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Overview

@ Why to look at structural results

© Homogeneization / (Set)-multilinearization
@ Homogeneization
@ Multilinearization

© Parallelization
o Classical depth reductions of [Brent] and [VSBR]

@ To constant depth
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General roadmap
for lower bounds



Four steps in most lower bound proofs

Step 1: Finding a “nice” form for the model
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Step 1: Finding a “nice” form for the model

Meta Theorem 1

Every small circuit can be equivalently computed as a “nice” 4\ J

Step 2: Constructing a complexity measure

Meta Theorem 2
Find a map I : F[x] — Zxg such that I (4) is small. J
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Four steps in most lower bound proofs

Step 1: Finding a “nice” form for the model

Every small circuit can be equivalently computed as a “nice” 4\

Meta Theorem 1 J

Step 2: Constructing a complexity measure

Meta Theorem 2
Find a map I : F[x] — Z>¢ such that [ () is small. J

Step 3: Heuristic estimate for a random polynomial

Meta Theorem 2
Convince yourself that I(R) must be LARGE for a random polynomial R.J
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Four steps in most lower bound proofs

Step 1: Finding a “nice” form for the model

Meta Theorem 1 J

Every small circuit can be equivalently computed as a “nice” 4\

Step 2: Constructing a complexity measure

Meta Theorem 2
Find a map I : F[x] — Z>o such that [ () is small. J

Step 3: Heuristic estimate for a random polynomial

Meta Theorem 2
Convince yourself that ['(R) must be LARGE for a random polynomial R.J

Step 4: Find a hay in the haystack
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Four steps in most lower bound proofs

Step 1: Finding a “nice” form for the model

Meta Theorem 1

Every small circuit can be equivalently computed as a “nice” 4\
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Four steps in most lower bound proofs

Step 1: Finding a “nice” form for the model

Meta Theorem 1

Every small circuit can be equivalently computed as a “nice” 4\ J

Homogeneization, (Set)-multilinearization, Depth reduction

o = DAy

Structural results



Arithmetic models

Formulas

C ABP C Circuits
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Arithmetic models

Formulas € ABP C Circuits
@ Reverse inclusions?
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Arithmetic models

Formulas
@ Reverse inclusions?

@ Circuit of size s ~
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Arithmetic models

Formulas € ABP C Circuits

@ Reverse inclusions?

e Circuit of size s ~Formula of size s©(logd)

Structural results
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Few words about fan-ins

If nothing is mentionned
@ For circuits, formula of “large depth”:
> +-gate : unbounded @ ﬁ(;\
» x-gate : constant 7O\
@ For circuits, formula of constant depth:
» -+-gate : unbounded ®
>

> k-gate : unbounded
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Homogenization (basics)

o All gates compute homogeneous polynomials.
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o All gates compute homogeneous polynomials.
@ Hence, no gate can compute polynomials of degree larger than output.

@ For circuits and ABPs, homogeneity can be assumed without loss of
generality.
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Homogenization (basics)

o All gates compute homogeneous polynomials.
@ Hence, no gate can compute polynomials of degree larger than output.

@ For circuits and ABPs, homogeneity can be assumed without loss of
generality.
For formulas, probably not.
For constant depth formulas, certainly not.

(Detp) in 22T
* m«mk«m —> mdﬁ)
* hom — Z-Q(‘W)
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Homogenization (basics)

o All gates compute homogeneous polynomials.
@ Hence, no gate can compute polynomials of degree larger than output.

@ For circuits and ABPs, homogeneity can be assumed without loss of
generality.

For formulas, probably not.
For constant depth formulas, certainly not.

g %}4@ — g(!) i—g}(i) +4§ =% 1. Toy %
/ ' 49 . o *,'TEA““P“T'D‘
g=gxg— gl = Zgl(J) x g dey ]
" @ﬁ\s

F_\_i‘_i\o oS P s f(S'J)rdr\) J s(«lﬁ)a
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(Syntactic) (Set)-multilinearization

@ Multilinear, Set-multilinear
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(Syntactic) (Set)-multilinearization

Sy, o
Au}towil It C~N‘°“4“‘ “
@ Multilinear, Set-multilinear * @-> ig
e Semantic vs.‘Syntactic S * D —> %3
=
A WAA‘ Symhc Sel'—wptf % }_D S.(US/&
D >13

*® = 3 % > st

) Y R -
TR Si=3gr g =%,

*Q? |——>S~( S s,
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(Syntactic) (Set)-multilinearization

@ Multilinear, Set-multilinear

@ Semantic vs. Syntactic

@ Expensive!

