gct2022: School and Conference on Geometric
Complexity Theory

Arithmetic circuit reconstruction:
Part 2

Chandan Saha
Indian Institute of Science

Recap: The reconstruction problem

e Let f(x) be a n-variate degree-d polynomial computed
by a circuit of size s from a class C.

e Reconstruction problem for C. Given black-box access
to f, output a small circuit computing f.

acfln

f(a)

>

Black-box access to f
(membership query access to f)

Recap: The reconstruction problem

e Let f(x) be a n-variate degree-d polynomial computed
by a circuit of size s from a class C.

e Reconstruction problem for C. Given black-box access
to f, output a small circuit computing f.

e Size of the output circuit. Ideally, poly(s).
* Proper learning. Output circuit belongs to C.
o Efficiency. Ideally, poly(d,s).

Recap: Part | summary

e Hardness of worst-case reconstruction.

* A survey of known results on worst-case reconstruction.

e Depth-2 circuit reconstruction.
e > A) circuit reconstruction
> ROABP reconstruction
> Waring decomposition for) A) (k) circuits.

Recap: Part | summary

e Hardness of worst-case reconstruction.

* A survey of known results on worst-case reconstruction.

e Depth-2 circuit reconstruction.
e > A) circuit reconstruction
> ROABP reconstruction

> Waring decomposition for) A) (k) circuits.

o This talk: We will discuss average-case reconstruction.

I

a.k.a. learning in the non-degenerate case

Recap: Depth-3 powering circuits

e A depth-3 powering circuit (a.ka > A) circuit)
computes a sum of powers of linear polynomials, i.e.,
f= o)+ .+

where £ has degree |.

o Given black-box access to
a) \) circuit computing f, output a small circuit for f.

* Proper learning seems hard in the worst-case as
computing Waring rank is NP-hard [Shitov’ | 6].

Recap: Depth-3 powering circuits

e A depth-3 powering circuit (a.ka > A) circuit)
computes a sum of powers of linear polynomials, i.e.,
f= o)+ .+

where £ has degree |.

o Given black-box access to
a) \) circuit computing f, output a small circuit for f.

* What if the coefficients of 7, ..., £, are chosen randomly?

Learning random) A) circuits

* A random) \) circuit computes
d, d,
f=4¢ +...+4L
where the coefficients of £, ..., £, are chosen uniformly

and independently at random from a sufficiently large
finite subset of .

° Given black-box
access to a random) A) circuit computing f, output a
small > A) circuit for f.

Learning random) A) circuits

* A random) \) circuit computes
d, d,
f=4¢ +...+4L
where the coefficients of £, ..., £, are chosen uniformly

and independently at random from a sufficiently large
finite subset of .

° Given black-box
access to a random) A) circuit computing f, output a
small > A) circuit for f.

* For simplicity, assume that ¢, ..., £, are linear forms and
d=...=d =d.

Learning random) A) circuits

* A random) \) circuit computes
d d
f=4¢ +...+4L
where the coefficients of £, ..., £, are chosen uniformly

and independently at random from a sufficiently large
finite subset of .

° Given black-box
access to a random) A) circuit computing f, output a
small > A) circuit for f.

* What is the complexity of the above problem?

Learning random) A) circuits

* A random) \) circuit computes
d d
f=4¢ +...+4 |
where the coefficients of £, ..., £, are chosen uniformly
and independently at random from a sufficiently large
finite subset of .
° Suppose s = n. Then, £, ..., £, are [F-
linearly independent w.h.p.

° In other words, f is equivalent to the d-th power
symmetric polynomial PSym in s variables w.h.p.

Learning random) A) circuits

* A random) \) circuit computes
d d
f=4¢ +...+4 |
where the coefficients of £, ..., £, are chosen uniformly
and independently at random from a sufficiently large
finite subset of .
° Suppose s = n. Then, £, ..., £, are [F-
linearly independent w.h.p.

° In other words, f is equivalent to the d-th power
symmetric polynomial PSym in s variables w.h.p.

Let’s take a detour into the polynomial equivalence problem...

The polynomial equivalence problem

Polynomial equivalence problem

e Orbit. The orbit of an n-variate polynomial g over F is
the set orb(g) := {g(Ax) : A € GL(n, [F)}.

e Equivalent polynomials. Two n-variate polynomials f, g €
[F[x] are equivalent, denoted as f ~ g, if there’s a A €

GL(n, IF) s.t.f = g(Ax) (i.e., f € orb(g)).

» For example,f=+¢ 9+ ... + £ ¢ where ¢,,¢ are [F-
linearly independent, is equivalent to the power
symmetric polynomial PSym_, = x4+ ... +x 9.

Polynomial equivalence problem

e Orbit. The orbit of an n-variate polynomial g over F is
the set orb(g) := {g(Ax) : A € GL(n, [F)}.

e Equivalent polynomials. Two n-variate polynomials f, g €
[F[x] are equivalent, denoted as f ~ g, if there’s a A €

GL(n, IF) s.t.f = g(Ax) (i.e., f € orb(g)).

e [he equivalence problem. Given f and g as lists of
coefficients, check if f ~ g. If equivalent, then find a

certificate A € GL(n, [F).

e Polynomial equivalence (PE) has been studied intensely.

PE: Known results

e Thierauf (1998); Saxena (2006): PE is in NP 1 coAM
over [F.. Hence, unlikely to be NP-complete.

* Not known to be decidable over ().

e Over arbitrary fields, the best known complexity is the
same as that of polynomial solvability.

PE: Known results

e Thierauf (1998); Saxena (2006): PE is in NP 1 coAM
over [F.. Hence, unlikely to be NP-complete.

* Not known to be decidable over ().

e Over arbitrary fields, the best known complexity is the
same as that of polynomial solvability.

