{deg}(v_L), \text{deg}(v_R) < a \}
\]

\[
[u] = \sum_{v \in \mathcal{F}_a[u]} [u : v] \cdot [v_L] \cdot [v_R]
\]

\[
a[u] = \text{deg}(u)/2
\]

\[
\frac{d_u - d_w}{2} + d_w
\]

\[
[u : w] = \sum_{v \in \mathcal{F}_a[u:w]} [u : v] \cdot [v_L] \cdot [v_R : w]
\]
\[\mathcal{F}_a = \{ v \mid \deg(v) \geq a, \deg(v_L), \deg(v_R) < a \} \]

\[
[u] = \sum_{v \in \mathcal{F}_a[u]} [u : v] \cdot [v_L] \cdot [v_R] \\
a_{[u]} = \deg(u)/2
\]

\[
[u : w] = \sum_{v \in \mathcal{F}_a[u:w]} [u : v] \cdot [v_L] \cdot [v_R : w] \\
a_{[u:w]} = \frac{\deg(u) + \deg(w)}{2}
\]
\[\mathcal{F}_a = \{ v \mid \deg(v) \geq a, \deg(v_L), \deg(v_R) < a \} \]

\[[u] = \sum_{v \in \mathcal{F}_a[u]} [u : v] \cdot [v_L] \cdot [v_R] \quad a[u] = \deg(u)/2 \]

\[[u : w] = \sum_{v \in \mathcal{F}_a[u : w]} [u : v] \cdot [v_L] \cdot [v_R : w] \quad a[u : w] = \frac{\deg(u) + \deg(w)}{2} \]

\[d_u - d_v \leq d_w - \frac{d_u + d_w}{2} = \frac{d_u}{2} - \frac{d_w}{2} \]
\[F_a = \{ v \mid \deg(v) \geq a, \deg(v_L), \deg(v_R) < a \} \]

\[
[u] = \sum_{v \in F_a[u]} [u : v] \cdot [v_L] \cdot [v_R] \quad a[u] = \frac{\deg(u)}{2}
\]

\[
[u : w] = \sum_{v \in F_a[u : w]} [u : v] \cdot [v_L] \cdot [v_R : w] \quad a[u : w] = \frac{\deg(u) + \deg(w)}{2}
\]

\[
\frac{\frac{\Delta u + \Delta w}{2} - \Delta w}{2} = \frac{\Delta u - \Delta w}{2}
\]
\[\mathcal{F}_a = \{ v \mid \deg(v) \geq a, \deg(v_L), \deg(v_R) < a \} \]

\[[u] = \sum_{v \in \mathcal{F}_a[u]} [u : v] \cdot [v_L] \cdot [v_R] \quad a[u] = \deg(u)/2 \]

\[[u : w] = \sum_{v \in \mathcal{F}_a[u:w]} [u : v] \cdot [v_L] \cdot [v_R : w] \quad a[u:w] = \frac{\deg(u) + \deg(w)}{2} \]

\[= \sum_{v \in \mathcal{F}_a[u:w]} [u : v] \cdot \left(\sum_{q \in \mathcal{F}_a[v]} [v_L : q] \cdot [q_L] \cdot [q_R] \right) \cdot [v_R : w] \]
\[\mathcal{F}_a = \{ v \mid \deg(v) \geq a, \deg(v_L), \deg(v_R) < a \} \]

\[
[u] = \sum_{v \in \mathcal{F}_a[u]} [u : v] \cdot [v_L] \cdot [v_R] \quad a_{[u]} = \frac{\deg(u)}{2}
\]

\[
[u : w] = \sum_{v \in \mathcal{F}_a[u:w]} [u : v] \cdot [v_L] \cdot [v_R : w] \quad a_{[u:w]} = \frac{\deg(u) + \deg(w)}{2}
\]

\[
= \sum_{v \in \mathcal{F}_a[u:w]} [u : v] \cdot \left(\sum_{q \in \mathcal{F}_a[v]} [v_L : q] \cdot [q_L] \cdot [q_R] \right) \cdot [v_R : w]
\]
\[\mathcal{F}_a = \{ \nu \mid \deg(\nu) \geq a, \deg(\nu_L), \deg(\nu_R) < a \} \]

\[[u] = \sum_{\nu \in \mathcal{F}_a[u]} [u : \nu] \cdot [\nu_L] \cdot [\nu_R] \quad a[u] = \deg(u)/2 \]

\[[u : w] = \sum_{\nu \in \mathcal{F}_a[u:w]} [u : \nu] \cdot [\nu_L] \cdot [\nu_R : w] \quad a[u:w] = \frac{\deg(u) + \deg(w)}{2} \]

\[= \sum_{\nu \in \mathcal{F}_a[u:w]} [u : \nu] \cdot \left(\sum_{q \in \mathcal{F}_a[v]} [\nu_L : q] \cdot [q_L] \cdot [q_R] \right) \cdot [\nu_R : w] \]
Summarizing

\[
[u] = \sum_{v \in F_a} [u : v] \cdot [v_L] \cdot [v_R]
\]

\[
[u : w] = \sum_{v \in F_a} \sum_{q \in F_a} [u : v] \cdot [v : q] \cdot [q_L] \cdot [q_R] \cdot [v_R : w]
\]

Theorem ([Valiant-Skyum-Berkowitz-Rackoff])

If \(\Phi \) is a size \(s \) circuit computing an \(n \)-variate degree \(d \) polynomial \(f \), then there is a circuit \(\Phi' \) computing \(f \) with the following properties.

