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Recap:  The reconstruction problem 

 Let f(x) be a n-variate degree-d polynomial computed 
by a circuit of size s from a class C. 

 

 Reconstruction problem for C. Given black-box access 
to f, output a small circuit computing f.   

 

f 
a ∈ 𝔽n f(a) 

          Black-box access to f 
 ( membership query access to f ) 



Recap:  The reconstruction problem 

 Let f(x) be a n-variate degree-d polynomial computed 
by a circuit of size s from a class C. 

 

 Reconstruction problem for C. Given black-box access 
to f, output a small circuit computing f.   

 

 Size of the output circuit. Ideally,  poly(s). 

 Proper learning. Output circuit belongs to C. 

 Efficiency. Ideally, poly(d,s).  

 



Recap:  Part 1 summary 

 Hardness of worst-case reconstruction. 

 A survey of known results on worst-case reconstruction. 

 

 Depth-2 circuit reconstruction. 

 ∑∧∑ circuit reconstruction 

 Improper:  ROABP reconstruction 

 Proper:  Waring decomposition for ∑∧∑(k) circuits. 

 

 



Recap:  Part 1 summary 

 Hardness of worst-case reconstruction. 

 A survey of known results on worst-case reconstruction. 

 

 Depth-2 circuit reconstruction. 

 ∑∧∑ circuit reconstruction 

 Improper:  ROABP reconstruction 

 Proper:  Waring decomposition for ∑∧∑(k) circuits. 

 

 This talk:  We will discuss average-case reconstruction. 

 
a.k.a. learning in the non-degenerate case  



Recap:  Depth-3 powering circuits 

 A depth-3 powering circuit (a.k.a ∑∧∑ circuit) 
computes a sum of powers of linear polynomials, i.e.,  

               f  =  𝓁1  + … + 𝓁s   , 

   where 𝓁i has degree 1. 

 

 The reconstruction problem. Given black-box access to 
a ∑∧∑ circuit computing f, output a small circuit for f.  

 

 Proper learning seems hard in the worst-case as 
computing  Waring rank is NP-hard [Shitov’16].  

 

d1 ds 



Recap:  Depth-3 powering circuits 

 A depth-3 powering circuit (a.k.a ∑∧∑ circuit) 
computes a sum of powers of linear polynomials, i.e.,  

               f  =  𝓁1  + … + 𝓁s   , 

   where 𝓁i has degree 1. 

 

 The reconstruction problem. Given black-box access to 
a ∑∧∑ circuit computing f, output a small circuit for f.  

 

 What if the coefficients of 𝓁1, …, 𝓁s are chosen randomly? 

 

d1 ds 



Learning random ∑∧∑ circuits 
 A random ∑∧∑ circuit computes 

               f  =  𝓁1  + … + 𝓁s   , 

where the coefficients of 𝓁1, …, 𝓁s  are chosen uniformly 
and independently at random from a sufficiently large 
finite subset of 𝔽. 

 The average-case learning problem. Given black-box 
access to a random ∑∧∑ circuit computing f, output a 
small ∑∧∑ circuit for f.  

 

 

d1 ds 



Learning random ∑∧∑ circuits 
 A random ∑∧∑ circuit computes 

               f  =  𝓁1  + … + 𝓁s   , 

where the coefficients of 𝓁1, …, 𝓁s  are chosen uniformly 
and independently at random from a sufficiently large 
finite subset of 𝔽. 

 The average-case learning problem. Given black-box 
access to a random ∑∧∑ circuit computing f, output a 
small ∑∧∑ circuit for f.  

 

 For simplicity, assume that  𝓁1, …, 𝓁s  are linear forms and 
d1= … = ds = d.     

d1 ds 



Learning random ∑∧∑ circuits 
 A random ∑∧∑ circuit computes 

               f  =  𝓁1  + … + 𝓁s   , 

where the coefficients of 𝓁1, …, 𝓁s  are chosen uniformly 
and independently at random from a sufficiently large 
finite subset of 𝔽. 

 The average-case learning problem. Given black-box 
access to a random ∑∧∑ circuit computing f, output a 
small ∑∧∑ circuit for f.  

 

 What is the complexity of the above problem? 

 

d d 



Learning random ∑∧∑ circuits 
 A random ∑∧∑ circuit computes 

               f  =  𝓁1  + … + 𝓁s   , 

where the coefficients of 𝓁1, …, 𝓁s  are chosen uniformly 
and independently at random from a sufficiently large 
finite subset of 𝔽. 

 An easier case. Suppose s ≤ n. Then, 𝓁1, …, 𝓁s  are 𝔽-
linearly independent w.h.p. 

 

 In other words, f is equivalent to the d-th power 
symmetric polynomial PSym in s variables w.h.p. 

d d 



Learning random ∑∧∑ circuits 
 A random ∑∧∑ circuit computes 

               f  =  𝓁1  + … + 𝓁s   , 

where the coefficients of 𝓁1, …, 𝓁s  are chosen uniformly 
and independently at random from a sufficiently large 
finite subset of 𝔽. 

 An easier case. Suppose s ≤ n. Then, 𝓁1, …, 𝓁s  are 𝔽-
linearly independent w.h.p. 

 

 In other words, f is equivalent to the d-th power 
symmetric polynomial PSym in s variables w.h.p. 

d d 

Let’s take a detour into the polynomial equivalence problem…   



The polynomial equivalence problem 



Polynomial equivalence problem 

 Orbit. The orbit of an n-variate polynomial g over 𝔽 is 
the set orb(g) := {g(Ax) :  A ∈ GL(n, 𝔽)}.   
 

 Equivalent polynomials. Two n-variate polynomials f, g ∈ 𝔽[x] are equivalent, denoted as f ~ g, if there’s a A ∈ 
GL(n, 𝔽) s.t. f = g(Ax) (i.e., f ∈ orb(g)).   

