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Overview

1 Why to look at structural results

2 Homogeneization / (Set)-multilinearization
Homogeneization
Multilinearization

3 Parallelization
Classical depth reductions of [Brent] and [VSBR]
To constant depth
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General roadmap
for lower bounds
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Four steps in most lower bound proofs

Step 1: Finding a “nice” form for the model
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Step 1: Finding a “nice” form for the model

Meta Theorem 1

Every small circuit can be equivalently computed as a “nice”

Step 2: Constructing a complexity measure

Meta Theorem 2

Find a map � : F[x] ! Z�0 such that �
� �

is small.

Step 3: Heuristic estimate for a random polynomial

Meta Theorem 2

Convince yourself that �(R) must be LARGE for a random polynomial R .
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Step 1: Finding a “nice” form for the model

Meta Theorem 1

Every small circuit can be equivalently computed as a “nice”

Step 2: Constructing a complexity measure

Meta Theorem 2

Find a map � : F[x] ! Z�0 such that �
� �

is small.

Step 3: Heuristic estimate for a random polynomial

Meta Theorem 2

Convince yourself that �(R) must be LARGE for a random polynomial R .

Step 4: Find a hay in the haystack
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Four steps in most lower bound proofs
Step 1: Finding a “nice” form for the model

=

Meta Theorem 1

Every small circuit can be equivalently computed as a “nice”

Homogeneization, (Set)-multilinearization, Depth reduction
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Arithmetic models

Formulas ✓ ABP ✓ Circuits

Reverse inclusions?

Circuit of size s  Formula of size sO(log d).
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Few words about fan-ins

If nothing is mentionned

For circuits, formula of “large depth”:
I +-gate : unbounded
I ⇤-gate : constant

For circuits, formula of constant depth:
I +-gate : unbounded
I ⇤-gate : unbounded
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Homogenization (basics)

All gates compute homogeneous polynomials.

Hence, no gate can compute polynomials of degree larger than output.

For circuits and ABPs, homogeneity can be assumed without loss of
generality.
For formulas, probably not.
For constant depth formulas, certainly not.

g = g1 + g2 �! g (i) = g (i)

1
+ g (i)

2

g = g1 ⇥ g2 �! g (i) =
iX

j=0

g (j)

1
⇥ g (i�j)

2
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(Syntactic) (Set)-multilinearization

Multilinear, Set-multilinear

Semantic vs. Syntactic

Expensive!

Syn. Multilinear Syn. Set-multilinear

Ciruits ??? s · 2O(d)

Formulas ??? 2O(d log log s)

Hom. formulas ??? s · dO(d)

of cst depth
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(Syntactic) (Set)-multilinearization
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A short history of depth reduction

Class Depth Size

Formulas O(log s) poly(s) [Brent]

Circuits O(log d) s log s [Hyafil]

Circuits O(log d) poly(s) [Valiant-Skyum-Berkowitz-Racko↵]

Circuits 4 [Agrawal-Vinay]

[Koiran]

sO(
p
d) [T.]

4⇤ sO(d1/3) [Gupta-Kamath-Kayal-Saptharishi]

Circuits 3⇤ sO(
p
d) [Gupta-Kamath-Kayal-Saptharishi]
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Other depth reductions in lower bounds

Multilinear formulas [Raz, Raz-Yehudayo↵]

f =
sX

i=1

gi1 · gi2 . . . gi` , (1/3)j · n  Var(gij)  (2/3)j · n

Homogeneous formulas [Hrubes-Yehudayo↵]

f =
sX

i=1

gi1 · gi2 . . . gi` , (1/3)j · d  deg(gij)  (2/3)j · d
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Depth reducing formulas

�

1
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Depth reducing formulas

�

1

s

3
 |subtree|  2s

3
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Depth reducing formulas

�1

z

�2
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Depth reducing formulas

�1

z

�2

�1(z) = A · z + B
� = A · �2 + B
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Depth reducing formulas