- Every gate of \(\Phi' \) computes either \([u], [u : v], \) or one of the above products, (so size \(O(s^4) \))
- All addition gates have fan-in at most \(s^2 \),
- All multiplication gates have fan-in at most 5, and
- If \(v_1 \) is a child of a \(\times \)-gate \(v \) in \(\Phi' \), then \(\deg(v_1) \leq \deg(v)/2 \).
Theorem ([Valiant-Skyum-Berkowitz-Rackoff])

If Φ is a size s circuit computing an n-variate degree d polynomial f, then there is a circuit Φ' computing f with the following properties.

- Every gate of Φ' computes either $[u]$, $[u : v]$, or one of the above products, (so size $O(s^4)$)
- All addition gates have fan-in at most s^2,
- All multiplication gates have fan-in at most 5, and
- If v_1 is a child of a \times-gate v in Φ', then $\deg(v_1) \leq \deg(v)/2$.

Hence, the depth of Φ' is $O(\log d)$.

\[
[u] = \sum_{v \in \mathcal{F}_a} [u : v] \cdot [v_L] \cdot [v_R]
\]
\[
[u : w] = \sum_{v \in \mathcal{F}_a} \sum_{q \in \mathcal{F}_a} [u : v] \cdot [v : q] \cdot [q_L] \cdot [q_R] \cdot [v_R : w]
\]
First consequences of [VSBR]
First consequences of [VSBR]

- A sized-s circuit can be simulated by a formula of size $s^{O(\log d)}$.

```
s
```

```
\rightarrow \binom{\text{poly}(s)}{d}

\rightarrow \text{formula: } \binom{\text{poly}(s)}{\log d}
```
First consequences of [VSBR]

- A sized-s circuit can be simulated by a formula of size $s^{O(\log d)}$.
- Easy way to construct universal circuits.
Reducing to depth four

Can we reduce the depth further?
Reducing to depth four

Can we reduce the depth further?

Theorem (Koiran)

If \(f \) is computed by a circuit of size \(s \), then it is computed by a \(\sum \prod \sum \prod \) of size \(s^{O(\sqrt{d \log d})} \).
Reducing to depth four

Can we reduce the depth further?

Theorem (Koiran)

If f is computed by a circuit of size s, then it is computed by a $\Sigma\Pi\Sigma\Pi$ of size $s^{O(\sqrt{d}\log d)}$.

Lemma

If f is computed by an ABP of size s, then it is computed by a $\Sigma\Pi\Sigma\Pi$ of size $s^{O(\sqrt{d})}$.
Reducing to depth four: starting from circuits
Reducing to depth four: starting from circuits

\[\phi \]

Degree > \(\sqrt{d} \)

Degree \(\leq \sqrt{d} \)
Reducing to depth four: starting from circuits

Top

Degree $> \sqrt{d}$

Degree $\leq \sqrt{d}$
Reducing to depth four: starting from circuits

Degree > \sqrt{d}

Degree $\leq \sqrt{d}$

Size $\left(\frac{n+\sqrt{d}}{\sqrt{d}} \right)$ each
Reducing to depth four: starting from circuits

Degree $> \sqrt{d}$

Degree $\leq \sqrt{d}$

Size $(\frac{n + \sqrt{d}}{\sqrt{d}})$ each

Lemma ([T.])

If the circuit has [VSBR] properties, then $\deg(\text{Top}(z_1, \ldots, z_s)) \leq 15\sqrt{d}$
Reducing to depth four: starting from circuits

If the circuit has [VSBR] properties, then $\deg(\text{Top}(z_1, \ldots, z_s)) \leq 15\sqrt{d}$
Reducing to depth four: starting from circuits

Theorem

Equivalent depth-4 circuit of size

\[s \left(\frac{n + \sqrt{d}}{n} \right) + \left(\frac{s + 15\sqrt{d}}{s} \right) = s^{O(\sqrt{d})} \]
Reducing to depth four: starting from circuits

Theorem

Equivalent depth-4 circuit of size

$$s \left(\binom{n + \sqrt{d}}{n} \right) + \left(\frac{s + 15\sqrt{d}}{s} \right) = s^{O(\sqrt{d})}$$
Reducing to depth four: starting from circuits

Theorem

Equivalent **homogeneous depth-4 circuit with bottom fan-in at most** \sqrt{d}

of size

$$s \left(\binom{n + \sqrt{d}}{n} \right) + \binom{s + 15\sqrt{d}}{s} = s^{O(\sqrt{d})}$$
Reducing to depth four: starting from circuits

Theorem

Equivalent homogeneous $\Sigma \Pi \Sigma \Pi^{[\sqrt{d}]}$ circuit of size

$$s\binom{n + \sqrt{d}}{n} + \binom{s + 15\sqrt{d}}{s} = sO(\sqrt{d})$$
Let’s start with \[\text{[VSBR]} \]

\[
f = \sum_{i=1}^{s} f_{i1} \cdot f_{i2} \cdot f_{i3} \cdot f_{i4} \cdot f_{i5}
\]
Let’s start with [VSBR]

\[f = \sum_{i=1}^{s} f_{i1} \cdot f_{i2} \cdot f_{i3} \cdot f_{i4} \cdot f_{i5} \]

This is a \(\Sigma \Pi \Sigma \Pi^{[d/2]} \) circuit. We want to obtain a \(\Sigma \Pi \Sigma \Pi^{[t]} \) circuit.
Let’s start with [VSBR]

\[f = \sum_{i=1}^{s} f_{i1} \cdot f_{i2} \cdot f_{i3} \cdot f_{i4} \cdot f_{i5} \]