 

 For example, f = 𝓁1
d + … + 𝓁n

d , where 𝓁1, …,𝓁n are 𝔽–
linearly independent, is equivalent to the power 
symmetric polynomial PSymn,d = x1

d + … + xn
d . 

 

 

 



Polynomial equivalence problem 

 Orbit. The orbit of an n-variate polynomial g over 𝔽 is 
the set orb(g) := {g(Ax) :  A ∈ GL(n, 𝔽)}.   
 

 Equivalent polynomials. Two n-variate polynomials f, g ∈ 𝔽[x] are equivalent, denoted as f ~ g, if there’s a A ∈ 
GL(n, 𝔽) s.t. f = g(Ax) (i.e., f ∈ orb(g)).   

 

 The equivalence problem. Given f and g as lists of 
coefficients, check if f ~ g. If equivalent, then find a 
certificate A ∈ GL(n, 𝔽). 
 

 Polynomial equivalence (PE) has been studied intensely. 

 



PE:  Known results 

 Thierauf (1998); Saxena (2006): PE is in NP ∩ coAM 
over 𝔽q.  Hence, unlikely to be NP-complete. 

 

 Not known to be decidable over ℚ.  

 

 Over arbitrary fields, the best known complexity is the 
same as that of polynomial solvability. 

 

 

 

 



PE:  Known results 

 Thierauf (1998); Saxena (2006): PE is in NP ∩ coAM 
over 𝔽q.  Hence, unlikely to be NP-complete. 

 

 Not known to be decidable over ℚ.  

 

 Over arbitrary fields, the best known complexity is the 
same as that of polynomial solvability. 

 

 What if f and g belong to restricted classes/families of 
polynomials? 

 

 



PE:  Known results 

 Minkowski (1885); Hasse (1921); Serre (1973); Witt 
(1998); Wallenborn (2013): Quadratic form equivalence 
can be solved in randomized polynomial time over 𝔽q, ℂ, ℝ, and over ℚ (with access to Integer Factoring oracle). 

 

 Uses well-known classification results for quadratic 
forms over 𝔽q, ℂ, ℝ, and ℚ .  

 

 For e.g., a quadratic form over ℂ having n essential 
variables is equivalent to x1

2 +…+ xn
2 . 

 

 



PE:  Known results 

 Minkowski (1885); Hasse (1921); Serre (1973); Witt 
(1998); Wallenborn (2013): Quadratic form equivalence 
can be solved in randomized polynomial time over 𝔽q, ℂ, ℝ, and over ℚ (with access to Integer Factoring oracle). 

 

 Agrawal & Saxena (2005): Cubic form equivalence is 
graph isomorphism hard. 

 

 Grochow & Qiao (2019): Tensor isomorphism,  matrix 
space isometry & conjugacy, algebra isomorphism and 
cubic form equivalence are poly-time equivalent. 

 



PE:  Known results 

 Kayal (2011): Initiated the study of a natural variant of 
PE for well-known polynomial families. 

 Let G = {gm : m ∈ ℕ} be a polynomial family, say Det . 

 

 PE for G.  Given b.b.a to f, check if f ∈ orb(gm) for some 
m ∈ ℕ.  If yes, then find a certificate  A ∈ GL(n, 𝔽). 

 

 

 

 

 



PE:  Known results 

 Kayal (2011): Initiated the study of a natural variant of 
PE for well-known polynomial families. 

 Let G = {gm : m ∈ ℕ} be a polynomial family, say Det . 

 

 PE for G.  Given b.b.a to f, check if f ∈ orb(gm) for some 
m ∈ ℕ.  If yes, then find a certificate  A ∈ GL(n, 𝔽). 

 

 Why is this version of PE interesting? 

 

 

 



PE:  Known results 

 Kayal (2011): Initiated the study of a natural variant of 
PE for well-known polynomial families. 

 Let G = {gm : m ∈ ℕ} be a polynomial family, say Det . 
 

 Affine projections. The set of affine projections of a n-
variate g is aproj(g) := {g(Ax + b) :  A∈𝔽n x n, b∈𝔽n}. 
 

 

 

 

 

 



PE:  Known results 

 Kayal (2011): Initiated the study of a natural variant of 
PE for well-known polynomial families. 

 Let G = {gm : m ∈ ℕ} be a polynomial family, say Det . 
 

 Affine projections. The set of affine projections of a n-
variate g is aproj(g) := {g(Ax + b) :  A∈𝔽n x n, b∈𝔽n}. 
 

 Affine projections of a “simple” G can be very powerful.  

 aproj(PSym) captures ∑∧∑ circuits, 

 aproj(SumProd) captures ∑∏∑ circuits, (SumProd has a depth-2 ROF) 

 aproj(ANF) captures formulas,               (ANF has a ROF) 

 aproj(Det) & aproj(IMM) capture ABPs.  

 



PE:  Known results 

 Kayal (2011): Initiated the study of a natural variant of 
PE for well-known polynomial families. 

 Let G = {gm : m ∈ ℕ} be a polynomial family, say Det . 
 

 Orbit closure. The orbit closure of g over 𝔽, denoted as 
orb(g), is the Zariski closure of orb(g). 
 

 Fact.  orb(g) ⊆ aproj(g) ⊆ orb(g).   (char(𝔽) = 0) 

 

 

 

 



PE:  Known results 

 Kayal (2011): Initiated the study of a natural variant of 
PE for well-known polynomial families. 

 Let G = {gm : m ∈ ℕ} be a polynomial family, say Det . 
 

 Orbit closure. The orbit closure of g over 𝔽, denoted as 
orb(g), is the Zariski closure of orb(g). 
 

 Fact.  orb(g) ⊆ aproj(g) ⊆ orb(g).   (char(𝔽) = 0) 

 

 Natural to study the learning problem for orbits of well-
known polynomial families. 

 



PE:  Known results 

 Kayal (2011): Initiated the study of a natural variant of 
PE for well-known polynomial families. 