* What if f and g belong to restricted classes/families of
polynomials?

PE: Known results

e Minkowski (1885); Hasse (1921); Serre (1973); Witt
(1998); Wallenborn (2013): Quadratic form equivalence
can be solved in randomized polynomial time over [, C,
R, and over QQ (with access to Integer Factoring oracle).

e Uses well-known classification results for quadratic
forms over F,C R,and Q.

 For e.g, a quadratic form over C having n essential
variables is equivalent to x,2 +...+ x_?.

PE: Known results

e Minkowski (1885); Hasse (1921); Serre (1973); Witt
(1998); Wallenborn (2013): Quadratic form equivalence
can be solved in randomized polynomial time over [, C,
R, and over QQ (with access to Integer Factoring oracle).

o Agrawal & Saxena (2005): Cubic form equivalence is
graph isomorphism hard.

e Grochow & Qiao (2019): Tensor isomorphism, matrix
space isometry & conjugacy, algebra isomorphism and
cubic form equivalence are poly-time equivalent.

PE: Known results

o Kayal (201 1): Initiated the study of a natural variant of
PE for well-known polynomial families.

* Let G = {g_ :m € N} be a polynomial family, say Det .

o PE for G. Given b.b.a to f, check if f € orb(g) for some
m € N. If yes, then find a certificate A € GL(n, [F).

PE: Known results

o Kayal (201 1): Initiated the study of a natural variant of
PE for well-known polynomial families.

* Let G = {g_ :m € N} be a polynomial family, say Det .

° Given b.b.a to f, check if f € orb(g_) for some
m € N. If yes, then find a certificate A € GL(n, [F).

* Why is this version of PE interesting?

PE: Known results

o Kayal (201 1): Initiated the study of a natural variant of
PE for well-known polynomial families.

* Let G = {g_ :m € N} be a polynomial family, say Det .

o Affine projections. The set of dffine projections of a n-
variate g is aproj(g) := {g(Ax + b) : A€[F"xn belF"}.

PE: Known results

o Kayal (201 1): Initiated the study of a natural variant of
PE for well-known polynomial families.

* Let G = {g_ :m € N} be a polynomial family, say Det .

o Affine projections. The set of dffine projections of a n-
variate g is aproj(g) := {g(Ax + b) : A€[F"xn belF"}.

» Affine projections of a “simple” G can be very powerful.
» aproj(PSym) captures) A) circuits,
» aproj(SumProd) captures) [|> circuits, (SumProd has a depth-2 ROF)
» aproj(ANF) captures formulas, (ANF has a ROF)
» aproj(Det) & aproj(IMM) capture ABPs.

PE: Known results

o Kayal (201 1): Initiated the study of a natural variant of
PE for well-known polynomial families.

* Let G = {g_ :m € N} be a polynomial family, say Det .

e Orbit closure. The orbit closure of g over [F, denoted as
orb(g), is the Zariski closure of orb(g).

e Fact. orb(g) € aproj(g) < orb(g). (char(IF) = 0)

PE: Known results

o Kayal (201 1): Initiated the study of a natural variant of
PE for well-known polynomial families.

* Let G = {g_ :m € N} be a polynomial family, say Det .

e Orbit closure. The orbit closure of g over [F, denoted as
orb(g), is the Zariski closure of orb(g).

e Fact. orb(g) € aproj(g) € orb(g). (char(F) = 0)

e Natural to study the learning problem for orbits of well-
known polynomial families.

PE: Known results

o Kayal (201 1): Initiated the study of a natural variant of
PE for well-known polynomial families.

* Let G = {g_ :m € N} be a polynomial family, say Det .

o PE for G. Given b.b.a to f, check if f € orb(g) for some
m € N. If yes, then find a certificate A € GL(n, [F).

e Kayal (2011, 2012); Kayal, Nair, S., Tavenas (2017); Garg,
Gupta, Kayal, S. (2019); Murthy, Nair, S. (2020):
Randomized poly-time PE are known for Det, Perm,
IMM, tr-IMM, ESym, PSym, SumProduct etc.

PE for Power Symmetric Polynomials

e Let PSym = x,9+ ... + x. Assume d = 3, char(F) = 0.
o letf = £9 +...+¢% where?,..., 7, are [F-Li.

e Recall, a quadratic form over C having n essential
variables is equivalent to x,? +...+ x 2.

PE for Power Symmetric Polynomials

o Let PSym = x, 9+ ... + x9. Assume d = 3, char(FF) = 0.
o letf = £9 +...+29 where?,..., £ are F-li.

e Given b.b.a. to f, can we recover ¥, ..., £ (up to d roots of I)

PE for Power Symmetric Polynomials

e Let PSym = x,9+ ... + x. Assume d = 3, char(F) = 0.
o letf = £9 +...+¢% where?,..., 7, are [F-Li.

e Given b.b.a. to f, can we recover ¥, ..., £ (up to d roots of I)
e Obs. The number of essential variables of f is s.

e Apply the Carlini-Kayal algorithm to remove redundant
variables. So, we can assume w.l.o.g that s = n.

PE for Power Symmetric Polynomials

e Let PSym = x4+ ... + x 9. Assume d = 3, char([F) = 0.

* Input: Black-box access to f € orb(PSym).
Output: A matrix A € GL(n, [F) s.t. f = PSym(Ax).

e Algorithm: Uses the Hessian matrix associated with f.

The Hessian of a polynomial

* Let f be an n-variate polynomial and J, f the derivative of
f w.rt. x; and x..

g It is the matrix Hes; (x) := (0,), e -

e The Hessian matrix appears naturally in the Taylor
expansion of a polynomial and has important
applications in optimization, second derivative tests, etc.