This is a \(\Sigma \Pi \Sigma \Pi^{[d/2]} \) circuit. We want to obtain a \(\Sigma \Pi \Sigma \Pi^{[t]} \) circuit. Each \(f_{ij} \) is also some \([u : v]\). Keep expanding terms of degree more than \(t \).
Let’s start with [VSBR]

\[
f = \sum_{i=1}^{s} f_{i1} \cdot f_{i2} \cdot f_{i3} \cdot f_{i4} \cdot f_{i5}
\]

This is a $\Sigma \Pi \Sigma \Pi^{[d/2]}$ circuit. We want to obtain a $\Sigma \Pi \Sigma \Pi^{[t]}$ circuit. Each f_{ij} is also some $[u : v]$. Keep expanding terms of degree more than t.
Let’s start with [VSBR]

\[f = \sum_{i=1}^{s} \left(\sum_{j=1}^{s} g_{j1} \cdots g_{j5} \right) \cdot f_{i2} \cdot f_{i3} \cdot f_{i4} \cdot f_{i5} \]

This is a $\Sigma \Pi \Sigma \Pi^{[d/2]}$ circuit. We want to obtain a $\Sigma \Pi \Sigma \Pi^{[t]}$ circuit. Each f_{ij} is also some $[u : v]$. Keep expanding terms of degree more than t.
Let's start with [VSBR]

\[f = \sum_{i=1}^{s^2} f_{i1} \cdots f_{i9} \]

This is a $\Sigma\Pi\Sigma\Pi^{[d/2]}$ circuit. We want to obtain a $\Sigma\Pi\Sigma\Pi^{[t]}$ circuit. Each f_{ij} is also some $[u : v]$. Keep expanding terms of degree more than t.
Let’s start with [VSBR]

\[f = \sum_{i=1}^{s^3} f_{i1} \cdots f_{i13} \]

This is a \(\Sigma \Pi \Sigma \Pi^{[d/2]} \) circuit. We want to obtain a \(\Sigma \Pi \Sigma \Pi^{[t]} \) circuit. Each \(f_{ij} \) is also some \([u : v]\). Keep expanding terms of degree more than \(t \).
Let’s start with [VSBR]

\[f = \sum_{i=1}^{s^4} f_{i1} \cdots f_{i17} \]

This is a $\Sigma \Pi \Sigma \Pi^{[d/2]}$ circuit. We want to obtain a $\Sigma \Pi \Sigma \Pi^{[t]}$ circuit. Each f_{ij} is also some $[u : v]$. Keep expanding terms of degree more than t.
[SV]'s proof

Let's start with [VSBR]

\[f = \sum_{i=1}^{s^4} f_{i1} \cdots f_{i17} \]

This is a $\Sigma \Pi \Sigma \Pi^{[d/2]}$ circuit. We want to obtain a $\Sigma \Pi \Sigma \Pi^{[t]}$ circuit. Each f_{ij} is also some $[u : v]$. Keep expanding terms of degree more than t.

How many iterations until all degrees are at most t?
Number of iterations

\[g = \sum_{j=1}^{s} g_{j1} \cdot g_{j2} \cdot g_{j3} \cdot g_{j4} \cdot g_{j5} \]
Number of iterations

\[g = \sum_{j=1}^{s} g_{j1} \cdot g_{j2} \cdot g_{j3} \cdot g_{j4} \cdot g_{j5} \]

Observation

In each summand, at least two terms have degree at least \(t/8 \).
Number of iterations

\[g = \sum_{j=1}^{s} g_{j1} \cdot g_{j2} \cdot g_{j3} \cdot g_{j4} \cdot g_{j5} \geq t/5 \]

Observation

In each summand, at least two terms have degree at least \(t/8 \).
Number of iterations

\[g = \sum_{j=1}^{s} g_j \cdot g_{j1} \cdot g_{j2} \cdot g_{j3} \cdot g_{j4} \cdot g_{j5} \]

Observation

In each summand, at least two terms have degree at least \(t/8 \).
Number of iterations

\[g = \sum_{j=1}^{s} g_{j1} \cdot g_{j2} \cdot g_{j3} \cdot g_{j4} \cdot g_{j5} \]

\[\geq \frac{t}{5} \cdot \frac{t}{8} \]

Observation

In each summand, at least two terms have degree at least \(t/8 \).

How many factors of degree at least \(t/8 \)?

\[f = \sum_{i=1}^{s} f_{i1} \cdot f_{i2} \cdot f_{i3} \cdot f_{i4} \cdot f_{i5} \]
Number of iterations

\[g = \sum_{j=1}^{s} \left(g_{j1} \cdot g_{j2} \cdot g_{j3} \cdot g_{j4} \cdot g_{j5} \right) \geq \frac{t}{5} \cdot \frac{t}{8} \cdot \frac{t}{2} \cdot \frac{t}{4} \cdot \frac{t}{8} \]

Observation

In each summand, at least two terms have degree at least \(t/8 \).

How many factors of degree at least \(t/8 \)?

\[f = \sum_{i=1}^{s} f_{i1} \cdot f_{i2} \cdot f_{i3} \cdot f_{i4} \cdot f_{i5} \]
Number of iterations

\[g = \sum_{j=1}^{s} g_{j1} \cdot g_{j2} \cdot g_{j3} \cdot g_{j4} \cdot g_{j5} \geq \frac{t}{5} \cdot \frac{t}{8} \cdot \frac{t}{2} \cdot \frac{t}{3} \cdot \frac{t}{4} \]

Observation

In each summand, at least two terms have degree at least \(\frac{t}{8} \).