 Let G = {gm : m ∈ ℕ} be a polynomial family, say Det . 

 

 PE for G.  Given b.b.a to f, check if f ∈ orb(gm) for some 
m ∈ ℕ.  If yes, then find a certificate  A ∈ GL(n, 𝔽). 

 

 Kayal (2011, 2012); Kayal, Nair, S., Tavenas (2017); Garg, 
Gupta, Kayal, S. (2019); Murthy, Nair, S. (2020): 
Randomized poly-time PE are known for Det, Perm, 
IMM, tr-IMM, ESym, PSym, SumProduct etc.   

 



PE for Power Symmetric Polynomials 

 Let PSym  =  x1
d + … + xs

d .  Assume d ≥ 3, char(𝔽) = 0. 

 Let f  =  𝓁1
d  + … + 𝓁s

d , where 𝓁1, …, 𝓁s are 𝔽-l.i. 

 

 Recall, a quadratic form over ℂ having n essential 
variables is equivalent to x1

2 +…+ xn
2 . 

 

 

 

 

 

 



PE for Power Symmetric Polynomials 

 Let PSym  =  x1
d + … + xs

d .  Assume d ≥ 3, char(𝔽) = 0. 

 Let f  =  𝓁1
d  + … + 𝓁s

d , where 𝓁1, …, 𝓁s are 𝔽-l.i. 

 

 Given b.b.a. to f, can we recover 𝓁1, …, 𝓁s? (up to dth roots of 1)  

 

 

 

 

 

 



PE for Power Symmetric Polynomials 

 Let PSym  =  x1
d + … + xs

d .  Assume d ≥ 3, char(𝔽) = 0. 

 Let f  =  𝓁1
d  + … + 𝓁s

d , where 𝓁1, …, 𝓁s are 𝔽-l.i. 

 

 Given b.b.a. to f, can we recover 𝓁1, …, 𝓁s? (up to dth roots of 1)  

 

 Obs.  The number of essential variables of f is s. 

 

 Apply the Carlini-Kayal algorithm to remove redundant 
variables.  So, we can assume w.l.o.g that s = n. 

 

 



PE for Power Symmetric Polynomials 

 Let PSym  =  x1
d + … + xn

d .  Assume d ≥ 3, char(𝔽) = 0. 

 

 Input:  Black-box access to f ∈ orb(PSym). 

  Output:  A matrix A ∈ GL(n, 𝔽) s.t. f = PSym(Ax). 
 

 Algorithm:  Uses the Hessian matrix associated with f. 

 

 

 

 

 

 



The Hessian of a polynomial 

 Let f be an n-variate polynomial and ∂i,jf the derivative of 
f w.r.t. xi and xj.  

 

 The Hessian of f.  It is the matrix Hesf (x) := ( ∂i,jf )i,j∈[n] . 

 

 The Hessian matrix appears naturally in the Taylor 
expansion of a polynomial and has important 
applications in optimization, second derivative tests, etc. 

 

 

 

 



The Hessian of a polynomial 

 Let f be an n-variate polynomial and ∂i,jf the derivative of 
f w.r.t. xi and xj.  

 

 The Hessian of f.  It is the matrix Hesf (x) := ( ∂i,jf )i,j∈[n] . 

 

 Obs.  If f = g(Ax) for some A ∈ 𝔽n x n , then 

  Hesf (x)  =  AT ∙ Hesg (Ax) ∙ A . 

 

 

 

 



The Hessian of a polynomial 

 Let f be an n-variate polynomial and ∂i,jf the derivative of 
f w.r.t. xi and xj.  

 

 The Hessian of f.  It is the matrix Hesf (x) := ( ∂i,jf )i,j∈[n] . 

 

 Obs.  If f = g(Ax) for some A ∈ 𝔽n x n , then 

  Hesf (x)  =  AT ∙ Hesg (Ax) ∙ A . 

 Proof~. Uses chain rule. Let ∇f := (∂1f, ∂2f, … ∂nf)
T. Then, 

  ∇f  = AT ∙ [∇g](Ax)  . 

 

 



The Hessian of a polynomial 

 Let f be an n-variate polynomial and ∂i,jf the derivative of 
f w.r.t. xi and xj.  

 

 The Hessian of f.  It is the matrix Hesf (x) := ( ∂i,jf )i,j∈[n] . 

 

 Obs.  If f = g(Ax) for some A ∈ 𝔽n x n , then 

  Hesf (x)  =  AT ∙ Hesg (Ax) ∙ A . 

 

 Cor.  det(Hesf )  =  c ∙ det(Hesg)(Ax),  where c ∈ 𝔽. 

  

 



PE for Power Symmetric Polynomials 

 Let PSym  =  x1
d + … + xn

d .  Assume d ≥ 3, char(𝔽) = 0.  

 

 Input:  Black-box access to f ∈ orb(PSym). 

  Output:  A matrix A ∈ GL(n, 𝔽) s.t. f = PSym(Ax). 
 

 Algorithm:  (high-level) 

 Step 1. Compute b.b.a to H := det(Hesf ). 

Obs.  B.b.a. to ∂i,jf can be computed efficiently from 

         b.b.a. to f. 

 

 

 

Hesf (x)  =  AT ∙ HesPSym (Ax) ∙ A  



PE for Power Symmetric Polynomials 

 Let PSym  =  x1
d + … + xn

d .  Assume d ≥ 3, char(𝔽) = 0.  

 

 Input:  Black-box access to f ∈ orb(PSym). 

  Output:  A matrix A ∈ GL(n, 𝔽) s.t. f = PSym(Ax). 
 

 Algorithm:  (high-level) 

 Step 1. Compute b.b.a to H := det(Hesf ). 

 Step 2. Compute b.b.a to the factors of H. 