�1

z

�2

�1(z) = A · z + B
� = A · �2 + B = (�1(1)� �1(0)) · �2 + �1(0)
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Depth reducing formulas

�

+

⇥

�1(0)

+

�2�1(1) �1(0)

(�1)

�1(z) = A · z + B
� = A · �2 + B = (�1(1)� �1(0)) · �2 + �1(0)
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Depth reducing formulas

�

+

⇥

�1(0)

+

�2�1(1) �1(0)

(�1)

Size(s)  4 · Size(2s/3) + O(1)

=) poly(s)

Depth(s)  Depth(2s/3) + O(1)

=) O(log s)
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Adapting to circuits

�
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Adapting to circuits

�

s

3
 size  2s

3

Not true for circuits!
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Adapting to circuits

�

d

3
 degree  2d

3
(start with a homogeneous circuit)
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Adapting to circuits

�

d

3
 degree  2d

3
(start with a homogeneous circuit)

Multiple paths from root!
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Adapting to circuits: Attempt 1

�

Degree > 2d/3

Degree  d/3

F

F =

⇢
v 2 � | d

3
< deg(v)  2d

3

�

� =
X

vi2F
Ai�vi

+
X

vi ,vj2F
Ai ,j�vi

�vj

each have degree at most 2d/3
Interpolate!
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Adapting to circuits: Attempt 1
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Adapting to circuits: [Hyafil]
�

Degree > 2d/3

Degree  d/3

F

F =
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< deg(v)  2d
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� =
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Depth(d) = O(log d)
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Adapting to circuits: Attempt 2

Want an analogue of � = A · �v + B .

Problem is that there are multiple paths to v .
� isn’t really an a�ne function in �v .

[VSBR]: Do not look at all paths. Only take a canonical path, like say
taking the right-edge out of every ⇥-gate.

More like “su�xes”

[u : v ] =

8
>>>><

>>>>:

1 if u = v

0 o/w if u is a leaf

[u1 : v ] + [u2 : v ] if u = u1 + u2

[u1] · [u2 : v ] if u1 = u1 ⇥ u2
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An example
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⇥ ⇥

+ + +
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x1 x2 x3 x4 x5
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v2 v3

v4 v5 v6

v7 v8 v9 v10

[v1 : v8] =

[v2 : v8] +

= [v4] · [v5 : v8]
= (x1x2 + x2x3) · [v5 : v8]
= (x1x2 + x2x3) · ([v8 : v8]+)

= (x1x2 + x2x3)
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[VSBR] continued ...

We want a set of nodes F such that

[u] =
X

v2F
[u : v ] · [v ]

What are candidates for F?
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[VSBR] continued ...

We want a set of nodes F such that

[u] =
X

v2F
[u : v ] · [v ]

What are candidates for F? Every “right-path” must pass through exactly
one v 2 F

Fa = {v | deg(v) � a , deg(vL), deg(vR) < a}

Lemma

[u] =
X

v2Fa

[u : v ] · [v ]

[u : w ] =
X

v2Fa

[u : v ] · [v : w ]
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v2Fa
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X
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0

B@
X

q2Fa
[v ]

[vL : q] · [qL] · [qR ]

1

CA · [vR : w ]
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Summarizing

[u] =
X

v2Fa

[u : v ] · [vL] · [vR ]

[u : w ] =
X

v2Fa

X

q2Fa

[u : v ] · [v : q] · [qL] · [qR ] · [vR : w ]

Theorem ([Valiant-Skyum-Berkowitz-Racko↵])

If � is a size s circuit computing an n-variate degree d polynomial f , then
there is a circuit �0 computing f with the following properties.

Every gate of �0 computes either [u], [u : v ], or on of the above
products, (so size O(s4))

All addition gates have fan-in at most s2,

All multiplication gates have fan-in at most 5, and

If v1 is a child of a ⇥-gate v in �0, then deg(v1)  deg(v)/2.

Hence, the depth of �0 is O(log d).
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First consequences of [VSBR]

A sized-s circuit can be simulated by a formula of size sO(log d).