How many factors of degree at least \(\frac{t}{8} \)?

\[f = \sum_{i=1}^{s} \left(\sum_{j=1}^{s} g_{j1}g_{j2}g_{j3}g_{j4}g_{j5} \right) \cdot f_{i2} \cdot f_{i3} \cdot f_{i4} \cdot f_{i5} \]
Number of iterations

\[g = \sum_{j=1}^{s} g_{j1} \cdot g_{j2} \cdot g_{j3} \cdot g_{j4} \cdot g_{j5} \]

\[\geq t/5 \cdot \geq t/8 \]

Observation

In each summand, at least two terms have degree at least \(t/8 \).

How many factors of degree at least \(t/8 \)?

\[f = \sum_{i=1}^{s} \left(\sum_{j=1}^{s} g_{j1} g_{j2} g_{j3} g_{j4} g_{j5} \right) \cdot f_{i2} \cdot f_{i3} \cdot f_{i4} \cdot f_{i5} \]
Number of iterations

\[g = \sum_{j=1}^{s} g_{j1} \cdot g_{j2} \cdot g_{j3} \cdot g_{j4} \cdot g_{j5} \geq \frac{t}{5} \cdot \frac{t}{8} \]

Observation

In each summand, at least two terms have degree at least \(\frac{t}{8} \).

How many factors of degree at least \(\frac{t}{8} \)?

\[f = \sum_{i=1}^{s^2} f_{i1} \cdot f_{i12} \cdot f_{i3} \cdot f_{i4} \cdots f_{i9} \]
Number of iterations

$$g = \sum_{j=1}^{s} g_{j1} \cdot g_{j2} \cdot g_{j3} \cdot g_{j4} \cdot g_{j5} \geq \frac{t}{5} \cdot \frac{t}{8}$$

Observation

In each summand, at least two terms have degree at least $\frac{t}{8}$.

How many factors of degree at least $\frac{t}{8}$? At most $8d/t$.

$$f = \sum_{i=1}^{s^2} f_{i1} \cdot f_{i12} \cdot f_{i3} \cdot f_{i4} \cdots f_{i9}$$
Number of iterations

\[g = \sum_{j=1}^{s} g_{j1} \cdot \underbrace{g_{j2} \cdot g_{j3} \cdot g_{j4} \cdot g_{j5}}_{\geq t/5 \; \geq t/8} \]

Observation

In each summand, at least two terms have degree at least \(t/8 \).

How many factors of degree at least \(t/8 \)? At most \(8d/t \).

\[f = \sum_{i=1}^{s^2} f_{i1} \cdot f_{i12} \cdot f_{i3} \cdot f_{i4} \cdots f_{i9} \]

Final \(\Sigma \Pi \Sigma \Pi \left[t \right] \) circuit has top fan-in at most \(s^{O(d/t)} \).
A better starting point?

Recall

If f has a sized-s circuit, then it has a $\Sigma \Pi \Sigma \Pi^{[\sqrt{d}]}$ of size $s^{O(\sqrt{d})}$.

$$f = \sum_{i=1}^{s} f_{i1} \cdot f_{i2} \cdot f_{i3} \cdot f_{i4} \cdot f_{i5}$$

If we start with a homogeneous formula, can we do better?
A better starting point?

Recall

If f has a sized-s circuit, then it has a $\Sigma \Pi \Sigma \Pi^{[\sqrt{d}]}$ of size $s^{O(\sqrt{d})}$.

$$f = \sum_{i=1}^{s} f_{i1} \cdot f_{i2} \cdot f_{i3} \cdot f_{i4} \cdot f_{i5}$$

If we start with a homogeneous formula, can we do better? [Hrubes-Yehudayoff]: Yes!
A better starting point?

Recall

If \(f \) has a sized-\(s \) circuit, then it has a \(\Sigma \Pi \Sigma \Pi^{[\sqrt{d}]} \) of size \(s^{O(\sqrt{d})} \).

\[
f = \sum_{i=1}^{s} f_{i1} \cdot f_{i2} \cdot f_{i3} \cdot f_{i4} \cdot f_{i5}
\]

If we start with a homogeneous formula, can we do better?

[Hrubes-Yehudayoff]: Yes!

Lemma ([Hrubes-Yehudayoff])

\[
f = \sum_{i=1}^{s} f_{i1} \cdot f_{i2} \cdots f_{i\ell} \quad \text{with} \quad \left(\frac{1}{3} \right)^{j} \cdot d < \deg(f_{ij}) \leq \left(\frac{2}{3} \right)^{j} \cdot d
\]
Lemma ([Hrubes-Yehudayoff])

\[f = \sum_{i=1}^{s} f_{i1} \cdot f_{i2} \cdots f_{i\ell} \quad \text{with} \quad \left(\frac{1}{3} \right)^j \cdot d < \text{deg}(f_{ij}) \leq \left(\frac{2}{3} \right)^j \cdot d \]
A better starting point?

Recall
If f has a sized-s circuit, then it has a $\Sigma \Pi \Sigma \Pi^{[\sqrt{d}]}$ of size $s^{O(\sqrt{d})}$.

Theorem (Saptharishi?)
If f has a homogeneous sized-s formula, then it has a homogeneous $\Sigma \Pi^{[\Omega(d \log t/t)]} \Sigma \Pi^{[\sqrt{d}]}$.

Structural results
October 15th, 2021
24 / 35
A better starting point?

Recall

If f has a sized-s circuit, then it has a $\sum \prod \Sigma \Pi [\sqrt{d}]$ of size $s^{O(\sqrt{d})}$.