  (using b.b. polynomial factorization) 

 

 

 

Hesf (x)  =  AT ∙ HesPSym (Ax) ∙ A  



PE for Power Symmetric Polynomials 

 Let PSym  =  x1
d + … + xn

d .  Assume d ≥ 3, char(𝔽) = 0.  

 

 Input:  Black-box access to f ∈ orb(PSym). 

  Output:  A matrix A ∈ GL(n, 𝔽) s.t. f = PSym(Ax). 
 

 Algorithm:  (high-level) 

 Step 1. Compute b.b.a to H := det(Hesf ). 

 Step 2. Compute b.b.a to the factors of H. 

 Step 3. Recover A from the linear factors of H. 
  

 

 

Hesf (x)  =  AT ∙ HesPSym (Ax) ∙ A  



PE for Power Symmetric Polynomials 

 Let PSym  =  x1
d + … + xn

d .  Assume d ≥ 3, char(𝔽) = 0.  

 

 Input:  Black-box access to f ∈ orb(PSym). 

  Output:  A matrix A ∈ GL(n, 𝔽) s.t. f = PSym(Ax). 
 

 Algorithm:  (correctness) 

 Step 3. Recover A from the linear factors of H. 

Proof~.  HesPSym(x)    =  diag (d’x1
d-2, …, d’xn

d-2), where  

       d’ = d(d-1). 

  

 

 

Hesf (x)  =  AT ∙ HesPSym (Ax) ∙ A  



PE for Power Symmetric Polynomials 

 Let PSym  =  x1
d + … + xn

d .  Assume d ≥ 3, char(𝔽) = 0.  

 

 Input:  Black-box access to f ∈ orb(PSym). 

  Output:  A matrix A ∈ GL(n, 𝔽) s.t. f = PSym(Ax). 
 

 Algorithm:  (correctness) 

 Step 3. Recover A from the linear factors of H. 

Proof~.  HesPSym(x)    =  diag (d’x1
d-2, …, d’xn

d-2) 

        HesPSym(Ax)  =  diag (d’𝓁1
d-2, …, d’𝓁n

d-2), where 

    Ax   = (𝓁1, …, 𝓁n)
T  

 

 

Hesf (x)  =  AT ∙ HesPSym (Ax) ∙ A  



PE for Power Symmetric Polynomials 

 Let PSym  =  x1
d + … + xn

d .  Assume d ≥ 3, char(𝔽) = 0.  

 

 Input:  Black-box access to f ∈ orb(PSym). 

  Output:  A matrix A ∈ GL(n, 𝔽) s.t. f = PSym(Ax). 
 

 Algorithm:  (correctness) 

 Step 3. Recover A from the linear factors of H. 

Proof~.  HesPSym(x)    =  diag (d’x1
d-2, …, d’xn

d-2) 

        HesPSym(Ax)  =  diag (d’𝓁1
d-2, …, d’𝓁n

d-2) 

    H     = c ∙ 𝓁1
d-2 ∙ … ∙ 𝓁n

d-2,    c ∈ 𝔽 . 

 

 

Hesf (x)  =  AT ∙ HesPSym (Ax) ∙ A  



PE for Power Symmetric Polynomials 

 Let PSym  =  x1
d + … + xn

d .  Assume d ≥ 3, char(𝔽) = 0.  

 

 Input:  Black-box access to f ∈ orb(PSym). 

  Output:  A matrix A ∈ GL(n, 𝔽) s.t. f = PSym(Ax). 
 

 Algorithm:  (correctness) 

 Step 3. Recover A from the linear factors of H. 

Proof~.  HesPSym(x)    =  diag (d’x1
d-2, …, d’xn

d-2) 

        HesPSym(Ax)  =  diag (d’𝓁1
d-2, …, d’𝓁n

d-2) 

    H     = c ∙ 𝓁1
d-2 ∙ … ∙ 𝓁n

d-2,    c ∈ 𝔽 . 

 

 

Recover 𝓁1 ,…, 𝓁n (up to 𝔽-multiples)   

Hesf (x)  =  AT ∙ HesPSym (Ax) ∙ A  



PE for Power Symmetric Polynomials 

 Let PSym  =  x1
d + … + xn

d .  Assume d ≥ 3, char(𝔽) = 0.  

 

 Input:  Black-box access to f ∈ orb(PSym). 

  Output:  A matrix A ∈ GL(n, 𝔽) s.t. f = PSym(Ax). 
 

 Algorithm:  (correctness) 

 Step 3. Recover A from the linear factors of H. 

Proof~.  HesPSym(x)    =  diag (d’x1
d-2, …, d’xn

d-2) 

        HesPSym(Ax)  =  diag (d’𝓁1
d-2, …, d’𝓁n

d-2) 

    H     = c ∙ 𝓁1
d-2 ∙ … ∙ 𝓁n

d-2,    c ∈ 𝔽 . 

 

 

Recover 𝓁’1 ,…, 𝓁’n 

Hesf (x)  =  AT ∙ HesPSym (Ax) ∙ A  



PE for Power Symmetric Polynomials 

 Let PSym  =  x1
d + … + xn

d .  Assume d ≥ 3, char(𝔽) = 0.  

 

 Input:  Black-box access to f ∈ orb(PSym). 

  Output:  A matrix A ∈ GL(n, 𝔽) s.t. f = PSym(Ax). 
 

 Algorithm:  (correctness) 

 Step 3. Recover A from the linear factors of H. 

Proof~.  Observe, f = z1 ∙ 𝓁’1d + … + zn ∙ 𝓁’nd for some 
unknown z1, …, zn.  Set up a linear system in z1, …, zn by 
evaluating f and  𝓁’1, …, 𝓁’n at n random points. Solve for 
z1, …, zn and take d-th roots.  



PE for Sum-Product polynomials 

 Let SumProd  =  x11x12∙∙∙ x1d  + … +  xs1xs2∙∙∙ xsd  . 