Easy way to construct universal circuits.
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First consequences of [VSBR]

A sized-s circuit can be simulated by a formula of size sO(log d).

Easy way to construct universal circuits.
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Reducing to depth four

Can we reduce the depth further?

Theorem (Koiran)

If f is computed by a circuit of size s,
then it is computed by a ⌃⇧⌃⇧ of size sO(

p
d log d).

Lemma
If f is computed by an ABP of size s,
then it is computed by a ⌃⇧⌃⇧ of size sO(

p
d .
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Reducing to depth four : starting from circuits

�
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Reducing to depth four : starting from circuits

Top
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Degree >
p
d

Degree 
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Size
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Reducing to depth four : starting from circuits
Top

⌃⇧ ⌃⇧ ⌃⇧ ⌃⇧ ⌃⇧

Degree >
p
d

Degree 
p
d

Size
�
n+

p
dp

d

�
each

Lemma ([T.])

If the circuit has [VSBR] properties,
then deg(Top(z1, . . . , zs))  15

p
d
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Reducing to depth four : starting from circuits
Top
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p
dp
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�
each

Lemma ([T.])
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Reducing to depth four : starting from circuits

⌃⇧ ⌃⇧ ⌃⇧ ⌃⇧ ⌃⇧

⌃⇧

Theorem
Equivalent depth-4 circuit of size

s

✓
n +

p
d

n

◆
+

✓
s + 15

p
d

s

◆
= sO(

p
d)
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Reducing to depth four : starting from circuits

⌃⇧ ⌃⇧ ⌃⇧ ⌃⇧ ⌃⇧

⌃⇧

Theorem

Equivalent homogeneous depth-4 circuit with bottom fan-in at most
p
d

of size

s

✓
n +

p
d

n

◆
+

✓
s + 15

p
d

s

◆
= sO(

p
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Reducing to depth four : starting from circuits

⌃⇧ ⌃⇧ ⌃⇧ ⌃⇧ ⌃⇧

⌃⇧

Theorem

Equivalent homogeneous ⌃⇧⌃⇧[
p
d ] circuit of size

s

✓
n +

p
d

n
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+

✓
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p
d
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◆
= sO(

p
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[SV]’s proof

Let’s start with [VSBR]

f =
sX

i=1

fi1 · fi2 · fi3 · fi4 · fi5
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[SV]’s proof

Let’s start with [VSBR]

f =
sX

i=1

0

@
sX

j=1

gj1 · · · gj5

1

A · fi2 · fi3 · fi4 · fi5

This is a ⌃⇧⌃⇧[d/2] circuit. We want to obtain a ⌃⇧⌃⇧[t] circuit.
Each fij is also some [u : v ]. Keep expanding terms of degree more than t.
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[SV]’s proof

Let’s start with [VSBR]

f =
s2X

i=1

fi1 · · · fi9

This is a ⌃⇧⌃⇧[d/2] circuit. We want to obtain a ⌃⇧⌃⇧[t] circuit.
Each fij is also some [u : v ]. Keep expanding terms of degree more than t.
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[SV]’s proof

Let’s start with [VSBR]

f =
s3X

i=1

fi1 · · · fi13

This is a ⌃⇧⌃⇧[d/2] circuit. We want to obtain a ⌃⇧⌃⇧[t] circuit.
Each fij is also some [u : v ]. Keep expanding terms of degree more than t.
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[SV]’s proof

Let’s start with [VSBR]

f =
s4X

i=1

fi1 · · · fi17

This is a ⌃⇧⌃⇧[d/2] circuit. We want to obtain a ⌃⇧⌃⇧[t] circuit.
Each fij is also some [u : v ]. Keep expanding terms of degree more than t.
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[SV]’s proof

Let’s start with [VSBR]

f =
s4X

i=1

fi1 · · · fi17

This is a ⌃⇧⌃⇧[d/2] circuit. We want to obtain a ⌃⇧⌃⇧[t] circuit.
Each fij is also some [u : v ]. Keep expanding terms of degree more than t.