Theorem (Saptharishi?)

If f has a homogeneous sized-s formula, then it has a homogeneous $\sum \prod [\Omega(d \log t/t)] \sum \prod [\sqrt{t}]$.

Theorem (KOS)

If f has a syntactically multilinear sized-s circuit, then it has a $\sum \prod \Sigma \Sigma \Pi$ of size $2^{O(\sqrt{N \log s})}$.
Generalization to homogeneous depth-2Δ

Theorem

If \(f \) has a sized-\(\text{poly}(N) \) syntactically multilinear circuit, then it has a \((\mathcal{\exists} \mathcal{\exists} \mathcal{\exists}) \) of size \(s \Omega(d^{1/3}) \).

Structural results

October 15th, 2021
Generalization to homogeneous depth-2Δ

Theorem

If \(f \) has a sized-\(s \) circuit, then it has a depth-2\(\Delta \) \(\sum \prod [O(d^{1/\Delta})] \sum \prod [O(d^{1/\Delta})] \cdots \sum \prod [O(d^{1/\Delta})] \) of size \(s^{O(\Delta \cdot d^{1/\Delta})} \).
Generalization to homogeneous depth-2Δ

Theorem

If f has a sized-s circuit, then it has a depth-$2Δ$ $\sum \prod [O(d^{1/Δ})] \sum \prod [O(d^{1/Δ})] \ldots \sum \prod [O(d^{1/Δ})]$ of size $s^{O(Δ \cdot d^{1/Δ})}$.

Theorem

If f has a sized-$\text{poly}(N)$ syntactically multilinear circuit, then it has a $(\sum \prod)^Δ$ of size $s^{O(Δ \cdot (n/\log s)^{1/Δ})}$.
Reduction to Depth-3 Circuits

(or, “can we do better if we allow the final circuit to be highly inhomogeneous?”)
Road map [GKKS]

\[\sum \prod \prod \prod \]

circuits

\[\sum \wedge \sum \wedge \sum \wedge \sum \]

circuits

\[\sum \prod \prod \prod \]

circuits

App. of Ryser's formula [Saxena]'s duality trick

Only over \(Q \), \(R \) etc.

Heavily non-homogeneous

Structural results

October 15th, 2021
Road map [GKKS]

\[
\sum \prod \sum \prod \\
\text{circuits}
\]

App. of Ryser’s formula

\[
\sum \land \sum \land \sum \\
\text{circuits}
\]

\[
\sum \prod \sum \\
\text{circuits}
\]
Road map [GKKS]

\[\sum \prod \sum \prod \prod \]
circuits

App. of Ryser’s formula

\[\sum \land \sum \land \sum \land \sum \]
circuits

[Saxena]’s duality trick

\[\sum \prod \sum \prod \prod \prod \]
circuits
Road map [GKKS]

\[\sum \prod \sum \prod \text{circuits} \]

Only over \(\mathbb{Q}, \mathbb{R} \) etc.

App. of Ryser’s formula

\[\sum \land \sum \land \sum \text{circuits} \]

Heavily non-homogeneous

[Saxena]'s duality trick

\[\sum \prod \sum \text{circuits} \]
Step 1: Π^d to $\Sigma^{2^d} \wedge^d \Sigma^d$
Step 1: $\prod^{[d]} \to \Sigma^{[2^d]} \land^{[d]} \Sigma^{[d]}$

Recall Ryser's formula:

$$\text{Perm}_d \begin{bmatrix} x_{11} & \cdots & x_{1d} \\ \vdots & \ddots & \vdots \\ x_{d1} & \cdots & x_{dd} \end{bmatrix} = \sum_{S \subseteq [d]} (-1)^{d-|S|} \prod_{i=1}^{d} \sum_{j \in S} x_{ij}$$
Step 1: $\Pi^{[d]}$ to $\sum^{[2^d]} \land [d] \sum^{[d]}$

Recall Ryser’s formula:

\[
\begin{bmatrix}
 x_1 & \ldots & x_d \\
 \vdots & \ddots & \vdots \\
 x_1 & \ldots & x_d \\
\end{bmatrix}
= \sum_{S \subseteq [d]} (-1)^{d-|S|} \prod_{i=1}^{d} \sum_{j \in S} x_j
\]
Step 1: $\prod^{[d]} \to \Sigma^{[2^d]} \wedge^{[d]} \Sigma^{[d]}$

Recall Ryser's formula:

$$
\text{Perm}_d \begin{bmatrix}
 x_1 & \cdots & x_d \\
 \vdots & \ddots & \vdots \\
 x_1 & \cdots & x_d
\end{bmatrix} = \sum_{S \subseteq [d]} (-1)^{d - |S|} \left(\sum_{j \in S} x_j \right)^d
$$
Step 1: $\Pi^{[d]}$ to $\Sigma^{[2^d]} \wedge [d] \Sigma^{[d]}$

Recall Ryser’s formula:

$$d! \cdot x_1 \ldots x_d = \sum_{S \subseteq [d]} (-1)^{d-|S|} \left(\sum_{j \in S} x_j \right)^d$$
Step 1: $\Pi^{[d]}$ to $\Sigma^{[2^d]} \land [d] \Sigma^{[d]}$

[Fischer]:

$$d! \cdot x_1 \ldots x_d = \sum_{S \subseteq [d]} (-1)^{d - |S|} \left(\sum_{j \in S} x_j \right)^d$$
Step 1: $\Pi^d\text{ to } \Sigma^{2^d}\land [d] \Sigma^d$