The Hessian of a polynomial

* Let f be an n-variate polynomial and J, f the derivative of
f w.rt. x; and x..

e The Hessian of f. It is the matrix Hes; (x) := (J,/f), -

e Obs. If f = g(Ax) for some A € [F"*" [then
Hes;(x) = A" - Hes, (Ax) - A.

The Hessian of a polynomial

* Let f be an n-variate polynomial and J, f the derivative of
f w.rt. x; and x..

e The Hessian of f. It is the matrix Hes; (x) := (J,/f), -

e Obs. If f = g(Ax) for some A € [F"*" [then
Hes;(x) = A" - Hes, (Ax) - A.

» Proof~.Uses chain rule. Let Vf:= (0/f, d-f, ... 9 f)".Then,
Vf =AT - [Vg](Ax) .

The Hessian of a polynomial

* Let f be an n-variate polynomial and J, f the derivative of
f w.rt. x; and x..

e The Hessian of f. It is the matrix Hes; (x) := (J,/f), -

e Obs. If f = g(Ax) for some A € [F"*" [then
Hes;(x) = A" - Hes, (Ax) - A.

o Cor. det(Hes;) = c - det(Hes,)(Ax), where c € F.

PE for Power Symmetric Polynomials

e Let PSym = x4+ ... + x 9. Assume d = 3, char([F) = 0.

* Input: Black-box access to f € orb(PSym).
Output: A matrix A € GL(n, [F) s.t. f = PSym(Ax).

o Algorithm: (high-level) | Hesi () = AT Heses (Ax) A

» Step |. Compute b.b.a to H := det(Hes;).
Obs. B.b.a.to J;f can be computed efficiently from

b.b.a. to f.

PE for Power Symmetric Polynomials

e Let PSym = x4+ ... + x 9. Assume d = 3, char([F) = 0.

* Input: Black-box access to f € orb(PSym).
Output: A matrix A € GL(n, [F) s.t. f = PSym(Ax).

o Algorithm: (high-level) | Hesi () = AT Heses (Ax) A

» Step |. Compute b.b.a to H := det(Hes;).
» Step 2. Compute b.b.a to the factors of H.

(using b.b. polynomial factorization)

PE for Power Symmetric Polynomials

e Let PSym = x4+ ... + x 9. Assume d = 3, char([F) = 0.

* Input: Black-box access to f € orb(PSym).
Output: A matrix A € GL(n, [F) s.t. f = PSym(Ax).

o Algorithm: (high-level) | Hesi () = AT Heses (Ax) A

» Step |. Compute b.b.a to H := det(Hes;).
» Step 2. Compute b.b.a to the factors of H.
» Step 3. Recover A from the linear factors of H.

PE for Power Symmetric Polynomials

e Let PSym = x4+ ... + x 9. Assume d = 3, char([F) = 0.

* Input: Black-box access to f € orb(PSym).
Output: A matrix A € GL(n, [F) s.t. f = PSym(Ax).

= Al . .
o Algorithm: (correctness)| e () = A" Hesps,, (A) - A

» Step 3. Recover A from the linear factors of H.
Proof~. Hesps,.(x) = diag (d'x,%% ..., d'x,%?), where
d’ = d(d-1).

PE for Power Symmetric Polynomials

e Let PSym = x4+ ... + x 9. Assume d = 3, char([F) = 0.

* Input: Black-box access to f € orb(PSym).
Output: A matrix A € GL(n, [F) s.t. f = PSym(Ax).

= Al . .
o Algorithm: (correctness)| e () = A" Hesps,, (A) - A

» Step 3. Recover A from the linear factors of H.
Proof~. Hesps,(x) = diag (d'x,%% ..., d'x,4?)
Hesps,(Ax) = diag (d'¢,%2 ..., d"¢ ¢?), where
Ax =(£,...,°)T

PE for Power Symmetric Polynomials

e Let PSym = x4+ ... + x 9. Assume d = 3, char([F) = 0.

* Input: Black-box access to f € orb(PSym).
Output: A matrix A € GL(n, [F) s.t. f = PSym(Ax).

= Al . .
o Algorithm: (correctness)| e () = A" Hesps,, (A) - A

» Step 3. Recover A from the linear factors of H.
Proof~. Hesps,(x) = diag (d'x,%% ..., d'x,4?)
Hesps,n(Ax) = diag (d'¢,%2 ..., d¢ %)
H =c- ¢4 -...-£92 ceF.

PE for Power Symmetric Polynomials

e Let PSym = x4+ ... + x 9. Assume d = 3, char([F) = 0.

* Input: Black-box access to f € orb(PSym).
Output: A matrix A € GL(n, [F) s.t. f = PSym(Ax).

Hes;(x) = A" - Hesp . (Ax) - A

e Algorithm: (correctness)

» Step 3. Recover A from the linear factors of H.
Proof~. Hesps,(x) = diag (d'x,%% ..., d'x,4?)
Hesps,n(Ax) = diag (d'¢,%2 ..., d¢ %)
H =c-£%-...-£% ceF.

Recover #,..., £ (up to [F-multiples)

PE for Power Symmetric Polynomials

e Let PSym = x4+ ... + x 9. Assume d = 3, char([F) = 0.

* Input: Black-box access to f € orb(PSym).
Output: A matrix A € GL(n, [F) s.t. f = PSym(Ax).

Hes;(x) = A" - Hesp . (Ax) - A

e Algorithm: (correctness)

» Step 3. Recover A from the linear factors of H.
Proof~. Hesps,(x) = diag (d'x,%% ..., d'x,4?)
Hesps,n(Ax) = diag (d'¢,%2 ..., d¢ %)
H =c-£%-...-£% ceF.

Recover ¢’ ,..., ¥’

PE for Power Symmetric Polynomials

e Let PSym = x,9+ ... +x 9. Assume d = 3, char([F) = 0.