Syn. Multilinear

Syn. Set-multilinear

Ciruits
Formulas
Hom. formulas
of cst depth

77
77
77

20(d log log 5) ~> So°2 2 “03)

s.do(d)
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A short history of depth reduction
Class

Formulas

| Depth |

Size

O(log s)

poly(s)

=] =) = £ 9OHQC
Structural results

[Brent]



A short history of depth reduction

Class Depth Size
Formulas | O(logs) poly(s) [Brent]
Circuits | O(logd) slogs [Hyafil]
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A short history of depth reduction

Class Depth Size
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A short history of depth reduction

Class Depth Size
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A short history of depth reduction
Class Depth Size
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Circuits | O(logd) slogs
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A short history of depth reduction
Class Depth Size

Formulas | O(logs) poly(s)

Circuits | O(logd) slogs

[Brent]

[Hyafil]

Circuits | O(log d) poly(s) [Valiant-Skyum-Berkowitz-Rackoff]

Circuits 4 W

[Agrawal-Vinay]

0 gd) [Koiran]

s0V9) [T]

4* sOd?) [Gupta-Kamath-Kayal-Saptharishi]

Circuits 3* sO(Vd) [Gupta-Kamath-Kayal-Saptharishi]
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Other depth reductions in lower bounds
Multilinear formulas

[Raz, Raz-Yehudayoff]

=] =) = £ 9OHQC
Structural results

f = Y gi-go-.g , (1/3Y-n < Var(gy) < (2/3Y-n
i=1




Other depth reductions in lower bounds

Multilinear formulas [Raz, Raz-Yehudayoff]
f = ig,-1~g,-2...g,-g , (1/3Y -n < Var(gy) < (2/3Y-n
i=1 )
Homogeneous formulas [Hrubes-Yehudayoff]
foo= zs:gil‘gm---gil . (1/3Y-d < deg(gy) < (2/3Y -d
i=1 )
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Depth reducing formulas
)
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Depth reducing formulas

¢

$ < |subtree| < %
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Depth reducing formulas

O
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Depth reducing formulas

4\

®(z) = Az + B
() = A-o, + B
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Depth reducing formulas

4\

®(z) = Az + B
¢ = Ad + B = ($1(1)—®1(0)) P2 + P(0)
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Depth reducing formulas

®(z) = Az + B
¢ = Ad + B = (91(1)—91(0)) P2 + 1(0)
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Depth reducing formulas

-1

®1(1)| |94(0) ) $1(0)

4-Size(2s/3) + O(1)
Depth(2s/3) + 0(1)
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Depth reducing formulas

-1

®1(1)| |94(0) ) $1(0)

4-Size(2s/3) + O(1) = poly(s)
Depth(2s/3) + 0(1)
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Depth reducing formulas

(=1
®1(1)| |®1(0) o, ®4(0)

4-Size(2s/3) + O(1) = poly(s)
Depth(2s/3) + O(1) = O(logs)
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Depth reducing formulas

(=1
®1(1)| |®1(0) o, ®4(0)

4-Size(2s/3) + O(1) = poly(s)
Depth(2s/3) + O(1) = O(logs)

O
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Adapting to circuits

)

=] & = E E DA
Structural results



Adapting to circuits
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Adapting to circuits

)

s : 2s
3 < size < 3

Not true for circuits!
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Adapting to circuits

)

d
3 <

degree < % (start with a homogeneous circuit)
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Adapting to circuits

)

Multiple paths from root!
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Adapting to circuits: Attempt 1
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Adapting to circuits: Attempt 1

Degree > 2d/3

F

J—_'

Degree < d/3

d 2d
{v€¢|§<deg(v)§?}
=] = - = = A



Adapting to circuits: Attempt 1

Degree > 2d/3

]:'

Degree < d/3
F =
o =

> Ad,

{v€¢|%<deg(v)§—}

2d
3
Y Ao,y
viEF V,',V_,'E]'—
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Adapting to circuits: Attempt 1

Degree > 2d/3

]:'

Degree < d/3
F =
¢ =

> Ad,

{ve¢|%<deg(V)§—}

2d
3
E: APy Py
V;EF V,',V_,'E]'—
each have degree at most 2d/3
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Adapting to circuits: Attempt 1

Degree > 2d/3

]:'

Degree < d/3
F =
¢ =

> Ad,

{ve¢|%<deg(V)§—}

2d
3
E: Aij Oy Py
V;EF V,',V_,'E]'—
each have degree at most 2d/3
Interpolate!
o F = = £ DA



0]

Adapting to circuits: Attempt 1

Degree > 2d/3

F

Degree < d/3
d 2
F = {v€¢|§<deg(v)§—}
¢ = Z Aiq)V[ +
V;EF
Depth(d) =

d
3
E: Aij®u Py
V,',VjE]:
Depth(2d/3) + O(1)
=] 5 = E DAy



0]

Adapting to circuits: Attempt 1

Degree > 2d/3

F

Degree < d/3
F =
¢ =

viEF

d
3
E: Aij®v Py
V,',VjE]:
Depth(d) = O(log d)
=] 5 = E DAy

> Ad,

d 2
{v€¢|§<deg(v)§—}



0]

Adapting to circuits: Attempt 1

Degree > 2d/3

F

Degree < d/3
F =
¢ =

viEF

d
3
E: Aij®u Py
V,',VjE]:
Depth(d) = O(log d)
Size(s,d) = ?
=] 5 = E DAy

> Ad,

d 2
{v€¢|§<deg(v)§—}
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Adapting to circuits: Attempt 1

Degree > 2d/3

F

Degree < d/3
F =
o =

ViEF

d
3
> Ao, 0y,
V,',VjE.F
Depth(d) = O(log d)
Size(s,d) = 5O(log d)
=] 5 = E DAy

> Ad,

{v€¢|§<deg(v)§2—}



Adapting to circuits: [Hyafil]
[0}

Degree > 2d/3

F

Degree < d/3
F =
o =

ViEF

d
3
> Ao, 0y,
V,',VjE.F
Depth(d) = O(log d)
Size(s,d) = 5O(log d)
=] 5 = E DAy

> Ad,

{v€¢|§<deg(v)§2—}



Adapting to circuits: Attempt 2

@ Want an analogue of $ =A- 0, + B.

o = = £ DA
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Adapting to circuits: Attempt 2

o Want an analogue of ® = A- ¢, + B.