[Fischer]:

$$d! \cdot x_1 \ldots x_d = \sum_{S \subseteq [d]} (-1)^{d-|S|} \left(\sum_{j \in S} x_j \right)^d$$

Structural results
October 15th, 2021
Step 1: $\Pi^{[d]} \rightarrow \Sigma^{[2^d]} \land^{[d]} \Sigma^{[d]}$
Step 1: Π^d to $\Sigma^{2^d} \land [d] \Sigma^d$

\[
\Pi \rightarrow \Sigma \land \Sigma
\]

\[
\sum \prod \sum \prod \text{ of size } s \quad \rightarrow \quad \sum \land \sum \land \sum \text{ of size } 2^{O(\sqrt{d})} \cdot s
\]
Road map

\[\sum \prod \sum \prod \]

\[\text{circuits} \]

\[\sum \bigwedge \sum \bigwedge \sum \bigwedge \sum \]

\[\text{circuits} \]

\[\sum \prod \sum \]

\[\text{circuits} \]
Road map

\[
\sum \prod \sum \prod \sqrt{d} \text{circuits}
\]

\[
\sum \land \sum \land \sum \sqrt{d} \text{circuits}
\]

\[
\sum \prod \sum \text{circuits}
\]
Step 2: $\wedge \sum^{[a]} \wedge \sum^{[b]} \rightarrow \sum^{[\text{poly}(s,a,b)]} \Pi^{[sbd]} \sum^{[2]}$
Step 2: $\land^a\Sigma^s\land^b$ to $\Sigma^{\text{poly}(s,a,b)}\prod^{sbd}\Sigma^2$

$$T = (x_1^b + \cdots + x_s^b)^a$$
Step 2: \(\wedge^a [s] \vee [b] \) to \(\Sigma^{\text{poly}(s,a,b)} \prod [sbd] \Sigma^2 \)

\[
T = \left(x_1^b + \cdots + x_s^b \right)^a
\]

Lemma ([Saxena])

There exists univariate polynomials \(f_{ij} \)'s of degree at most \(a \) such that

\[
\ell^a = (y_1 + \cdots + y_s)^a = O(sa^2) \sum_{i=1}^s \prod_{j=1}^s f_{ij}(x_j)
\]
Step 2: $\wedge [a] \Sigma [s] \wedge [b]$ to $\Sigma [\text{poly}(s,a,b)] \Pi [sbd] \Sigma [2]$

$$T = \left(x_1^b + \cdots + x_s^b \right)^a$$

Lemma ([Saxena])

There exists univariate polynomials f_{ij}’s of degree at most a such that

$$\ell^a = (y_1 + \cdots + y_s)^a = \sum_{i=1}^{O(sa^2)} \prod_{j=1}^s f_{ij}(x_j)$$

Sketch of a proof by Gupta-Forbes-Shpilka

$$P_y(t) = (1 + y_1 t) \cdots (1 + y_s t) = 1 + \ell t + (\text{higher degree terms}) \rightarrow s$$
Step 2: $\wedge [a] \sum [s] \wedge [b]$ to $\sum [\text{poly}(s,a,b)] \prod [sbd] \sum [2]$

$$T = \left(x_1^b + \cdots + x_s^b\right)^a$$

Lemma ([Saxena])

There exists univariate polynomials f_{ij}’s of degree at most a such that

$$\ell^a = (y_1 + \cdots + y_s)^a = \sum_{i=1}^{O(sa^2)} \prod_{j=1}^s f_{ij}(x_j)$$

Sketch of a proof by Gupta-Forbes-Shpilka

$$P_y(t) - 1 = \ell t + \text{(higher degree terms)} \rightarrow s$$
Step 2: $\bigwedge^a[\sum^s\bigwedge^b]$ to $\sum^{\text{poly}(s,a,b)}\prod^{[sbd]}\sum^2$

$$T = \left(x_1^b + \cdots + x_s^b\right)^a$$

Lemma ([Saxena])

There exists univariate polynomials f_{ij}’s of degree at most a such that

$$\ell^a = (y_1 + \cdots + y_s)^a = \sum_{i=1}^{O(sa^2)} \prod_{j=1}^s f_{ij}(x_j)$$

Sketch of a proof by Gupta-Forbes-Shpilka

$$(P_y(t) - 1)^a = \ell^a t^a + \text{(higher degree terms)} \rightarrow sa$$
Step 2: $\bigwedge[^a][\sum[^s]\wedge[^b]]$ to $\sum[^{\text{poly}(s,a,b)}]\prod[^{sbd}]\sum[^2]$

$$T = \left(x_1^b + \cdots + x_s^b \right)^a$$

Lemma ([Saxena])

There exists univariate polynomials f_{ij}'s of degree at most a such that

$$\ell^a = (y_1 + \cdots + y_s)^a = O(sa^2) \sum_{i=1}^{s} \prod_{j=1}^{s} f_{ij}(x_j)$$

Sketch of a proof by Gupta-Forbes-Shpilka

$$(P_y(t) - 1)^a = \ell^a t^a + (\text{higher degree terms}) \rightarrow sa$$

Interpolate!