* Input: Black-box access to f € orb(PSym).
Output: A matrix A € GL(n, [F) s.t. f = PSym(Ax).

e Algorithm: (correctness)
» Step 3. Recover A from the linear factors of H.

Proof~. Observe,f=2z - ¢ 9+ ... +z - 9for some
unknown z,, ...,z_. Set up a linear system in z|, ...,z_ by
evaluating fand ¢’|, ..., £’ at n random points. Solve for
z,...,z, and take d-th roots.

PE for Sum-Product polynomials

e Let SumProd = x| X3 X4 ... F X X" Xy -
» Observe, aproj(SumProd) captures) [|) circuits.

e A quadratic form over C having n essential variables
(where n is even) is equivalent to x;x, + ... + x__ X .

PE for Sum-Product polynomials

e Let SumProd = x| X3 X;q * ... F X X" Xy -
» Observe, aproj(SumProd) captures) [|> circuits.

 Input: Black-box access to f € orb(SumProd).
Output: A matrix A € GL(n, [F) s.t.f = SumProd(Ax).

e Here, n = sd.

PE for Sum-Product polynomials

e Let SumProd = x| X3 X;q * ... F X X" Xy -
» Observe, aproj(SumProd) captures) [|> circuits.

 Input: Black-box access to f € orb(SumProd).
Output: A matrix A € GL(n, [F) s.t.f = SumProd(Ax).

Hes¢ (x) = A" - Hesg pproq (AX) - A

o Algorithm: (high-level)

» Step |. Compute b.b.a to H := det(Hes;).
» Step 2. Compute b.b.a to the factors of H.
» Step 3. Recover A from the linear factors of H.

PE for Sum-Product polynomials

e Let SumProd = x| X3 X;q * ... F X X" Xy -
» Observe, aproj(SumProd) captures) [|> circuits.

 Input: Black-box access to f € orb(SumProd).
Output: A matrix A € GL(n, [F) s.t.f = SumProd(Ax).

Hes¢ (x) = A" - Hesg pproq (AX) - A

o Algorithm: (correctness)

» Step 3. Recover A from the linear factors of H.

Proof~. Hesg,po4(X) = blocdiag (Hesy, (x) ,..., Hes, (x)),
where h. = x,,x,** X4 is a monomial.

PE for Sum-Product polynomials

e Let SumProd = x| X3 X;q * ... F X X" Xy -
» Observe, aproj(SumProd) captures) [|> circuits.

 Input: Black-box access to f € orb(SumProd).
Output: A matrix A € GL(n, [F) s.t.f = SumProd(Ax).

Hes¢ (x) = A" - Hesg pproq (AX) - A

o Algorithm: (correctness)

» Step 3. Recover A from the linear factors of H.

Proof~.
Clm. det(Hes, (x)) = (-1)¥'(d-1) - x;, 42 -+ x,, 4%

Hessian determinant of a monomial is a monomial.

PE for Sum-Product polynomials

e Let SumProd = x| X3 X;q * ... F X X" Xy -
» Observe, aproj(SumProd) captures) [|> circuits.

 Input: Black-box access to f € orb(SumProd).
Output: A matrix A € GL(n, [F) s.t.f = SumProd(Ax).

Hes¢ (x) = A" - Hesg pproq (AX) - A

o Algorithm: (correctness)

» Step 3. Recover A from the linear factors of H.

Proof~. Hence, H =c¢- ¢, %% ... - £ %% c€eF,
where Ax = (¢,,2.)".

PE for Sum-Product polynomials

e Let SumProd = x| X3 X;q * ... F X X" Xy -
» Observe, aproj(SumProd) captures) [|> circuits.

 Input: Black-box access to f € orb(SumProd).
Output: A matrix A € GL(n, [F) s.t.f = SumProd(Ax).

Hes¢ (x) = A" - Hesg pproq (AX) - A

o Algorithm: (correctness)

» Step 3. Recover A from the linear factors of H.

Proof~. Hence, H =c¢- ¢, %% ... - £ %% c€eF,
where Ax = (¢,,...,£.)" . The rest of the argument is
similar to PE for PSym.

PE for Read-once formulas

e Let SumProd = x| X3 X4 ... F X X" Xy -

e Observe, SumProd is a ROF. Recall, affine projections of
ROFs capture formulas.

o Can PE for ROFs be solved efficiently?

PE for Read-once formulas

e Let SumProd = x| X3 X4 ... F X X" Xy -

e Observe, SumProd is a ROF. Recall, affine projections of
ROFs capture formulas.

o Can PE for ROFs be solved efficiently?

e Gupta, S., Thankey (ongoing). Given b.b.a. to f, g in the
orbits of ROFs* the problem of checking if f ~ g and
finding a witness A can be solved in randomized poly-time.

* Analyzes the Hessian of a general ROF.

*mild conditions apply

PE for Read-once formulas

e Let SumProd = x| X3 X4 ... F X X" Xy -

e Observe, SumProd is a ROF. Recall, affine projections of
ROFs capture formulas.

o Can PE for ROFs be solved efficiently?

e Gupta, S., Thankey (ongoing). Given b.b.a. to f, g in the
orbits of ROFs* the problem of checking if f ~ g and
finding a witness A can be solved in randomized poly-time.

* A generalization of quadratic form equivalence:

A quadratic form over C is equivalent to x,x,+...+x__,x_ (n even).

PE for PSym w/o poly factoring

e Koiran & Saha (2021); Koiran & Skomra (2020). Solves the
decision version of PE for PSym over C in randomized
poly-time without appealing to polynomial factorization.

* Involves only arithmetic operations and equality tests.

o If f has rational coefficients, then the algorithm requires
polynomial number of bit operations.