@ Problem is that there are multiple paths to v.
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Adapting to circuits: Attempt 2

@ Want an analogue of $ =A- 0, + B.

@ Problem is that there are multiple paths to v.
® isn't really an affine function in ®,.

[VSBR]: Do not look at all paths. Only take a canonical path, like say
taking the right-edge out of every x-gate.
R

2
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Adapting to circuits: Attempt 2

Q/@\) =
@ Want an analogue of $ =A- 0, + B. Q/?@\

@ Problem is that there are multiple paths to v
® isn't really an affine function in ®,,.

[VSBR]: Do not look at all paths. Only take a canonical path, like say
taking the right-edge out of every x-gate. More like “suffixes”

1 ifu=v

] 0 o/w if uis a leaf @

u:v]=
[v1:v]+[wm:v] fu=u1+w

[t1] - [u2 = V] ifu =u; X u
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An example

vi:vg] = [v:iwg] + [v3:wg]
[vS]-l_’l-/{: v)ﬂ
-.\i’
(v3:v§) "‘&bfv{)
o ~——

=G
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An example

vi:wg] = [w:wg] + |



An example

vi:wg] = [w:wg] + |

= [va] - [vs : vg]



An example

vi:wg] = [w:wg] + |
= [va] - [vs : vg]

= (xaxe + x2x3) - [v5 : vg]



An example

[vi:vg] = [v2:wg] + [w=vg]
= [V4] . [V5 . Vg]
= (X1X2 + X2X3) : [V5 : V8]

= (x1x2+x2x3) - ([ve : vg] + [vo : vg])
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An example

[vi:vg] = [v2:wg] + [w=vg]
= [V4] . [V5 . Vg]
= (X1X2 + X2X3) : [V5 : V8]

= (xax2 + x2x3) - ([vs : vg] + [vo+v3])

= (x1x2 + x2x3)
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[VSBR] continued ...

We want a set of nodes F such that

W= Yu:v-v]

VEF

What are candidates for F?
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[VSBR] continued ...

We want a set of nodes F such that

W = D lu:vl-[v]

VEF

What are candidates for F7?
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[VSBR] continued ...

We want a set of nodes F such that
W] = D [u:v]-[V]
veF

What are candidates for 7 Every “right-path” must pass through exactly
one v € F
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[VSBR] continued ...

We want a set of nodes F such that
W] = D [u:v]-[V]
veF

What are candidates for F7 Every “right-path” must pass through exactly
one v € F

Fa = {vl|deg(v) > a, deg(v,) deg(vr) < a}
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veF
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one v € F

Fa = {v|deg(v)>a, deg(v,),deg(vg) < a}
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[VSBR] continued ...

We want a set of nodes F such that
W] = D (u:v]-[V]
VEF

What are candidates for F7 Every “right-path” must pass through exactly
one v € F

Fa = {v]|deg(v) > a, deg(v,),deg(vg) < a}

Make the circuit right heavy.
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[VSBR] continued ...

We want a set of nodes F such that
W] = D (u:v]-[v]
VEF

What are candidates for F? Every “right-path” must pass through exactly
one v € F

Fa = {v]|deg(v) >a, deg(v),deg(vg) < a}
Lemma

W = > [u:v]-[V]

VE]'—a

[u:w] = Z[u:v]-[v:w]

VEF,
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[VSBR] continued ...

Fa={v|deg(v) > a, deg(v,),deg(vg) < a}

W= > [u:v]-[v]

ve}'a[u]
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[VSBR] continued ...
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(W= > luvl-l-[ve] = deg(u)/2

Vefa[u]
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[VSBR] continued ...

Fa={v]|deg(v) > a, deg(v,),deg(vg) < a}
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[VSBR] continued ...

Fa={v|deg(v) > a, deg(v,),deg(vg) < a}

[Wl= Y [u:v]-v]-[vRl  ap) = deg(u)/2

VEF,

)

[u:w]= Z [u:v] [v:w]

VEF,

uw]



[VSBR] continued ...

Fa={v|deg(v) > a, deg(v,),deg(vg) < a}

VEF,

)

[u:w]= Z [u:v]-[v][vg:w]

VEF,

uw]

Structural results

A
[u] = Z [u:v]-[vi]-[vR] apy) = deg(u)/2 dudy, J)\K
z *%w

R

)

=
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[VSBR] continued ...

Fa={v|deg(v) > a, deg(v,),deg(vg) < a}

[Wl= Y [u:v]-v]-[vRl  ap) = deg(u)/2

VEF o)
deg(u) + de
[wow]= 37 [uvl-lul-lveewl  ap) = g()z ele)
Ve]:a[u:w]



[VSBR] continued ...