 Observe, aproj(SumProd) captures ∑∏∑ circuits. 
 

 A quadratic form over ℂ having n essential variables 
(where n is even) is equivalent to x1x2 + … + xn-1xn . 

   

 

 

 

 



PE for Sum-Product polynomials 

 Let SumProd  =  x11x12∙∙∙ x1d  + … +  xs1xs2∙∙∙ xsd  . 

 Observe, aproj(SumProd) captures ∑∏∑ circuits. 
 

 Input:  Black-box access to f ∈ orb(SumProd). 

  Output:  A matrix A ∈ GL(n, 𝔽) s.t. f = SumProd(Ax). 
 

 Here, n = sd. 

   

 

 

 

 



PE for Sum-Product polynomials 

 Let SumProd  =  x11x12∙∙∙ x1d  + … +  xs1xs2∙∙∙ xsd  . 

 Observe, aproj(SumProd) captures ∑∏∑ circuits. 
 

 Input:  Black-box access to f ∈ orb(SumProd). 

  Output:  A matrix A ∈ GL(n, 𝔽) s.t. f = SumProd(Ax). 
 

 Algorithm:  (high-level) 

 Step 1. Compute b.b.a to H := det(Hesf ). 

 Step 2. Compute b.b.a to the factors of H. 

 Step 3. Recover A from the linear factors of H. 
  

 

Hesf (x)  =  AT ∙ HesSumProd (Ax) ∙ A  



PE for Sum-Product polynomials 

 Let SumProd  =  x11x12∙∙∙ x1d  + … +  xs1xs2∙∙∙ xsd  . 

 Observe, aproj(SumProd) captures ∑∏∑ circuits. 
 

 Input:  Black-box access to f ∈ orb(SumProd). 

  Output:  A matrix A ∈ GL(n, 𝔽) s.t. f = SumProd(Ax). 
 

 Algorithm:  (correctness) 

 Step 3. Recover A from the linear factors of H. 

Proof~.  HesSumProd(x) = blocdiag (Hes  (x) ,…, Hes  (x)), 
where hi =  xi1xi2∙∙∙ xid is a monomial. 

   

 

h1 hs 

Hesf (x)  =  AT ∙ HesSumProd (Ax) ∙ A  



PE for Sum-Product polynomials 

 Let SumProd  =  x11x12∙∙∙ x1d  + … +  xs1xs2∙∙∙ xsd  . 

 Observe, aproj(SumProd) captures ∑∏∑ circuits. 
 

 Input:  Black-box access to f ∈ orb(SumProd). 

  Output:  A matrix A ∈ GL(n, 𝔽) s.t. f = SumProd(Ax). 
 

 Algorithm:  (correctness) 

 Step 3. Recover A from the linear factors of H. 

Proof~.  

     Clm.  det(Hes   (x)) = (-1)d-1(d-1) ∙ xi1
d-2 ∙∙∙ xid

d-2.  

   

 

hi 

Hessian determinant of a monomial is a monomial.  

Hesf (x)  =  AT ∙ HesSumProd (Ax) ∙ A  



PE for Sum-Product polynomials 

 Let SumProd  =  x11x12∙∙∙ x1d  + … +  xs1xs2∙∙∙ xsd  . 

 Observe, aproj(SumProd) captures ∑∏∑ circuits. 
 

 Input:  Black-box access to f ∈ orb(SumProd). 

  Output:  A matrix A ∈ GL(n, 𝔽) s.t. f = SumProd(Ax). 
 

 Algorithm:  (correctness) 

 Step 3. Recover A from the linear factors of H. 

Proof~.  Hence,   H     = c ∙ 𝓁11
d-2 ∙ … ∙ 𝓁sd

d-2,    c ∈ 𝔽 , 
where  Ax   = (𝓁11, …, 𝓁sd)

T . 

 

 

Hesf (x)  =  AT ∙ HesSumProd (Ax) ∙ A  



PE for Sum-Product polynomials 

 Let SumProd  =  x11x12∙∙∙ x1d  + … +  xs1xs2∙∙∙ xsd  . 

 Observe, aproj(SumProd) captures ∑∏∑ circuits. 
 

 Input:  Black-box access to f ∈ orb(SumProd). 

  Output:  A matrix A ∈ GL(n, 𝔽) s.t. f = SumProd(Ax). 
 

 Algorithm:  (correctness) 

 Step 3. Recover A from the linear factors of H. 

Proof~.  Hence,   H     = c ∙ 𝓁11
d-2 ∙ … ∙ 𝓁sd

d-2,    c ∈ 𝔽 , 
where  Ax   = (𝓁11, …, 𝓁sd)

T . The rest of the argument is 
similar to PE for PSym. 

 

Hesf (x)  =  AT ∙ HesSumProd (Ax) ∙ A  



PE for Read-once formulas 

 Let SumProd  =  x11x12∙∙∙ x1d  + … +  xs1xs2∙∙∙ xsd  . 

 Observe, SumProd is a ROF. Recall, affine projections of 
ROFs capture formulas. 

 Can PE for ROFs be solved efficiently? 

 

 



PE for Read-once formulas 

 Let SumProd  =  x11x12∙∙∙ x1d  + … +  xs1xs2∙∙∙ xsd  . 

 Observe, SumProd is a ROF. Recall, affine projections of 
ROFs capture formulas. 

 Can PE for ROFs be solved efficiently? 

 

 Gupta, S., Thankey (ongoing). Given b.b.a. to f, g in the 
orbits of ROFs*, the problem of checking if f ~ g and 
finding a witness A can be solved in randomized poly-time. 
 

 Analyzes the Hessian of a general ROF.    

 

 
*mild conditions apply 



PE for Read-once formulas 

 Let SumProd  =  x11x12∙∙∙ x1d  + … +  xs1xs2∙∙∙ xsd  . 

 Observe, SumProd is a ROF. Recall, affine projections of 
ROFs capture formulas. 