Back to learning random) A) circuits

* A random) \) circuit computes
d d
f=4¢ +...+4L
where the coefficients of £, ..., £, are chosen uniformly

and independently at random from a sufficiently large
subset of [F.

° Given black-box
access to a random) A) circuit computing f, output a
small > A) circuit for f.

e Can we handle s > n! Does Hessian help?

Back to learning random) A) circuits

e Garcia-Marco, Koiran, Pecatte (2018). Random) A)
circuits can be reconstructed in randomized poly-time
provided s = n%/2 and d = 5.

o Uses 4-th order Hessian and shows that the determinant is
nonzero (w.h.p) and factorizes into linear factors.

Back to learning random) A) circuits

e Garcia-Marco, Koiran, Pecatte (2018). Random) A)
circuits can be reconstructed in randomized poly-time
provided s = n%/2 and d = 5.

o Uses 4-th order Hessian and shows that the determinant is
nonzero (w.h.p) and factorizes into linear factors.

e Unclear if the strategy scales to higher s. More
importantly, it is not clear how effective Hessian is in
learning other — more powerful — models.

* |t seems we need a different strategy...

Learning from lower bounds:
A paradigm

Learning from lower bounds!?

e Fortnow & Klivans (2009): A randomized poly-time
reconstruction algorithm for C implies super-polynomial
lower bound for C. (Learning —> lower bound)

e Does lower bound imply worst-case reconstruction!?
Unlikely. Reconstruction appears to be inherently hard.

Learning from lower bounds!?

e Fortnow & Klivans (2009): A randomized poly-time
reconstruction algorithm for C implies super-polynomial
lower bound for C. (Learning —> lower bound)

e Does lower bound imply worst-case reconstruction!?
Unlikely. Reconstruction appears to be inherently hard.

* Does lower bound imply average-case reconstruction?

A typical lower bound proof

e Suppose that a circuit from C computes a polynomial
f=T,+...+ T,

where each term T, is “simple” is some sense.

* For example, T, is a power of a linear polynomial for
> A\ circuits.

A typical lower bound proof

e Suppose that a circuit from C computes a polynomial
f=T,+...+ T,

where each term T, is “simple” is some sense.

* A typical lower bound proof for C proceeds by defining
a complexity measure (map) i : F[x] —> N s.t.

u(f +g) = p(f) + p(g) (subadditivity)
w(T,) = L, where L is a“small” quantity,

i(f) 2 H, where H is a“large” quantity.

A typical lower bound proof

e Suppose that a circuit from C computes a polynomial
f=T,+...+ T,

where each term T, is “simple” is some sense.

* A typical lower bound proof for C proceeds by defining
a complexity measure (map) i : F[x] —> N s.t.

u(f +g) = p(f) + p(g) (subadditivity)
w(T,) = L, where L is a“small” quantity,

i(f) 2 H, where H is a“large” quantity.
e Any C-circuit computing f must have s = H/L terms.

A typical lower bound proof

e Suppose that a circuit from C computes a polynomial
f=T,+...+ T,
where each term T, is “simple” is some sense.

Typically, |i(f) is the dimension of a vector space U associated with f.

* A typical lower bound-proof for C proceeds by defining
a complexity measure (map) i : F[x] —> N s.t.

u(f +g) = p(f) + p(g) (subadditivity)
w(T,) = L, where L is a“small” quantity,

i(f) 2 H, where H is a“large” quantity.
e Any C-circuit computing f must have s = H/L terms.

Lower bound for) A) circuits

* A) A) circuit computes
f=+¢4d+...+¢79 ,

)

whereaterm T, = £9.

o Let d“f be the set of k-th order partials of f, U := (3'< f)
and U, := (8"Ti>. Define p(f) := dim U, u(T)) := dim U, .

Lower bound for) A) circuits

* A) A) circuit computes
f=+¢9+...+£9 ,

)

whereaterm T. = /9.

o Let d“f be the set of k-th order partials of f, U := (3'< f)
and U, := (8"Ti>. Define p(f) := dim U, u(T)) := dim U, .

» As 0“is a set of linear operators on [F[x],
Uucu, +...+ U, and so,
w() = w(T,)) +...+ u(T,) (subadditivity).

Lower bound for) A) circuits

* A) A) circuit computes
f=+¢4d+...+¢79 ,

)

whereaterm T, = £9.

o Let d“f be the set of k-th order partials of f, U := (3'< f)
and U, := (8"Ti>. Define p(f) := dim U, u(T)) := dim U, .

o Obs. u(T)) = | whereas p(x;x, =" x_) = (E)

» Choose k = n/2. This gives a s = Q(2") lower bound for

> A) circuits computing x X, *** X, .

A typical lower bound proof

* A C-circuit computes a polynomial
f=T,+...+ T,

where each term T, is “simple” is some sense.

e A typical lower bound proof for C involves a set of

linear operators £ on [F[x] s.t. dim (L OTi> is “small”.

* In the lower bound proof for > A} circuits, £ = d~.

A typical lower bound proof

* A C-circuit computes a polynomial
f=T,+...+ T,

where each term T, is “simple” is some sense.

o As Lislinear, (Lof) € (LoT) +...+ (LoT,).

Learning from LB: A framework

* A C-circuit computes a polynomial
f=T,+...+ T,

where each term T, is “simple” is some sense.

o As Lislinear, (Lof) € (LoT) +...+ (LoT,).

o If T\,...,T, are random, we do expect (as dim(LoT,) is “small”)

(LoT,) +..4 (LT) =(LoT) ®...® (LoT,)
(Lof)y=(LoT,)+..+(LoT,) ,implying

(Lof)=(LoT)®...® (LoT,)

Learning from LB: A framework

f=T, +...+T..

e A (crude) approach to learn the terms.

Compute a basis of (L o f) from f.