Fa={v|deg(v) > a, deg(v,),deg(vg) < a}

[wl= Y [u:vl-u]-Ivel  ap = deg(u)/2

vE]-'a[u]

wowl= 3 (vl lve:w] . = deg(u) J; deg(w)

Vefa[u:w]

.

du‘dv \C dk - J‘Lﬂ'\v - a’
S

= 4 w
-

z

-
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[VSBR] continued ...

Fa={v|deg(v) > a, deg(v,),deg(vg) < a}

[wl= Y [u:vl-u]-Ivel  ap = deg(u)/2

vE]-'a[u]
durdy
2
N deg(u) + deg(w
[u:w] = Z [u:v] v [vg: w] Auw] = ()2 (w)
VE}—a[u:W] —

\( MW—JV = d“" JW
< 2
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[VSBR] continued ...

Fa={v|deg(v) > a, deg(v,),deg(vg) < a}

[Wl= Y [u:vl-u]-IvRl  ap = deg(u)/2

vEF.

vl
wewl= 3 (vl lve:wl .= deg(u) J; deg(w)
vE]—'a[u:w] \/ J“-*JV
— £ _
= Z [u:v]- Z[VL:q]‘[qL]'[qR] vk w]
vefa[u:w] qe}—a[l]
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[VSBR] continued ...

Fa={v|deg(v) > a, deg(v,),deg(vg) < a}

[Wl= Y [u:vl-u]-IvRl  ap = deg(u)/2

vEF.

vl
wewl= 3 (vl lve:wl .= deg(u) J;deg(w)
vE]—'a[u:W]
= Z [U:V]'(Z[VL:q]'[qL]'[QR])'[VRZW]
Vefa[u:w] qe]—'a[v]
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[VSBR] continued ...

Fa={v|deg(v) > a, deg(v,),deg(vg) < a}

[Wl= Y [u:vl-u]-IvRl  ap = deg(u)/2

vEF.

vl
wewl= 3 (vl lve:wl  apw = deg(u) J;deg(w)
vE]—'a[u:W]
= Z [U:V]'(Z[VL:q]'[qL]'[QR])'[VRZW]
Vefa[u:w] qe]—'a[v]
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Summarizing

[wl] =D [u:v]-[v]- (vl

VEF,

[w:wl=3 " > [u:vl-[v:ql-lal-[gr] - [vk : W]

VEF, qEF;

Theorem ([Valiant-Skyum-Berkowitz-Rackoft])

If ® is a size s circuit computing an n-variate degree d polynomial f, then
there is a circuit ' computing f with the following properties.

o Every gate of ' computes either [u], [u : v], or on of the above
products, (so size O(s*))

o All addition gates have fan-in at most s2,

o All multiplication gates have fan-in at most 5, and

o If vy is a child of a x-gate v in &, then deg(vi) < deg(v)/2.

V.
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[w:wl=3 " > [u:vl-[v:ql-lal-[gr] - [vk : W]

VEF, qEF;

Theorem ([Valiant-Skyum-Berkowitz-Rackoft])

If ® is a size s circuit computing an n-variate degree d polynomial f, then
there is a circuit ' computing f with the following properties.

o Every gate of ' computes either [u], [u : v], or on of the above
products, (so size O(s*))

o All addition gates have fan-in at most s2,
o All multiplication gates have fan-in at most 5, and

o If vy is a child of a x-gate v in &, then deg(vi) < deg(v)/2.
Hence, the depth of &' is O(log d).

v
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First consequences of [VSBR]

o A sized-s circuit can be simulated by a formula of size s9(lo8d).

S

y ) nrwl
- 9}% P\ f (Ph) .5 12y4)
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First consequences of [VSBR]

o A sized-s circuit can be simulated by a formula of size s9(logd).

@ Easy way to construct universal circuits.

Structural results October 15th, 2021 19/35



Reducing to depth four

Can we reduce the depth further?
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Reducing to depth four

Can we reduce the depth further?

Theorem (Koiran)

If f is computed by a circuit of size s,
then it is computed by a X T1¥X[1 of size sO(Vdlogd).
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Reducing to depth four

Can we reduce the depth further?

Theorem (Koiran)

If f is computed by a circuit of size s,
then it is computed by a X T1¥X[1 of size sO(Vdlogd).

Lemma
If f is computed by an ABP of size s,
then it is computed by a X T1¥[1 of size so(\/g).

TIMM )0 -
L—j9
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Reducing to depth four : starting from circuits
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Reducing to depth four : starting from circuits

Degree > v/d

Degree < v/d

=] & = E E DA
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Top

Reducing to depth four : starting from circuits

Degree > /d

Degree < v/d
[} = = = = A




Top

Reducing to depth four : starting from circuits

Degree > v/d

XYy Xny xny xny xmn

Degree < v/d
. (n+Vd
Size ( v ) each
o = = E DA




Top

Reducing to depth four : starting from circuits

Degree > v/d

XY XNy xny xny xmn

Lemma ([T.])

then

Degree < v/d

Size ("J\r}f) each
If the circuit has [VSBR] properties,
deg(Top(zi, . . .,2)) < 15v/d
=] 5 = E DAy




Reducing to depth four : starting from circuits

Top
Degree > v/d
X1
Size (*12577)
Degree < v/d

Yy xnyxny xny xn
Size ("%g) each

Lemma ([T.])