 Can PE for ROFs be solved efficiently? 

 

 Gupta, S., Thankey (ongoing). Given b.b.a. to f, g in the 
orbits of ROFs*, the problem of checking if f ~ g and 
finding a witness A can be solved in randomized poly-time. 
 

 A generalization of quadratic form equivalence:     

    A quadratic form over ℂ is equivalent to x1x2+…+xn-1xn (n even). 

 



PE for PSym w/o poly factoring  

 

 Koiran & Saha (2021); Koiran & Skomra (2020). Solves the 
decision version of PE for PSym over ℂ in randomized 
poly-time without appealing to polynomial factorization.  

 

 Involves only arithmetic operations and equality tests. 

 If f has rational coefficients, then the algorithm requires 
polynomial number of bit operations.  

 

 

 

 



Back to learning random ∑∧∑ circuits 

 A random ∑∧∑ circuit computes 

               f  =  𝓁1  + … + 𝓁s   , 

where the coefficients of 𝓁1, …, 𝓁s  are chosen uniformly 
and independently at random from a sufficiently large 
subset of 𝔽. 

 The average-case learning problem. Given black-box 
access to a random ∑∧∑ circuit computing f, output a 
small ∑∧∑ circuit for f.  

 

 Can we handle s > n?  Does Hessian help? 

 

d d 



Back to learning random ∑∧∑ circuits 

 Garcia-Marco, Koiran, Pecatte (2018). Random ∑∧∑ 
circuits can be reconstructed in randomized poly-time 
provided s ≈ n2/2 and d ≥ 5.  

 

 Uses 4-th order Hessian and shows that the determinant is 
nonzero (w.h.p) and factorizes into linear factors.  



Back to learning random ∑∧∑ circuits 

 Garcia-Marco, Koiran, Pecatte (2018). Random ∑∧∑ 
circuits can be reconstructed in randomized poly-time 
provided s ≈ n2/2 and d ≥ 5.  

 

 Uses 4-th order Hessian and shows that the determinant is 
nonzero (w.h.p) and factorizes into linear factors.  

 

 Unclear if the strategy scales to higher s. More 
importantly, it is not clear how effective Hessian is in 
learning other − more powerful − models. 

 It seems we need a different strategy… 



Learning from lower bounds:  
A paradigm 



Learning from lower bounds? 

 Fortnow & Klivans (2009): A randomized poly-time 
reconstruction algorithm for C implies super-polynomial 
lower bound for C.  (Learning −> lower bound) 

 

 Does lower bound imply worst-case reconstruction? 
Unlikely.  Reconstruction appears to be inherently hard. 

 



Learning from lower bounds? 

 Fortnow & Klivans (2009): A randomized poly-time 
reconstruction algorithm for C implies super-polynomial 
lower bound for C.  (Learning −> lower bound) 

 

 Does lower bound imply worst-case reconstruction? 
Unlikely.  Reconstruction appears to be inherently hard. 

 

 Does lower bound imply average-case reconstruction?  



A typical lower bound proof 

 Suppose that a circuit from C computes a polynomial  

   f  =  T1 + … +  Ts ,  

where each term Ti is “simple” is some sense.  

 

 For example, Ti is a power of a linear polynomial for 
∑∧∑ circuits.  

 



A typical lower bound proof 

 Suppose that a circuit from C computes a polynomial  

   f  =  T1 + … +  Ts ,  

where each term Ti is “simple” is some sense.  

 

 A typical lower bound proof for C proceeds by defining 
a complexity measure (map) 𝛍 :  𝔽[x] −> ℕ  s.t. 

 𝛍(f + g) ≤ 𝛍(f) + 𝛍(g)    (subadditivity) 

 𝛍(Ti)  ≤  L,  where L is a “small” quantity, 

 𝛍(f) ≥  H,  where H is a “large” quantity. 

 



A typical lower bound proof 

 Suppose that a circuit from C computes a polynomial  

   f  =  T1 + … +  Ts ,  

where each term Ti is “simple” is some sense.  

 

 A typical lower bound proof for C proceeds by defining 
a complexity measure (map) 𝛍 :  𝔽[x] −> ℕ  s.t. 

 𝛍(f + g) ≤ 𝛍(f) + 𝛍(g)    (subadditivity) 

 𝛍(Ti)  ≤  L,  where L is a “small” quantity, 

 𝛍(f) ≥  H,  where H is a “large” quantity. 

 Any C-circuit computing f must have s ≥ H/L terms.  



A typical lower bound proof 

 Suppose that a circuit from C computes a polynomial  

   f  =  T1 + … +  Ts ,  

where each term Ti is “simple” is some sense.  

 

 A typical lower bound proof for C proceeds by defining 
a complexity measure (map) 𝛍 :  𝔽[x] −> ℕ  s.t. 

 𝛍(f + g) ≤ 𝛍(f) + 𝛍(g)    (subadditivity) 

 𝛍(Ti)  ≤  L,  where L is a “small” quantity, 

 𝛍(f) ≥  H,  where H is a “large” quantity. 

 Any C-circuit computing f must have s ≥ H/L terms.  

Typically, 𝛍(f) is the dimension of a vector space U associated with f. 



Lower bound for ∑∧∑ circuits 
 A  ∑∧∑ circuit computes 

               f  =  𝓁1
d  + … + 𝓁s

d   , 

where a term  Ti =  𝓁i
d .  

 Let ∂k
 f be the set of k-th order partials of f, U := ⟨∂k

 f⟩ 
and Ui := ⟨∂k

 Ti⟩.  Define 𝛍(f) := dim U,  𝛍(Ti) := dim Ui . 

 



Lower bound for ∑∧∑ circuits 
 A  ∑∧∑ circuit computes 

               f  =  𝓁1
d  + … + 𝓁s

d   , 

where a term  Ti =  𝓁i
d .  