How many iterations until all degrees are at most t?
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Number of iterations

g =
sX

j=1

gj1 · gj2 · gj3 · gj4 · gj5
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Number of iterations

g =
sX

j=1

gj1 · gj2 · gj3 · gj4 · gj5

Observation

In each summand, at least two terms have degree at least t/8.
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Number of iterations

g =
sX

j=1

gj1|{z}
�t/5

· gj2 · gj3 · gj4 · gj5

Observation

In each summand, at least two terms have degree at least t/8.
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Number of iterations

g =
sX

j=1

gj1|{z}
�t/5

· gj2|{z}
�t/8

· gj3 · gj4 · gj5

Observation

In each summand, at least two terms have degree at least t/8.
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Number of iterations

g =
sX

j=1

gj1|{z}
�t/5

· gj2|{z}
�t/8

· gj3 · gj4 · gj5

Observation

In each summand, at least two terms have degree at least t/8.

How many factors of degree at least t/8?

f =
sX

i=1

fi1 · fi2 · fi3 · fi4 · fi5
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Number of iterations

g =
sX

j=1

gj1|{z}
�t/5

· gj2|{z}
�t/8

· gj3 · gj4 · gj5

Observation

In each summand, at least two terms have degree at least t/8.

How many factors of degree at least t/8?

f =
sX

i=1

fi1 · fi2 · fi3 · fi4 · fi5
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Number of iterations

g =
sX

j=1

gj1|{z}
�t/5

· gj2|{z}
�t/8

· gj3 · gj4 · gj5

Observation

In each summand, at least two terms have degree at least t/8.

How many factors of degree at least t/8?

f =
sX

i=1

0

@
sX

j=1

gj1gj2gj3gj4gj5

1

A · fi2 · fi3 · fi4 · fi5
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Number of iterations

g =
sX

j=1

gj1|{z}
�t/5

· gj2|{z}
�t/8

· gj3 · gj4 · gj5

Observation

In each summand, at least two terms have degree at least t/8.

How many factors of degree at least t/8?

f =
sX

i=1

0

@
sX

j=1

gj1gj2gj3gj4gj5

1

A · fi2 · fi3 · fi4 · fi5
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Number of iterations

g =
sX

j=1

gj1|{z}
�t/5

· gj2|{z}
�t/8

· gj3 · gj4 · gj5

Observation

In each summand, at least two terms have degree at least t/8.

How many factors of degree at least t/8?

f =
s2X

i=1

fi1 · fi12 · fi3 · fi4 · · · fi9
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Number of iterations

g =
sX

j=1

gj1|{z}
�t/5

· gj2|{z}
�t/8

· gj3 · gj4 · gj5

Observation

In each summand, at least two terms have degree at least t/8.

How many factors of degree at least t/8? At most 8d/t.

f =
s2X

i=1

fi1 · fi12 · fi3 · fi4 · · · fi9
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Number of iterations

g =
sX

j=1

gj1|{z}
�t/5

· gj2|{z}
�t/8

· gj3 · gj4 · gj5

Observation

In each summand, at least two terms have degree at least t/8.

How many factors of degree at least t/8? At most 8d/t.

f =
s2X

i=1

fi1 · fi12 · fi3 · fi4 · · · fi9

Final ⌃⇧⌃⇧[t] circuit has top fan-in at most sO(d/t).

Structural results October 15th, 2021 23 / 35
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A better starting point?

Recall

If f has a sized-s circuit, then it has a ⌃⇧⌃⇧[
p
d ] of size sO(

p
d).

f =
sX

i=1

fi1 · fi2 · fi3 · fi4 · fi5

If we start with a homogeneous formula, can we do better?

[Hrubes-Yehudayo↵]: Yes!