If the circuit has [VSBR] properties,
then  deg(Top(zy,...,z)) < 15v/d
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Reducing to depth four : starting from circuits

21

XY Xn )y xny xny xmn

Theorem
Equivalent depth-4 circuit of size

() 4 (78 - s
n S
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Reducing to depth four : starting from circuits

PR

XY XNy xny xny xmn

Theorem
Equivalent depth-4 circuit of size

S(n+\/3) N (s+15\/3) _  o(Va)
n s
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Reducing to depth four : starting from circuits

P

XN 2N 2N ) XN ) 30

Theorem

Equivalent homogeneous depth-4 circuit with bottom fan-in at most \/d

of size
() - (5 - o
n s
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Reducing to depth four : starting from circuits

P

XN 72Ny 2Ny XN ) 30

Theorem

Equivalent homogeneous YNV circuit of size

() 4 () -
n S
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[SV]'s proof

Let's start with [VSBR]

S
f

i=1
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Structural results
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[SV]'s proof

Let's start with [VSBR]
S
fo= > fafofis fiufs

i=1

This is a SMXM9/2l circuit. We want to obtain a TN M circuit.
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[SV]'s proof

Let's start with [VSBR]

S
fo= > fafofisfia fs
i=1

This is a YNNI/ circuit. We want to obtain a MM circuit.
Each fj; is also some [u : v]. Keep expanding terms of degree more than t.
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[SV]'s proof

Let's start with [VSBR]

S
fo= > fafofisfiafs
i=1

This is a YNNI/ circuit. We want to obtain a MM circuit.
Each fj; is also some [u : v]. Keep expanding terms of degree more than t.
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[SV]'s proof

Let's start with [VSBR]

S S
fo= > | g1gs| fofizfia-fs
i=1 \j=1

This is a ZMXN[/2 circuit. We want to obtain a XXM circuit.
Each f;; is also some [u : v]. Keep expanding terms of degree more than t.
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[SV]'s proof

Let's start with [VSBR]

This is a YNNI/ circuit. We want to obtain a ZMX N circuit.
Each fj; is also some [u : v]. Keep expanding terms of degree more than t.
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[SV]'s proof

Let's start with [VSBR]

53
fo= ) fi-fas
i—1

This is a YNNI/ circuit. We want to obtain a ZMX N circuit.
Each f;; is also some [u : v]. Keep expanding terms of degree more than t.
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[SV]'s proof

Let's start with [VSBR]

54
fo= Y fifu
i—1

This is a YNNI/ circuit. We want to obtain a ZMX N circuit.
Each f;; is also some [u : v]. Keep expanding terms of degree more than t.
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[SV]'s proof
Let's start with [VSBR]

s4
f = Zfil"'fm
i=1

This is a ZNEN/2] circuit. We want to obtain a TNXMN circuit.
Each fjj is also some [u : v]. Keep expanding terms of degree more than t.

How many iterations until all degrees are at most t7
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Number of iterations

Jj=1
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Number of iterations

S

g = Zgjl‘gj2‘gj3'gj4‘ng
j=1

Observation

In each summand, at least two terms have degree at least t/8.

=] & = E DA
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Number of iterations

s

~—~—~

g = Z &j1 " 8j2 " 83" 8js " 85
J=1 >t/5
Observation

In each summand, at least two terms have degree at least t/8

=] & = E DA
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Number of iterations

Z &2

Observation

" 8j3 " 8j4 " &j5
/

>t/8

In each summand, at least two terms have degree at least t/8

=] & = E DA
Structural results




Number of iterations

S
Zg:jl &2 - 8j3 - 8ja" &5
~— —~—
>t/5 >t/8
Observation

In each summand, at least two terms have degree at least t/8. J

How many factors of degree at least t/87

s
fo= > fafofis-fia-fs

i=1
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Number of iterations

S
Zg:jl &2 - 8j3 - 8ja" &5
~— —~—
>t/5 >t/8
Observation

In each summand, at least two terms have degree at least t/8. J

How many factors of degree at least t/87

s
fo= > fafo-fi3-fi-fs
i=1
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Number of iterations

S
Zgjl &2 *8j38ja" &5
-1~~~
>t/5 >t/8
Observation

In each summand, at least two terms have degree at least t/8. J

How many factors of degree at least t/87

S

fo= > | gngpsgisgusgs | - fio-fiz-fia-fis
i=1 \j=1
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Number of iterations

S
Zgjl &2 *8j38ja" &5
-1~~~
>t/5 >t/8
Observation

In each summand, at least two terms have degree at least t/8. J

How many factors of degree at least t/87

S

fo= > | gigpsgasgusgs | - fio-fiz-fia-fis
i=1 \j=1
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Number of iterations

S
g = Z &1 - 82 " &3 8j4" &5
j:lv ~—
>t/5 >t/8
Observation
In each summand, at least two terms have degree at least t/8. J

How many factors of degree at least t/87

52
f = Zﬁ1-fi12'ﬁ3'ﬁ4"'ﬁ9
i—1
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Number of iterations

S
g = Z &1 - 82 " &3 8j4" &5
j:lv ~—
>t/5 >t/8
Observation
In each summand, at least two terms have degree at least t/8. J

How many factors of degree at least t/87 At most 8d/t.