Decompose (Lo f) = (L 0T|> D...D (L 0TS>.

Obtain T, from a basis of (L OTi> :

Learning from LB: A framework
f=T,+...+T,.
e A (crude) approach to learn the terms.

Compute a basis of (L o f) from f.
Decompose (L o f) = (L 0T|> D...D (12 OTS>.

How!?

Obtain T, from a basis of (L OTi> :

* What makes (L 0T|>, ey (L OTS> special subspaces of

(Lof)?

Learning from LB: A framework

f=T+...+ T,.
e Turns out in a typical |.b. proof L can be expressed as L
=L,o L, ,where L, L, are sets of linear operators.

» For example, 0“*! = 9 o d«.

Learning from LB: A framework

f=T, +...+T..

e Turns out in a typical |.b. proof L can be expressed as L
=L,o L, ,where L, L, are sets of linear operators.

o If T\,...,T, are random, then we do expect
(L0} =(L,°T)) ®..® (£, °T,)
(Lof) =(LoT)) B...0 (LoT,)

L,

Learning from LB: A framework

f=T, +...+T..

e Turns out in a typical |.b. proof L can be expressed as L
=L,o L, ,where L, L, are sets of linear operators.

o If T\,...,T, are random, then we do expect
(L0} =(L,°T)) ®..® (£, °T,)
(Lof) =(LoT)) B...0 (LoT,)

L,

e Let U:=(L,of), U, := (L£,0T,), V:={Lof), V,:= (LoT,).

Learning from LB: A framework

f=T, +...+T..

e Turns out in a typical |.b. proof L can be expressed as L
=L,o L, ,where L, L, are sets of linear operators.

o If T\,...,T, are random, then we do expect
U=U, D...D U, ,
V=V, ®..H V. ’

e Let U:=(Lof), U := (L£,0T,), V:={Lof), V,:= (LoT,).

Learning from LB: A framework

f=T, +...+T..

e Turns out in a typical |.b. proof L can be expressed as L
=L,o L, ,where L, L, are sets of linear operators.

o If T\,...,T, are random, then we do expect
U=U, D...D U, ,
V=V, ®..H V. ’

» Observe, V= (L, o U),V,=(L, 0 U,).

Learning from LB: A framework

f=T, +...+T..

e Turns out in a typical |.b. proof L can be expressed as L
=L,o L, ,where L, L, are sets of linear operators.

o If T\,...,T, are random, then we do expect
U=U, D...D U, ,
V=V, ®..0 V. 2

The above decomposition is the unique
decomposition of U and V into indecomposable

subspaces s.t. V. = (L2 o Ui>.

Learning from LB: A framework

f=T, +...+T..

e Turns out in a typical |.b. proof L can be expressed as L
=L,o L, ,where L, L, are sets of linear operators.

o If T\,...,T, are random, then we do expect
U=U, D...D U, ,
V=V, ®..0 V. 2

The above decomposition is the unique
decomposition of U andV under the action of L, .

Learning from LB: A framework

e A meta-algorithm to learn the terms. L =L, o L,

Compute bases of U = (L, o f) and V = (L o f).
Decompose U andV under the action of L, .
Obtain T, from a basis of U..

Learning from LB: A framework

e A meta-algorithm to learn the terms. L =L, o L,

Compute bases of U = (L, o f) and V = (L o f).
Decompose U andV under the action of L, .
Obtain T, from a basis of U..

e Learning the terms —> vector space decomposition

Learning from LB: A framework

e A meta-algorithm to learn the terms. L =L, o L,

Compute bases of U = (L, o f) and V = (L o f).
Decompose U andV under the action of L, .
Obtain T, from a basis of U..

e Although easy-to-state, one needs to overcome a few
technical challenges to make the meta-algorithm work.

Technical challenges

e Task | (Direct Sum). Show that U = U, @...c6 U ,and V
=V, D...0 V,whep. if T,..., T, are random.

Technical challenges

e Task | (Direct Sum). Show that U = U, @...c6 U ,and V
=V, D...0 V,whep. if T,..., T, are random.

e Task 2 (Unigueness). Show that the above decomposition
of U andV under the action of £, is unique.

Technical challenges

e Task | (Direct Sum). Show that U = U, @...c6 U ,and V
=V, D...0 V,whep. if T,..., T, are random.

e Task 2 (Unigueness). Show that the above decomposition
of U andV under the action of £, is unique.

e A C-circuit satisfying the direct sum and the uniqueness
criteria is called a non-degenerate C-circuit.

e Task | & 2 = Show that a random C-circuit is non-
degenerate w.h.p.

Technical challenges

e Task | (Direct Sum). Show that U = U, @...c6 U ,and V
=V, D...0 V,whep. if T,..., T, are random.

e Task 2 (Unigueness). Show that the above decomposition
of U andV under the action of £, is unique.

e Task 3 (Vector space decomposition). Carry out the
decomposition of U andV under the action of L, .

Technical challenges

e Task | (Direct Sum). Show that U = U, @...c6 U ,and V
=V, D...0 V,whep. if T,..., T, are random.

e Task 2 (Unigueness). Show that the above decomposition
of U andV under the action of £, is unique.

e Task 3 (Vector space decomposition). Carry out the
decomposition of U andV under the action of L, .

o Task 4 (Terms from subspaces). Recover T, from U. .

Known results

Known results that implement the framework:

o Kayal & S. (2019). Proper learns > A) ckts, tensors, and

homogeneous)

> ckts in the non-degenerate case.

> Introduced the framework in a rudimentary form.

»Proper learns random) A) circuits for s < (

n+d/3)

n

Known results

Known results that implement the framework:

o Kayal & S. (2019). Proper learns > A) ckts, tensors, and
homogeneous) [|) ckts in the non-degenerate case.

o Garg, Kayal & S. (2020). Proper learns > A [l circuits
in the non-degenerate case.