Lemma ([Hrubes-Yehudayo↵])

f =
sX

i=1

fi1 · fi2 · · · fi` with

✓
1

3

◆j

· d < deg(fij) 
✓
2

3

◆j

· d
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A better starting point?
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d ] of size sO(

p
d).

f =
sX

i=1

fi1 · fi2 · fi3 · fi4 · fi5

If we start with a homogeneous formula, can we do better?
[Hrubes-Yehudayo↵]: Yes!

Lemma ([Hrubes-Yehudayo↵])

f =
sX

i=1

fi1 · fi2 · · · fi` with

✓
1
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· d < deg(fij) 
✓
2

3

◆j

· d

Structural results October 15th, 2021 24 / 35



Lemma ([Hrubes-Yehudayo↵])

f =
sX

i=1

fi1 · fi2 · · · fi` with

✓
1

3

◆j

· d < deg(fij) 
✓
2

3

◆j

· d

Structural results October 15th, 2021 25 / 35
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A better starting point?

Recall

If f has a sized-s circuit, then it has a ⌃⇧⌃⇧[
p
d ] of size sO(

p
d).

Theorem (Saptharishi?)

If f has a homogeneous sized-s formula,
then it has a homogeneous ⌃⇧[⌦(d log t/t)]⌃⇧[

p
t].

Theorem (KOS)

If f has a syntactically multilinear sized-s circuit,
then it has a ⌃⇧⌃⇧ of size 2O(

p
N log s).
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A better starting point?

Recall

If f has a sized-s circuit, then it has a ⌃⇧⌃⇧[
p
d ] of size sO(

p
d).

Theorem (Saptharishi?)

If f has a homogeneous sized-s formula,
then it has a homogeneous ⌃⇧[⌦(d log t/t)]⌃⇧[

p
t].

Theorem (KOS)

If f has a syntactically multilinear sized-s circuit,
then it has a ⌃⇧⌃⇧ of size 2O(

p
N log s).
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Generalization to homogeneous depth-2�

Theorem

If f has a sized-poly(N) syntactically multilinear circuit,

then it has a (⌃⇧)� of size sO(�·(n/ log s)1/�).

Structural results October 15th, 2021 26 / 35
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Generalization to homogeneous depth-2�

Theorem
If f has a sized-s circuit,
then it has a depth-2� ⌃⇧[O(d1/�)]⌃⇧[O(d1/�)] · · ·⌃⇧[O(d1/�)] of size
sO(�·d1/�).

Theorem

If f has a sized-poly(N) syntactically multilinear circuit,

then it has a (⌃⇧)� of size sO(�·(n/ log s)1/�).

Structural results October 15th, 2021 26 / 35
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Generalization to homogeneous depth-2�

Theorem
If f has a sized-s circuit,
then it has a depth-2� ⌃⇧[O(d1/�)]⌃⇧[O(d1/�)] · · ·⌃⇧[O(d1/�)] of size
sO(�·d1/�).

Theorem

If f has a sized-poly(N) syntactically multilinear circuit,

then it has a (⌃⇧)� of size sO(�·(n/ log s)1/�).
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Reduction to Depth-3 Circuits

(or, “can we do better if we allow the final circuit to be highly
inhomogeneous?”)

Structural results October 15th, 2021 27 / 35



Road map [GKKS]

P
p
dQ P

p
dQ

circuits

P
p
dV P

p
dV P

circuits

PQP

circuits

App. of Ryser’s formula

[Saxena]’s duality trick

Only over Q,R etc.

Heavily non-homogeneous
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Road map [GKKS]
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circuits

P
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PQP
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App. of Ryser’s formula

[Saxena]’s duality trick

Only over Q,R etc.

Heavily non-homogeneous
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Step 1: ⇧[d ] to ⌃[2d ]^[d ]⌃[d ]

Structural results October 15th, 2021 29 / 35



Step 1: ⇧[d ] to ⌃[2d ]^[d ]⌃[d ]

Recall Ryser’s formula:

Permd

2

64
x11 . . . x1d
...