52
f = Zﬁ1-fi12'ﬁ3'ﬁ4"'ﬁ9
i—1

October 15th, 2021 23/35



Number of iterations

Z gJ1 gjz &3 " gj4 " &j5
= 1>t/5 >t/8

Observation

In each summand, at least two terms have degree at least t/8. J

How many factors of degree at least t/87 At most 8d/t.
)
fq-fip-fiz-fig- - F
Z: 1 fi12 - 1i3 - fig 9 s @) oo
. q . o 2 RS
Final XXMM circuit has top fan-in at most s .

October 15th, 2021 23/35



A better starting point?

Recall
If £ has a sized-s circuit, then it has a YNENVel of size sO(Vd). J

S
fo= Y fufiofis fia-fis
i=1

If we start with a homogeneous formula, can we do better?
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A better starting point?

Recall
If £ has a sized-s circuit, then it has a YNENVel of size sO(Vd).

S
fo= Y fufiofis fia-fis
i=1
If we start with a homogeneous formula, can we do better?
[Hrubes-Yehudayoff]: Yes!
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A better starting point?

Recall
If £ has a sized-s circuit, then it has a YNENVel of size sO(Vd). J

S
fo= Y fufiofis fia-fis
i=1
If we start with a homogeneous formula, can we do better?
[Hrubes-Yehudayoff]: Yes!

Lemma ([Hrubes-Yehudayoff])

s 1 J 2f
fo= > fafafy W/th(g) -d<deg(f,-j)§(§) -d
i=1
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Lemma ([Hrubes-Yehudayoff])

dj:¢'-k<—o t Ql'q‘z"'qp ‘u

Structural results October 15th, 2021 25/35



A better starting point?

Recall

If £ has a sized-s circuit, then it has a YNE NV of size sO(Vd).

Theorem (Saptharishi?)

If f has a homogeneous sized-s formula,
then it has a homogeneous ¥ M[(dlogt/ t)]ZI'I[‘b.
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A better starting point?

Recall

If £ has a sized-s circuit, then it has a YNE NV of size sO(Vd).

Theorem (Saptharishi?)

If f has a homogeneous sized-s formula,
then it has a homogeneous ¥ MN[2(dleg /]y Ve,

Theorem (KOS)

If f has a syntactically multilinear sized-s circuit,
then it has a LM of size 20(VNTogs),

October 15th, 2021 24/35



Generalization to homogeneous depth-2A
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Generalization to homogeneous depth-2A

Theorem

If f has a sized-s circuit,

then it has a depth-2AA FMIOE@/S)NE IO/ A)]. . ylO@d/ 2] of gize
sO(A-dl/A)' ‘
Vv
(Z72%) )b

Structural results
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Generalization to homogeneous depth-2A

Theorem

If f has a sized-s circuit,

then it has a depth-2A YN0/ ST IO/ A)]. . ylO@/ )] of size
s0(A-d'/R)

Theorem

If f has a sized-poly(N) syntactically multilinear circuit,
then it has a (EM)* of size §0(&:(n/logs)'/%)
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Reduction to Depth-3 Circuits

(or, “can we do better if we allow the final circuit to be highly
inhomogeneous?")
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Road map [GKKS]

Vd_ vd
I

circuits

J

Vvd __ Vd
LAXNANE

circuits

|

DY

circuits
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Road map [GKKS]
vd _ Vd
SIS
circuits
App. of Ryser’s formula

Vvd __ Vd
LAXNANE

circuits

DY

circuits
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Road map [GKKS]

vd _ Vd

SIS
circuits

App. of Ryser’s formula

vd __ Vd

SASAY
circuits

[Saxena]'s duality trick

DY

circuits
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Road map [GKKS]

St d
circuits Tr

Only over Q,R etc. lApp. of Ryser's formula
J

2" d
27\32%2 A

circuits

>»

/\

Heavily non-homogeneous | [Saxena]'s duality trick

/-\__-

S "4‘%43
circuits r&

Structural results
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Step 1: M to TRl L]
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Step 1: M to TRl L]

Recall Ryser's formula:

X11 ... Xid

d
SR IO

SCld] i=1 jeS

Permy

Xd1 - Xdd

Qzialoes 155D, Bl

29 /35



Step 1: M to TRl L]

Recall Ryser’'s formula:

X1
Permy

Xd
X1

Xd

d
D> ED)TEIIT >
Scld]

i—1 jes
o =) = £ ©Hace



Step 1: M to TRl L]

Recall Ryser’'s formula:
X1
Permy

Xd
X1

Xd

> (-

d
> %
sC[d] jes
[} = = =] QAR



Step 1: M to TRl L]

Recall Ryser's formula:

d
dl-x...xg = Z (_1)d—|5| (ZXJ>

5Cld] Jj€s

il
I
D
)

= = - £ DA

Structural results



Step 1: M to TRl L]

[Fischer]:

dl-x3...xg = Z (_]_)d*|5|

SCld]

(

2%

Jjes

i



Step 1: M to TRl L]

[Fischer]:

d
dl-x1...xg = Z (_]_)d_|5| (ZXJ)

Jjes

5Cd]
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Step 1: M to TRl L]
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Step 1: M to TRl L]