 Let ∂k
 f be the set of k-th order partials of f, U := ⟨∂k

 f⟩ 
and Ui := ⟨∂k

 Ti⟩.  Define 𝛍(f) := dim U,  𝛍(Ti) := dim Ui . 

 

 As ∂k is a set of linear operators on 𝔽[x], 

    U ⊆ U1 +…+ Us ,          and so, 

  𝛍(f) ≤ 𝛍(T1) +…+ 𝛍(Ts)   (subadditivity).  



Lower bound for ∑∧∑ circuits 
 A  ∑∧∑ circuit computes 

               f  =  𝓁1
d  + … + 𝓁s

d   , 

where a term  Ti =  𝓁i
d .  

 Let ∂k
 f be the set of k-th order partials of f, U := ⟨∂k

 f⟩ 
and Ui := ⟨∂k

 Ti⟩.  Define 𝛍(f) := dim U,  𝛍(Ti) := dim Ui . 

 

 Obs.  𝛍(Ti) = 1 whereas 𝛍(x1x2 ∙∙∙ xn) = (  ).  
 

 Choose k = n/2.  This gives a s = 𝝮(2n) lower bound for 
∑∧∑ circuits computing x1x2 ∙∙∙ xn . 

n 
k 

~ 



A typical lower bound proof 

 A C-circuit computes a polynomial  

   f  =  T1 + … +  Ts ,  

where each term Ti is “simple” is some sense.  
 

 A typical lower bound proof for C involves a set of 

linear operators 𝓛 on 𝔽[x]  s.t.  dim ⟨𝓛 ∘Ti⟩ is “small”.  

 

 In the lower bound proof for ∑∧∑ circuits,  𝓛 = ∂k
 . 



A typical lower bound proof 

 A C-circuit computes a polynomial  

   f  =  T1 + … +  Ts ,  

where each term Ti is “simple” is some sense.  

 As 𝓛 is linear,  ⟨𝓛 ∘ f⟩ ⊆ ⟨𝓛 ∘T1⟩ +…+ ⟨𝓛 ∘Ts⟩. 
 



Learning from LB:  A framework 

 A C-circuit computes a polynomial  

   f  =  T1 + … +  Ts ,  

where each term Ti is “simple” is some sense.  

 As 𝓛 is linear,  ⟨𝓛 ∘ f⟩ ⊆ ⟨𝓛 ∘T1⟩ +…+ ⟨𝓛 ∘Ts⟩. 
 If  T1, …, Ts are random,  we do expect  

1.  ⟨𝓛 ∘T1⟩ +…+ ⟨𝓛 ∘Ts⟩ = ⟨𝓛 ∘T1⟩ ⊕…⊕ ⟨𝓛 ∘Ts⟩  
2.  ⟨𝓛 ∘ f⟩ = ⟨𝓛 ∘T1⟩ +…+ ⟨𝓛 ∘Ts⟩ , implying 

 ⟨𝓛 ∘ f⟩ = ⟨𝓛 ∘T1⟩ ⊕…⊕ ⟨𝓛 ∘Ts⟩  
(as dim⟨𝓛∘Ti⟩ is “small” ) 



Learning from LB:  A framework 

   f  =  T1 + … +  Ts .   

 A (crude) approach to learn the terms. 

 Compute a basis of ⟨𝓛 ∘ f⟩ from f. 

 Decompose ⟨𝓛 ∘ f⟩ = ⟨𝓛 ∘T1⟩ ⊕…⊕ ⟨𝓛 ∘Ts⟩. 
 Obtain Ti from a basis of ⟨𝓛 ∘Ti⟩ . 

 



Learning from LB:  A framework 

   f  =  T1 + … +  Ts .   

 A (crude) approach to learn the terms. 

 Compute a basis of ⟨𝓛 ∘ f⟩ from f. 

 Decompose ⟨𝓛 ∘ f⟩ = ⟨𝓛 ∘T1⟩ ⊕…⊕ ⟨𝓛 ∘Ts⟩.  
 Obtain Ti from a basis of ⟨𝓛 ∘Ti⟩ . 

 

 What makes ⟨𝓛 ∘T1⟩, …, ⟨𝓛 ∘Ts⟩ special subspaces of 

   ⟨𝓛 ∘ f⟩ ? 
How? 



Learning from LB:  A framework 

   f  =  T1 + … +  Ts .   

 Turns out in a typical l.b. proof 𝓛 can be expressed as 𝓛 
= 𝓛2 ∘ 𝓛1 , where  𝓛1,  𝓛2 are sets of linear operators. 

 For example, ∂k+1 = ∂ ∘ ∂k . 



Learning from LB:  A framework 

   f  =  T1 + … +  Ts .   

 Turns out in a typical l.b. proof 𝓛 can be expressed as 𝓛 
= 𝓛2 ∘ 𝓛1 , where  𝓛1,  𝓛2 are sets of linear operators. 

 If  T1, …, Ts are random,  then we do expect  
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Learning from LB:  A framework 

   f  =  T1 + … +  Ts .   

 Turns out in a typical l.b. proof 𝓛 can be expressed as 𝓛 
= 𝓛2 ∘ 𝓛1 , where  𝓛1,  𝓛2 are sets of linear operators. 

 If  T1, …, Ts are random,  then we do expect  

1.  ⟨𝓛1 ∘ f⟩ = ⟨𝓛1 ∘T1⟩ ⊕…⊕ ⟨𝓛1 ∘Ts⟩ 
2.  ⟨𝓛 ∘ f⟩  = ⟨𝓛 ∘T1⟩ ⊕…⊕ ⟨𝓛 ∘Ts⟩   
 
 

 Let U := ⟨𝓛1∘f⟩,  Ui := ⟨𝓛1∘Ti⟩,   V := ⟨𝓛∘f⟩,  Vi := ⟨𝓛∘Ti⟩. 
 

𝓛2 



Learning from LB:  A framework 

   f  =  T1 + … +  Ts .   