. . .
...

xd1 . . . xdd

3

75 =
X

S✓[d ]

(�1)d�|S |
dY

i=1

X

j2S
xij
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Step 1: ⇧[d ] to ⌃[2d ]^[d ]⌃[d ]

Recall Ryser’s formula:

Permd

2

64
x1 . . . xd
...

. . .
...

x1 . . . xd

3

75 =
X

S✓[d ]

(�1)d�|S |
dY

i=1

X

j2S
xj
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Step 1: ⇧[d ] to ⌃[2d ]^[d ]⌃[d ]

Recall Ryser’s formula:

Permd

2

64
x1 . . . xd
...

. . .
...

x1 . . . xd

3

75 =
X

S✓[d ]

(�1)d�|S |

0

@
X

j2S
xj

1

A
d
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Step 1: ⇧[d ] to ⌃[2d ]^[d ]⌃[d ]

Recall Ryser’s formula:

d! · x1 . . . xd =
X

S✓[d ]

(�1)d�|S |

0

@
X

j2S
xj

1

A
d
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Step 1: ⇧[d ] to ⌃[2d ]^[d ]⌃[d ]

[Fischer]:

d! · x1 . . . xd =
X

S✓[d ]

(�1)d�|S |

0

@
X

j2S
xj

1

A
d
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Step 1: ⇧[d ] to ⌃[2d ]^[d ]⌃[d ]

[Fischer]:

d! · x1 . . . xd =
X

S✓[d ]

(�1)d�|S |

0

@
X

j2S
xj

1

A
d

⇥

. . .

d

+
2d

^ ^

+

d d

+

. . .

. . .
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Step 1: ⇧[d ] to ⌃[2d ]^[d ]⌃[d ]

⇥

. . .

d

+
2d

^ ^

+

d d

+

. . .

. . .

dY
�!

2dX d^ dX
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Step 1: ⇧[d ] to ⌃[2d ]^[d ]⌃[d ]

⇥

. . .

d

+
2d

^ ^

+

d d

+

. . .

. . .

dY
�!

2dX d^ dX

X
p
dYX

p
dY

of size s �!
X

p
d^X

p
d^X

of size 2O(
p
d) · s

Structural results October 15th, 2021 29 / 35
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Road map

P
p
dQ P

p
dQ

circuits

P
p
dV P

p
dV P

circuits

PQP

circuits

Structural results October 15th, 2021 30 / 35



Road map

P
p
dQ P

p
dQ

circuits

P
p
dV P

p
dV P

circuits

X

PQP

circuits
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Step 2: ^[a]⌃[s ]̂ [b] to ⌃[poly(s,a,b)]⇧[sbd ]⌃[2]
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Step 2: ^[a]⌃[s ]̂ [b] to ⌃[poly(s,a,b)]⇧[sbd ]⌃[2]

T =
⇣
xb1 + · · ·+ xbs

⌘a
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Step 2: ^[a]⌃[s ]̂ [b] to ⌃[poly(s,a,b)]⇧[sbd ]⌃[2]

T =
⇣
xb1 + · · ·+ xbs

⌘a

Lemma ([Saxena])

There exists univariate polynomials fij ’s of degree at most a such that

`a = (y1 + · · ·+ ys)
a =

O(sa2)X

i=1

sY

j=1

fij(xj)
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Step 2: ^[a]⌃[s ]̂ [b] to ⌃[poly(s,a,b)]⇧[sbd ]⌃[2]

T =
⇣
xb1 + · · ·+ xbs

⌘a

Lemma ([Saxena])

There exists univariate polynomials fij ’s of degree at most a such that

`a = (y1 + · · ·+ ys)
a =

O(sa2)X

i=1

sY

j=1

fij(xj)

Sketch of a proof by Gupta-Forbes-Shpilka

Py(t) = (1 + y1t) . . . (1 + yst) = 1 + `t + (higher degree terms) ! s
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Step 2: ^[a]⌃[s ]̂ [b] to ⌃[poly(s,a,b)]⇧[sbd ]⌃[2]