29 d d

1 — LAY
Z@ZH ofS|zes o Z/\Z/\Z of size 20Vd) . ¢

*.E z
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Road map

Vd _ d
I IDNI

circuits

vd_ Vd
LALANY

circuits

DY

circuits
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Road map

Vd _ d
I IDNI

circuits

vd_ Vd
LALANY

circuits

DY

circuits

e — October 15th, 2021 30/35



Step 2: AlIIA 1o Tlpolv(s.ab)lsbel ¥ (2

o = = E = 9acn
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Step 2: AlIIA 1o Tlpolv(s.ab)lsbel ¥ (2

o = = E = 9acn
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Step 2: AL 1o xlpolv(sab)lsbal (2

a

Lemma ([Saxena])

There exists univariate polynomials fj;'s of degree at most a such that

O(sa?)

=+t = > Hfu(xJ

i=1 j=1
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Step 2: AL 1o xlpolv(sab)lsbal (2

a
T = (x{’—i—-‘-—i-xsl’)

Lemma ([Saxena])

There exists univariate polynomials f;;'s of degree at most a such that

O(sa?)

=1t +y)? = Z Hfu(xj

=il =1

Sketch of a proof by Gupta-Forbes-Shpilka

Py(t) = (14+yit)...(1+ yst) = 1+ £t + (higher degree terms) — s
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Step 2: AL 1o xlpolv(sab)lsbal (2

a
T = (x{’—i—-‘-—i-xsl’)

Lemma ([Saxena])

There exists univariate polynomials f;;'s of degree at most a such that

O(sa?)

=1t +y)? = Z Hfu(xj

=il =1

Sketch of a proof by Gupta-Forbes-Shpilka

Py(t)—1= ¢t +  (higher degree terms) — s
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Step 2: AL 1o xlpolv(sab)lsbal (2

a
T = (x{’—i—-‘-—i-xsl’)

Lemma ([Saxena])

There exists univariate polynomials f;;'s of degree at most a such that

O(sa?)

=1t +y)? = Z Hfu(xj

=il =1

Sketch of a proof by Gupta-Forbes-Shpilka

Py(t) —1)? = 0?t? 4+ (higher degree terms) — sa
y

October 15th, 2021 31/35



Step 2: APIIALE] to Tlolv(s.ab)iflsbaly (2
T = (x{’—i—-'-—i-xsl’)a

Lemma ([Saxena])

There exists univariate polynomials f;j's of degree at most a such that

O(sa®) s

C=(ntty)? = 3 [T0)

i=1 j=1

Sketch of a proof by Gupta-Forbes-Shpilka

(Py(t) —1)7 = 0?t® 4+ (higher degree terms) — sa
4
Interpolate! RO® (d‘(e‘("i
(Py(t) — 1)? expanded is a sum of (a+ 1) product of univariates. O

v
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Step 2: AL 1o xlpolv(sab)lsbal (2

poly(s,a) s

(y1+ —H/s = Z H f;_/ y_/

i



Step 2: AL 1o xlpolv(sab)lsbal (2

a
T = (Xf’-i—- -I-Xsb)
2 poly(s,a) s
(xf—i—---+xsb) = Z H ﬂ'j(ij>
i =1
o = SENE



Step 2: AL 1o xlpolv(sab)lsbal (2

oS
S

+

_|._
(I|><°.

[ I

<he o)
) /N
E o
N—
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Step 2: AL 1o xlpolv(sab)lsbal (2

a
T = (X{’ 4+ -+ xsb>
3 POly(Sva) S
i j=1
poly(s,a) s .
= > fi (%)
i j=1

Note that f;(t) is a univariate polynomial
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Step 2: AL 1o xlpolv(sab)lsbal (2

T = (x{’—i—-'-—i-xs”)a
. Poly(s.a) s
(x{’+---+x£) = ) ﬁy()g-")
i j=1
poly(s,a) s .
= > fii (%)
ij=1

Note that f;(t) is a univariate polynomial that can be factorized over C:

ab
i) = JJ(t— ¢w)
k=1
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Step 2: AL 1o xlpolv(sab)lsbal (2

T = (x{’—i—-'-—i-xs”)a
. Poly(s.a) s
(x{’+---+x£) = ) ﬁy()g-")
i j=1
poly(s,a) s .
= > fii (%)
ij=1

Note that f;(t) is a univariate polynomial that can be factorized over C:

ab
i) = T - <)
k=1
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Step 2: AL 1o xlpolv(sab)lsbal (2

T = (Xf—l—'--—i-xsb)a
(4 it) = i)H ()
pon(sa s
Z 1:[ i)

[y

poly(s a

Z lj lj — Gijk)
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Structural results

Step 2: AL 1o xlpolv(sab)lsbal (2

5 poly(s,a) s
(xf—i—-'-—l—xsb> = Z fij (XJ-b)
i =1
poly(s,a) s y
= fij (%)
i =1

poly(s,a) s a

b
= > (% — Gijk)

i j=1 k=1

e

-

.. a XIX circuit of poly(s, a, b) size.