» Laid down the framework completely.

»The t = 2 case has a potential application in learning
mixtures of Gaussians.

Known results

Known results that implement the framework:

o Kayal & S. (2019). Proper learns > A) ckts, tensors, and
homogeneous) [|) ckts in the non-degenerate case.

o Garg, Kayal & S. (2020). Proper learns > A [l circuits
in the non-degenerate case.

e Bhargava, Garg, Kayal & S. (2021). Proper learns
generalized) [|) circuits in the non-degenerate case.

>ttt e(ty): & = mono., Det, IMM, etc.

» Gives a reasonably general way to accomplish Task |.

Elaboration on the technical challenges

f=T +...+T..

e Task | (Direct Sum). Show that U = U, @...c6 U ,and V
=V, D...0 Vwhp. if T,..., T, are random.

* As L, and L, are linear operators, this task essentially
boils down to showing that certain matrices (whose
entries are polynomials in the “coefficients” of the
terms) have the maximum possible rank.

e The “bad” coefficients lie in an algebraic variety. So,
random coefficients are “good”.

Elaboration on the technical challenges

f=T, +...+T..

e Task | (Direct Sum). Show that U = U, @...c6 U ,and V
=V, D...0 Vwhp. if T,..., T, are random.

e For a) A) circuit, it is fairly easy to show that <3k f) =

<€|d"<> D...D (fsd'k) for random ¢, ..., ¢..

e Note. Although easy for) A) and homogeneous) [|>
circuits, this task is nontrivial for > A> [|t circuits and
generalized) []|} circuits.

Elaboration on the technical challenges

f=T, +...+T

S []

e Task 2 (Uniqueness). Show that the decomposition of U
and V under the action of £, is unique.

* Need to understand all possible valid decompositions of
U and V under the action of £, .

e This understanding is provided by the adjoint algebra.

The adjoint algebra

e Definition.Let ¢@: U ->U and Y¥: V —>V be linear
maps. The adjoint algebra associated with (U,V, L,) is

adj(UV, £,) = {(@, §) : Ao = o, VA€ Ly} .

The adjoint algebra

e Definition.Let ¢@: U ->U and Y¥: V —>V be linear
maps. The adjoint algebra associated with (U,V, L,) is

adi(UV, £,) = {(, ¥) : Aop = Yod, VA € Ly}
o Obs. adj(U,V, L,) is a vector space over [F.

e Obs. We can compute a basis of adj(U)V, L,) in
polynomial time from bases of U and V, and the
operators in L,, by solving a linear system.

The adjoint algebra

e Definition. Let ¢@: U ->U and Y: V —>V be linear
maps. The adjoint algebra associated with (U,V, L,) is

adj(UV, £,) = {(@, §) : Ao = o, VA€ Ly} .

o Obs.If (@,) € adj(U,V, £L,) and @, U are invertible, then
U=@U) D...0 @Ujand V= (V) ©...0 W(V)),

and Y(V) = (£, o @(U)).

The adjoint algebra

e Definition.Let ¢@: U ->U and Y¥: V —>V be linear
maps. The adjoint algebra associated with (U,V, L,) is

adj(UV, £,) = {(@, §) : Ao = o, VA€ Ly} .

o Obs.If (@,) € adj(U,V, £L,) and @, U are invertible, then
U=@U) D...0 @Ujand V= (V) ©...0 W(V)),

and P(V)) = (£, > @(U)).
e Proof~. Direct sum follows from the fact that ¢, ¥ are
invertible. For A € £,, 2Ao@(U) = WwoA(U) € Y(V) .

Equality follows from V = (£, o U).

The adjoint algebra

e Definition.Let ¢@: U ->U and Y¥: V —>V be linear
maps. The adjoint algebra associated with (U,V, L,) is

adj(UV, £,) = {(@, §) : Ao = o, VA€ Ly} .

o Obs.If (@,) € adj(U,V, £L,) and @, U are invertible, then
U=@U) D...0 @Ujand V= (V) ©...0 W(V)),

and Y(V) = (£, o @(U)).

o Krull-Schmidt theorem. These are the only
decompositions of U andV under the action of L, .

The adjoint algebra

e Definition.Let ¢@: U ->U and Y¥: V —>V be linear
maps. The adjoint algebra associated with (U,V, L,) is

adj(UV, £,) = {(@, §) : Ao = o, VA€ Ly} .

o Obs.If (@,) € adj(U,V, £L,) and @, U are invertible, then
U=@U) D...0 @Ujand V= (V) ©...0 W(V)),

and Y(V) = (£, o @(U)).

* We need to understand adj(U,V, £,) to show uniqueness
of decomposition. When is the decomposition unique!?

The adjoint algebra

e Definition.Let ¢@: U ->U and Y¥: V —>V be linear
maps. The adjoint algebra associated with (U,V, L,) is

adj(UV, £,) = {(@, §) : Ao = o, VA€ Ly} .

* Let . be the projection map from U to U, and . the
projection map fromV toV. .

e Obs. (@,) € adj(U,V, L,) for all i € [s].

The adjoint algebra

e Definition.Let ¢@: U ->U and Y¥: V —>V be linear
maps. The adjoint algebra associated with (U,V, L,) is

adj(UV, £,) = {(@, §) : Ao = o, VA€ Ly} .

* Let . be the projection map from U to U, and . the
projection map fromV toV. .

e Obs. (@,) € adj(U,V, L,) for all i € [s].

e Proof~.Let u = u, + ... + u, for u € U and u, € U.
Then, Ao@.(u) = A(u) EV..
Also, JoA(u) = PoA(u, + ... +u) = A(u) .