T =
⇣
xb1 + · · ·+ xbs

⌘a

Lemma ([Saxena])

There exists univariate polynomials fij ’s of degree at most a such that

`a = (y1 + · · ·+ ys)
a =

O(sa2)X

i=1

sY

j=1

fij(xj)

Sketch of a proof by Gupta-Forbes-Shpilka

Py(t)� 1 = `t + (higher degree terms) ! s
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Step 2: ^[a]⌃[s ]̂ [b] to ⌃[poly(s,a,b)]⇧[sbd ]⌃[2]

T =
⇣
xb1 + · · ·+ xbs

⌘a

Lemma ([Saxena])

There exists univariate polynomials fij ’s of degree at most a such that

`a = (y1 + · · ·+ ys)
a =

O(sa2)X

i=1

sY

j=1

fij(xj)

Sketch of a proof by Gupta-Forbes-Shpilka

(Py(t)� 1)a = `ata + (higher degree terms) ! sa
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Step 2: ^[a]⌃[s ]̂ [b] to ⌃[poly(s,a,b)]⇧[sbd ]⌃[2]

T =
⇣
xb1 + · · ·+ xbs

⌘a

Lemma ([Saxena])

There exists univariate polynomials fij ’s of degree at most a such that

`a = (y1 + · · ·+ ys)
a =

O(sa2)X

i=1

sY

j=1

fij(xj)

Sketch of a proof by Gupta-Forbes-Shpilka

(Py(t)� 1)a = `ata + (higher degree terms) ! sa

Interpolate!
(Py(t)� 1)a expanded is a sum of (a+ 1) product of univariates.

Structural results October 15th, 2021 31 / 35
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Step 2: ^[a]⌃[s ]̂ [b] to ⌃[poly(s,a,b)]⇧[sbd ]⌃[2]

T =
⇣
xb1 + · · ·+ xbs

⌘a

(y1 + · · ·+ ys)
a =

poly(s,a)X

i

sY

j=1

fij (yj)
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Step 2: ^[a]⌃[s ]̂ [b] to ⌃[poly(s,a,b)]⇧[sbd ]⌃[2]

T =
⇣
xb1 + · · ·+ xbs

⌘a

⇣
xb1 + · · ·+ xbs

⌘a

=

poly(s,a)X

i

sY

j=1

fij
⇣
xbj

⌘
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Step 2: ^[a]⌃[s ]̂ [b] to ⌃[poly(s,a,b)]⇧[sbd ]⌃[2]

T =
⇣
xb1 + · · ·+ xbs

⌘a

⇣
xb1 + · · ·+ xbs

⌘a

=

poly(s,a)X

i

sY

j=1

fij
⇣
xbj

⌘

=

poly(s,a)X

i

sY

j=1

f̃ij(xj)

where f̃ij(t) := fij(t
p
d)
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Step 2: ^[a]⌃[s ]̂ [b] to ⌃[poly(s,a,b)]⇧[sbd ]⌃[2]

T =
⇣
xb1 + · · ·+ xbs

⌘a

⇣
xb1 + · · ·+ xbs

⌘a

=

poly(s,a)X

i

sY

j=1

fij
⇣
xbj

⌘

=

poly(s,a)X

i

sY

j=1

f̃ij(xj)

Note that f̃ij(t) is a univariate polynomial
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Step 2: ^[a]⌃[s ]̂ [b] to ⌃[poly(s,a,b)]⇧[sbd ]⌃[2]

T =
⇣
xb1 + · · ·+ xbs

⌘a

⇣
xb1 + · · ·+ xbs

⌘a

=

poly(s,a)X

i

sY

j=1

fij
⇣
xbj

⌘

=

poly(s,a)X

i

sY

j=1

f̃ij(xj)

Note that f̃ij(t) is a univariate polynomial that can be factorized over C:

f̃ij(t) =
abY

k=1

(t � ⇣ijk)
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Step 2: ^[a]⌃[s ]̂ [b] to ⌃[poly(s,a,b)]⇧[sbd ]⌃[2]