$(P_y(t) - 1)^a$ expanded is a sum of $(a + 1)$ product of univariates.
Step 2: $\wedge^a \sum^s \wedge^b$ to $\sum^{\text{poly}(s,a,b)} \prod^{\text{sbd}} \sum^2$

$$T = \left(x_1^b + \cdots + x_s^b\right)^a$$

$$(y_1 + \cdots + y_s)^a = \sum_{i}^{\text{poly}(s,a)} \prod_{j=1}^{s} f_{ij}(y_j)$$
Step 2: $\land^a [s] \land^b [s] \rightarrow \sum^{\text{poly}(s,a,b)} \prod^{\text{sbd}} \sum^{[2]}$

\[
T = \left(x_1^b + \cdots + x_s^b\right)^a
\]

\[
\left(x_1^b + \cdots + x_s^b\right)^a = \sum_{i}^{\text{poly}(s,a)} \prod_{j=1}^{s} f_{ij} \left(x_j^b\right)
\]
Step 2: $\wedge [a] \sum [s] \wedge [b]$ to $\sum [\text{poly}(s,a,b)] \prod [sbd] \sum [2]$

$$T = \left(x_1^b + \cdots + x_s^b \right)^a$$

$$\left(x_1^b + \cdots + x_s^b \right)^a = \sum_{i} \prod_{j=1}^{\text{poly}(s,a)} f_{ij} \left(x_j^b \right)$$

$$= \sum_{i} \prod_{j=1}^{\text{poly}(s,a)} \tilde{f}_{ij}(x_j)$$

where $\tilde{f}_{ij}(t) := f_{ij}(t^{\sqrt{d}})$
Step 2: $\land [a] \sum [s] \land [b]$ to $\sum [\text{poly}(s,a,b)] \prod [sbd] \sum [2]$

\[T = \left(x_1^b + \cdots + x_s^b \right)^a \]

\[
\left(x_1^b + \cdots + x_s^b \right)^a = \sum_{i=1}^{\text{poly}(s,a)} \prod_{j=1}^{s} f_{ij} \left(x_j^b \right)
\]

\[
= \sum_{i=1}^{\text{poly}(s,a)} \prod_{j=1}^{s} \tilde{f}_{ij}(x_j)
\]

Note that $\tilde{f}_{ij}(t)$ is a univariate polynomial.
Step 2: $\bigwedge^{[a]} \Sigma [s] \bigwedge^{[b]}$ to $\Sigma [\text{poly}(s,a,b)] \prod [sbd] \Sigma [2]$

$$T = \left(x_1^b + \cdots + x_s^b \right)^a$$

$$\left(x_1^b + \cdots + x_s^b \right)^a = \sum_{i} \prod_{j=1}^{s} f_{ij} \left(x_j^b \right)$$

$$= \sum_{i} \prod_{j=1}^{s} \tilde{f}_{ij}(x_j)$$

Note that $\tilde{f}_{ij}(t)$ is a univariate polynomial that can be factorized over \mathbb{C}:

$$\tilde{f}_{ij}(t) = \prod_{k=1}^{ab} (t - \zeta_{ijk})$$
Step 2: $\land [a] \sum [s] \land [b] \text{ to } \sum [\text{poly}(s,a,b)] \prod [sbd] \sum [2]$

$$T = (x_1^b + \cdots + x_s^b)^a$$

$$\left(x_1^b + \cdots + x_s^b \right)^a = \sum_{i} \prod_{j=1}^{s} f_{ij} \left(x_j^b \right)$$

$$= \sum_{i} \prod_{j=1}^{s} \tilde{f}_{ij}(x_j)$$

Note that $\tilde{f}_{ij}(t)$ is a univariate polynomial that can be factorized over \mathbb{C}:

$$\tilde{f}_{ij}(\ell_j) = \prod_{k=1}^{ab} (\ell_j - \zeta_{ijk})$$
Step 2: $\land [a] \sum [s] \land [b]$ to $\sum [\text{poly}(s,a,b)] \prod [sbd] \sum [2]$

\[T = \left(x_1^b + \cdots + x_s^b \right)^a \]

\[
\left(x_1^b + \cdots + x_s^b \right)^a = \sum_{i} \prod_{j=1}^{s} f_{ij} \left(x_j^b \right)
\]

\[
= \sum_{i} \prod_{j=1}^{s} \tilde{f}_{ij}(x_j)
\]

\[
= \sum_{i} \prod_{j=1}^{s} \prod_{k=1}^{ab} \left(x_j - \zeta_{ijk} \right)
\]
Step 2: $\wedge^a[s] \wedge^b$ to $\sum[\text{poly}(s,a,b)] \prod[sbd] \sum[2]$

$$T = \left(x_1^b + \cdots + x_s^b\right)^a$$

$$\left(x_1^b + \cdots + x_s^b\right)^a = \sum_{i=1}^{\text{poly}(s,a)} \prod_{j=1}^{s} f_{ij} \left(x_j^b\right)$$

$$= \sum_{i=1}^{\text{poly}(s,a)} \prod_{j=1}^{s} \tilde{f}_{ij}(x_j)$$

$$= \sum_{i=1}^{\text{poly}(s,a)} \prod_{j=1}^{s} \prod_{k=1}^{ab} \left(x_j - \zeta_{ijk}\right)$$

... a $\Sigma \Pi \Sigma$ circuit of $\text{poly}(s, a, b)$ size.
Step 2: $\land [a] \sum [s] \land [b]$ to $\sum [\text{poly}(s,a,b)] \prod [sbd] \sum [2]$

$$
T = \left(x_1^b + \cdots + x_s^b \right)^a
$$

$$
\left(x_1^b + \cdots + x_s^b \right)^a = \sum_{i=1}^{\text{poly}(s,a)} \prod_{j=1}^{s} f_{ij} \left(x_j^b \right)
$$

$$
= \sum_{i=1}^{\text{poly}(s,a)} \prod_{j=1}^{s} \tilde{f}_{ij}(x_j)
$$

$$
= \sum_{i=1}^{\text{poly}(s,a)} \prod_{j=1}^{s} \prod_{k=1}^{ab} \left(x_j - \zeta_{ijk} \right)
$$