The adjoint algebra

e Definition.Let ¢@: U ->U and Y¥: V —>V be linear
maps. The adjoint algebra associated with (U,V, L,) is

adj(UV, £,) = {(@, §) : Ao = o, VA€ Ly} .

* Let . be the projection map from U to U, and . the
projection map fromV toV. .

e Obs. (@,) € adj(U,V, L,) for all i € [s].

e The adjoint is trivial if it is generated as a vector space
over [by (@, y)), ..., (@, Py).

The adjoint algebra

e Definition.Let ¢@: U ->U and Y¥: V —>V be linear
maps. The adjoint algebra associated with (U,V, L,) is

adj(UV, £,) = {(@, §) : Ao = o, VA€ Ly} .

* Let . be the projection map from U to U, and . the
projection map fromV toV. .

e Obs. (@,) € adj(U,V, L,) for all i € [s].

o Clm.If adj(U,V, £,) is trivial, then U = U, §©...© U, and
V=YV, @...0 V. is the uniqgue decomposition of U and
V under the action of L.

The adjoint algebra

o Clm. If adj(U,V, L,) is trivial, then U = U, ©...© U, and
V=V, @D...0 V.is the unique decomposition of U and
V under the action of L.

e Proof~.Let U = @(U)) ©...D @U)and V = Y(V))
D...0 WY(V,) be another decomposition for some (¢,
P) € adj(U,V, L,), where @, b are invertible.

The adjoint algebra

o Clm. If adj(U,V, L,) is trivial, then U = U, ©...© U, and
V=V, @D...0 V.is the unique decomposition of U and
V under the action of L.

e Proof~.Let U = @(U)) ©...D @U)and V = Y(V))
D...0 WY(V,) be another decomposition for some (¢,
P) € adj(U,V, L,), where @, b are invertible.

e As adj(U,V, L) is trivial, @ =a;¢@, + ... + a @, and P =
by, +... + by, for some non-zero a,, b, € .

The adjoint algebra

o Clm. If adj(U,V, L,) is trivial, then U = U, ©...© U, and
V=V, @D...0 V.is the unique decomposition of U and
V under the action of L.

e Proof~.Let U = @(U)) ©...D @U)and V = Y(V))
D...0 WY(V,) be another decomposition for some (¢,
P) € adj(U,V, L,), where @, b are invertible.

e As adj(U,V, L) is trivial, @ =a;¢@, + ... + a @, and P =
by, +... + by, for some non-zero a,, b, € .

* Now observe that @(U,) = U. and Yys(V,)) =V..

Elaboration on the technical challenges

f=T, +...+T

S []

e Task 2 (Uniqueness). Show that the decomposition of U
and V under the action of £, is unique.

e This task is accomplished in [GKS20] and [BGKS’21] by
showing that the adjoint algebra adj(U,V, £,) is trivial if
T,, ..., T, are randomly chosen.

Elaboration on the technical challenges

e Task 3 (Vector space decomposition). Carry out the
decomposition of U andV under the action of L, .

e Chistov, lvanyos & Karpinski (1997); Eberly (1991);
Ronyai (1990); Friedl & Ronyai (1985): There are known
efficient vector space decomposition algorithms.

* Work over finite fields, C and R. Over Q, the output
decomposition is over an extension field.

Elaboration on the technical challenges

e Task 3 (Vector space decomposition). Carry out the
decomposition of U andV under the action of L, .

e Turns out, if the adjoint is trivial, then the vector space
decomposition problem can be reduced to diagonalizing
a random element of the adj(U,V, £,).

* Vector space decomposition —> diagonalizing a matrix.

Elaboration on the technical challenges

e Task 3 (Vector space decomposition). Carry out the
decomposition of U andV under the action of L, .

e Turns out, if the adjoint is trivial, then the vector space
decomposition problem can be reduced to diagonalizing
a random element of the adj(U,V, £,).

* The results in [KS'19], [GKS20] and [BGKS21] hold
over ().

Elaboration on the technical challenges

f=T, +...+T

S []

o Task 4 (Terms from subspaces). Recover T, from U. .

e Mostly easy, if L is the set of all partial derivatives.

o Example. For a Y A) circuit, U, = (fid'k). Obtain a [F-
multiple of ¢, (say, £’) from U. using b.b. polynomial
factorization. Observe, f = z, - £/ ¢ + ... + z_ - £'° for
unknown z, ..., z. Set up a linear system in z,, ...,z as
before. Solve it and take d-th roots.

Elaboration on the technical challenges

f=T, +...+T

S []

o Task 4 (Terms from subspaces). Recover T, from U. .
e Mostly easy, if L is the set of all partial derivatives.

e But not necessarily trivial, if £ is more complex (as is
the case in [GKS'20]).

Other average-case learning results

o Gupta, Kayal & Lokam (2011). Proper learns random
fanin-2 multilinear formulas.

o Gupta, Kayal & Qiao. (2013). Proper learns random
fanin-2 regular formulas.

e Kayal, Nair & S. (2019). Proper learns random ABPs of
low width.

Other average-case learning results

o Gupta, Kayal & Lokam (2011). Proper learns random
fanin-2 multilinear formulas.

o Gupta, Kayal & Qiao. (2013). Proper learns random
fanin-2 regular formulas.

e Kayal, Nair & S. (2019). Proper learns random ABPs of
low width.

 These algorithms are implicitly connected to the
corresponding lower bounds known for these models.

Learning other circuit models!?

e Can we implement the learning from lower bound
framework for other circuit models!?

Summary

* A survey of known results on polynomial equivalence
and average-case reconstruction.

* Polynomial equivalence problem

» Hessian based equivalence tests.

* Average-case learning

» A framework for designing learning algorithms from
lower bounds based on vector space decomposition.

Thanks!