T =
⇣
xb1 + · · ·+ xbs

⌘a

⇣
xb1 + · · ·+ xbs

⌘a

=

poly(s,a)X

i

sY

j=1

fij
⇣
xbj

⌘

=

poly(s,a)X

i

sY

j=1

f̃ij(xj)

Note that f̃ij(t) is a univariate polynomial that can be factorized over C:

f̃ij(`j) =
abY

k=1

(`j � ⇣ijk)
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Step 2: ^[a]⌃[s ]̂ [b] to ⌃[poly(s,a,b)]⇧[sbd ]⌃[2]

T =
⇣
xb1 + · · ·+ xbs

⌘a

⇣
xb1 + · · ·+ xbs

⌘a

=

poly(s,a)X

i

sY

j=1

fij
⇣
xbj

⌘

=

poly(s,a)X

i

sY

j=1

f̃ij(xj)

=

poly(s,a)X

i

sY

j=1

abY

k=1

(xj � ⇣ijk)

Structural results October 15th, 2021 31 / 35



Step 2: ^[a]⌃[s ]̂ [b] to ⌃[poly(s,a,b)]⇧[sbd ]⌃[2]

T =
⇣
xb1 + · · ·+ xbs

⌘a

⇣
xb1 + · · ·+ xbs

⌘a

=

poly(s,a)X

i

sY

j=1

fij
⇣
xbj

⌘

=

poly(s,a)X

i

sY

j=1

f̃ij(xj)

=

poly(s,a)X

i

sY

j=1

abY

k=1

(xj � ⇣ijk)

... a ⌃⇧⌃ circuit of poly(s, a, b) size.
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Step 2: ^[a]⌃[s ]̂ [b] to ⌃[poly(s,a,b)]⇧[sbd ]⌃[2]

T =
⇣
xb1 + · · ·+ xbs

⌘a

⇣
xb1 + · · ·+ xbs

⌘a

=

poly(s,a)X

i

sY

j=1

fij
⇣
xbj

⌘

=

poly(s,a)X

i

sY

j=1

f̃ij(xj)

=

poly(s,a)X

i

sY

j=1

abY

k=1

(xj � ⇣ijk)

... a ⌃⇧⌃ circuit of poly(s, a, b) size and degree sab.
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Putting it together

general circuit
of size s

P
p
dQ P

p
dQ

circuit

of size sO(
p
d)

P
p
dV P

p
dV P

circuits

of size sO(
p
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Other constants for the depth?

Recall
If f has a sized-s circuit,

then it has a depth-2�
⇣
⌃⇧[O(d1/�)]

⌘�

of size sO(�·d1/�).

Theorem
If f has a sized-s circuit,
then it has a depth-p circuit of size sO(p·d1/(p�1)).

Corollary

Detn has a ⌃⇧⌃⇧ of size nO( 3
p
n).

IMMn,d has a ⌃⇧⌃⇧ of size nO(
3
p
d).

If Permn needs ⌃⇧⌃⇧ of size n!(
3
p
n), then VP 6= VNP.
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Back to the homogeneization (case of constant depth)

All gates compute homogeneous polynomials.

Hence, no gate can compute polynomials of degree larger than output.

For circuits and ABPs, homogeneity can be assumed without loss of
generality.
For formulas, probably not.
For constant depth formulas, certainly not.

What happens if we allow some subexponential blow up?

Theorem (Raz)

If f computed by a formula of size s,
then it is computed by a homogeneous one of size 2O(d log log s).
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Back to the homogeneization (case of constant depth)

Theorem (GKKS)

If f computed by a circuit of size s and depth 3,
then it is computed by a homogeneous one of size poly(s)2O(

p
d) and

depth 5.

Theorem (LST)

If f computed by a circuit of size s and depth �,
then it is computed by a homogeneous one of size poly(s)2O(

p
d) and

depth 2�-1.
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Thank you.
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