October 15th, 2021
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Step 2: AL 1o xlpolv(sab)lsbal (2

a
poly(s,a) s
(o od) =S ()
i =1
poly(s,a) s y
= > fij(x5)
i =1
poly(s,a) s ab
= > IT G- i)
i j=lk=1

.. a XX circuit of poly(s, a, b) size and degree sab.
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Putting it together

general circuit

of size s

=] & = E DA
Structural results



Putting it together

general circuit

of size s

Vd

Vd
—_— Y IICIT circuit

of size so(\/E)

=] & = E DA
Structural results



Putting it together

o vd _ Vd
gene;al- circuit s > II> 11 circuit
or size s of size sO(Vd)

l

vd _ Vd
A A DD circuits
of size sO(Vd) . 20(Vd)
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Putting it together

o vd _ Vd
gene;al- circuit s > II> 11 circuit
or size s of size sO(Vd)

l

vd_ Vd
A A DD circuits

of size sO(Vd)
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Putting it together

o vd _ Vd
gene;al- circuit s > II> 11 circuit
or size s of size sO(Vd)

l

L vd _ Vd
ZHZ ((:)I(r%l)ts SAI A DD circuits
of size s of size sO(Vd)
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Putting it together

general circuit s > \ﬁgz \ﬁg circuit
f size s
o of size sO(Vd)

l

SIIY cirauits SWS WS cireuits

of size sO(Vd) of size sO(Vd)

Question: Where should one try to prove lower bounds?
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Putting it together

general hom. circuit Z\ﬁgz\ﬁg circuit
) —_—
of size s of size sO(Vd)

|

STIS. circuits —_— Z\;\HZ\;\EZ circuits

of size sO(Vd) of size sO(Vd)

Question: Where should one try to prove lower bounds?
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Putting it together

general hom. circuit 3 \ﬁgz\ﬁg hom. circuit
. N .
of size s of size sO(Vd)

|

STIS. circuits —_— Z\;\HZ\;\EZ circuits

of size sO(Vd) of size sO(Vd)

Question: Where should one try to prove lower bounds?
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Putting it together

general hom. circuit > \ﬁgz \ﬁg hom. circuit
. _— )
of size s e cO(Vd)
of size s

|

2 1122 circuits ¢ Z\//\gz \;\HZ hom. circuits

of size sO(Vd) of size sO(Vd)

Question: Where should one try to prove lower bounds?
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Putting it together

general hom. circuit s > f]dl S :ﬁ hom. circuit
. )
of size s e cO(Vd)
of size s

|

P Vd __ Vd
D nf)n-hg:\:/.g)cwcmts SAS A S hom. circuits
of size s of size sO(Vd)

Question: Where should one try to prove lower bounds?
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Other constants for the depth?

Recall
If f has a sized-s circuit,

A
then it has a depth-2A (znlO(d“H) of size sO(A-d"/2).

A3 i3 e la
?/TN‘JZ'T"“ 07

2 0 s
\d\ﬁim—’f’ﬁ‘\ ) SO(J)
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Other constants for the depth?

Recall
If f has a sized-s circuit,

A
then it has a depth-2A (znlO(d“)l) of size sO(A-d"/2).

Theorem

If f has a sized-s circuit,
then it has a depth-p circuit of size sO(p-d'/(P=1)
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Other constants for the depth?

Recall
If f has a sized-s circuit,

A
then it has a depth-2A (znlo(d“H) of size sO(A-d"/2).

Theorem
If f has a sized-s circuit,
then it has a depth-p circuit of size sO(p-d!/(P=),

Corollary
@ Det, has a XT1XT1 of size nO(/n).
o IMM,, g has a MX of size nO(V).
o If Perm,, needs SN of size n“(¥M) then VP % VNP.
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Back to the homogeneization (case of constant depth)

@ All gates compute homogeneous polynomials.

@ Hence, no gate can compute polynomials of degree larger than output.

@ For circuits and ABPs, homogeneity can be assumed without loss of
generality.
For formulas, probably not.
For constant depth formulas, certainly not.
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Back to the homogeneization (case of constant depth)

@ All gates compute homogeneous polynomials.

@ Hence, no gate can compute polynomials of degree larger than output.

@ For circuits and ABPs, homogeneity can be assumed without loss of
generality.

For formulas, probably not.
For constant depth formulas, certainly not.

What happens if we allow some subexponential blow up?

October 15th, 2021 34/35



Back to the homogeneization (case of constant depth)

@ All gates compute homogeneous polynomials.

@ Hence, no gate can compute polynomials of degree larger than output.

@ For circuits and ABPs, homogeneity can be assumed without loss of
generality.
For formulas, probably not.
For constant depth formulas, certainly not.

Theorem (Raz)

If f computed by a formula of size s,
then it is computed by a homogeneous one of size 20(d!0glogs)

October 15th, 2021 34/35



Back to the homogeneization (case of constant depth)

Theorem (GKKS)

If f computed by a circuit of size s and depth 3,

then it is computed by a homogeneous one of size poly(s)2o(\/a) and
depth 5.

Structural results
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Back to the homogeneization (case of constant depth)

Theorem (GKKS)

If f computed by a circuit of size s and depth 3,

then it is computed by a homogeneous one of size poly(s)2o(‘/a) and
depth 5.

Theorem (LST)

If f computed by a circuit of size s and depth T,

then it is computed by a homogeneous one of size pon(s)2O(‘/g) and
depth 2I'-1.
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Thank you.