... a $\Sigma \Pi \Sigma$ circuit of $\text{poly}(s, a, b)$ size and degree sab.
Putting it together

general circuit of size s
Putting it together

A general circuit of size s can be transformed into a sum of $\frac{\sqrt{d}}{2}$ circuits of size $\mathcal{O}(\sqrt{d})$. The transformation can be represented as:

$$\sum \prod \prod \prod \prod \prod$$

of size $s^{\mathcal{O}(\sqrt{d})}$
Putting it together

general circuit of size s

$\sum \prod \prod \prod \prod$ circuit of size $s^{O(\sqrt{d})}$

$\sum \land \sum \land \sum$ circuits of size $s^{O(\sqrt{d})} \cdot 2^{O(\sqrt{d})}$
Putting it together

general circuit of size s \rightarrow \sum \prod \sum \prod \text{circuit of size } s^{O(\sqrt{d})}

\sum \prod \sum \prod \text{circuits of size } s^{O(\sqrt{d})}
Putting it together

![Diagram of putting it together](image-url)
Putting it together

Question: Where should one try to prove lower bounds?
Putting it together

Question: Where should one try to prove lower bounds?
Putting it together

Question: Where should one try to prove lower bounds?
Putting it together

\[
\sum \prod \sum \prod \text{hom. circuit of size } s^{O(\sqrt{d})}
\]

Question: Where should one try to prove lower bounds?
Putting it together

- general hom. circuit of size s
- $\sum \prod \sum \prod^{\sqrt{d}}$ hom. circuit of size $s^{O(\sqrt{d})}$

$\sum \prod \sum$ non-hom. circuits of size $s^{O(\sqrt{d})}$

$\sum \bigwedge \sum \bigwedge \sum^{\sqrt{d}}$ hom. circuits of size $s^{O(\sqrt{d})}$

Question: Where should one try to prove lower bounds?
Other constants for the depth?

Recall
If f has a sized-s circuit, then it has a depth-2Δ \(\left(\sum \prod [O(d^{1/\Delta})] \right)^{\Delta} \) of size $s^{O(\Delta \cdot d^{1/\Delta})}$.
Other constants for the depth?

Recall
If \(f \) has a sized-\(s \) circuit,
then it has a depth-\(2\Delta \left(\Sigma \prod [O(d^{1/\Delta})] \right)^\Delta \) of size \(s^{O(\Delta \cdot d^{1/\Delta})} \).

Theorem
If \(f \) has a sized-\(s \) circuit, then it has a depth-\(p \) circuit of size \(s^{O(p \cdot d^{1/(p-1)})} \).
Other constants for the depth?

Recall
If f has a sized-s circuit, then it has a depth-$2\Delta \left(\sum \prod [O(d^{1/\Delta})]\right)\Delta$ of size $s^{O(\Delta \cdot d^{1/\Delta})}$.

Theorem
If f has a sized-s circuit, then it has a depth-p circuit of size $s^{O(p \cdot d^{1/(p-1)})}$.

Corollary
- Det_n has a $\Sigma \Pi \Sigma \Pi$ of size $n^{O(3/\sqrt{n})}$.
- $\text{IMM}_{n,d}$ has a $\Sigma \Pi \Sigma \Pi$ of size $n^{O(3/\sqrt{d})}$.
- If Perm_n needs $\Sigma \Pi \Sigma \Pi$ of size $n^{\omega(3/\sqrt{n})}$, then $\text{VP} \neq \text{VNP}$.
Back to the homogeneization (case of constant depth)

- All gates compute *homogeneous polynomials*.
- Hence, no gate can compute polynomials of degree larger than output.
- For circuits and ABPs, homogeneity can be assumed without loss of generality.
 - For formulas, probably not.
 - For constant depth formulas, certainly not.
Back to the homogeneization (case of constant depth)

- All gates compute *homogeneous polynomials*.
- Hence, no gate can compute polynomials of degree larger than output.
- For circuits and ABPs, homogeneity can be assumed without loss of generality.
 - For formulas, probably not.
 - For constant depth formulas, certainly not.

What happens if we allow some subexponential blow up?

Theorem (Raz)

If f computed by a formula of size s, then it is computed by a homogeneous one of size $2^{O(d \log \log s)}$.
Back to the homogeneization (case of constant depth)

- All gates compute *homogeneous polynomials*.
- Hence, no gate can compute polynomials of degree larger than output.
- For circuits and ABPs, homogeneity can be assumed without loss of generality.
 For formulas, probably not.
 For constant depth formulas, certainly not.

Theorem (Raz)

If f computed by a formula of size s, then it is computed by a *homogeneous* one of size $2^{O(d \log \log s)}$.
Back to the homogeneization (case of constant depth)

Theorem (GKKS)

If f computed by a circuit of size s and depth 3, then it is computed by a \textit{homogeneous} one of size $\text{poly}(s)2^{O(\sqrt{d})}$ and depth 5.
Back to the homogeneization (case of constant depth)

Theorem (GKKS)

If f computed by a circuit of size s and depth 3, then it is computed by a homogeneous one of size $\text{poly}(s)2^{O(\sqrt{d})}$ and depth 5.

Theorem (LST)

If f computed by a circuit of size s and depth Γ, then it is computed by a homogeneous one of size $\text{poly}(s)2^{O(\sqrt{d})}$ and depth $2\Gamma - 1$.
Thank you.