 Turns out in a typical l.b. proof 𝓛 can be expressed as 𝓛 
= 𝓛2 ∘ 𝓛1 , where  𝓛1,  𝓛2 are sets of linear operators. 

 If  T1, …, Ts are random,  then we do expect  

1.  U = U1 ⊕…⊕ Us 

2.   V =  V1 ⊕…⊕  Vs   

 
 

 

 Let U := ⟨𝓛1∘f⟩,  Ui := ⟨𝓛1∘Ti⟩,   V := ⟨𝓛∘f⟩,  Vi := ⟨𝓛∘Ti⟩. 
 

𝓛2 



Learning from LB:  A framework 

   f  =  T1 + … +  Ts .   

 Turns out in a typical l.b. proof 𝓛 can be expressed as 𝓛 
= 𝓛2 ∘ 𝓛1 , where  𝓛1,  𝓛2 are sets of linear operators. 

 If  T1, …, Ts are random,  then we do expect  

1.  U = U1 ⊕…⊕ Us 

2.   V =  V1 ⊕…⊕  Vs   

 
 

 

 Observe,  V = ⟨𝓛2 ∘ U⟩,  Vi = ⟨𝓛2 ∘ Ui⟩. 
 

𝓛2 



Learning from LB:  A framework 

   f  =  T1 + … +  Ts .   

 Turns out in a typical l.b. proof 𝓛 can be expressed as 𝓛 
= 𝓛2 ∘ 𝓛1 , where  𝓛1,  𝓛2 are sets of linear operators. 

 If  T1, …, Ts are random,  then we do expect  

1.  U = U1 ⊕…⊕ Us 

2.   V =  V1 ⊕…⊕  Vs   

3. The above decomposition is the unique 
decomposition of U and V into indecomposable 

subspaces s.t. Vi = ⟨𝓛2 ∘ Ui⟩. 
 

𝓛2 



Learning from LB:  A framework 

   f  =  T1 + … +  Ts .   

 Turns out in a typical l.b. proof 𝓛 can be expressed as 𝓛 
= 𝓛2 ∘ 𝓛1 , where  𝓛1,  𝓛2 are sets of linear operators. 

 If  T1, …, Ts are random,  then we do expect  

1.  U = U1 ⊕…⊕ Us 

2.   V =  V1 ⊕…⊕  Vs   

3. The above decomposition is the unique 
decomposition of U and V under the action of 𝓛2 . 

 

𝓛2 



Learning from LB:  A framework 

   f  =  T1 + … +  Ts .   
 

 A meta-algorithm to learn the terms. 

 Compute bases of U = ⟨𝓛1 ∘ f⟩ and  V = ⟨𝓛 ∘ f⟩. 
 Decompose U and V under the action of 𝓛2 . 

 Obtain Ti from a basis of Ui. 

 

𝓛 = 𝓛2 ∘ 𝓛1 



Learning from LB:  A framework 

   f  =  T1 + … +  Ts .   
 

 A meta-algorithm to learn the terms. 

 Compute bases of U = ⟨𝓛1 ∘ f⟩ and  V = ⟨𝓛 ∘ f⟩. 
 Decompose U and V under the action of 𝓛2 . 

 Obtain Ti from a basis of Ui. 

 

 Learning the terms  −>   vector space decomposition  

𝓛 = 𝓛2 ∘ 𝓛1 



Learning from LB:  A framework 

   f  =  T1 + … +  Ts .   
 

 A meta-algorithm to learn the terms. 

 Compute bases of U = ⟨𝓛1 ∘ f⟩ and  V = ⟨𝓛 ∘ f⟩. 
 Decompose U and V under the action of 𝓛2 . 

 Obtain Ti from a basis of Ui. 

 

 Although easy-to-state, one needs to overcome a few 
technical challenges to make the meta-algorithm work.  

𝓛 = 𝓛2 ∘ 𝓛1 



Technical challenges 

   f  =  T1 + … +  Ts .   
 

 Task 1 (Direct Sum).  Show that U = U1 ⊕…⊕ Us and  V 
=  V1 ⊕…⊕  Vs w.h.p.  if  T1, …, Ts are random. 
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 Task 1 (Direct Sum).  Show that U = U1 ⊕…⊕ Us and  V 
=  V1 ⊕…⊕  Vs w.h.p.  if  T1, …, Ts are random. 
 

 Task 2 (Uniqueness). Show that the above decomposition 
of U and V under the action of 𝓛2 is unique. 



Technical challenges 

   f  =  T1 + … +  Ts .   
 

 Task 1 (Direct Sum).  Show that U = U1 ⊕…⊕ Us and  V 
=  V1 ⊕…⊕  Vs w.h.p.  if  T1, …, Ts are random. 
 

 Task 2 (Uniqueness). Show that the above decomposition 
of U and V under the action of 𝓛2 is unique. 
 

 A C-circuit satisfying the direct sum and the uniqueness 
criteria is called a non-degenerate C-circuit. 

 Task 1 & 2 ≡ Show that a random C-circuit is non-
degenerate w.h.p. 



Technical challenges 

   f  =  T1 + … +  Ts .   
 

 Task 1 (Direct Sum).  Show that U = U1 ⊕…⊕ Us and  V 
=  V1 ⊕…⊕  Vs w.h.p.  if  T1, …, Ts are random. 
 

 Task 2 (Uniqueness). Show that the above decomposition 
of U and V under the action of 𝓛2 is unique. 
 

 Task 3 (Vector space decomposition). Carry out the 
decomposition of U and V under the action of  𝓛2 . 



Technical challenges 

   f  =  T1 + … +  Ts .   
 

 Task 1 (Direct Sum).  Show that U = U1 ⊕…⊕ Us and  V 
=  V1 ⊕…⊕  Vs w.h.p.  if  T1, …, Ts are random. 
 

 Task 2 (Uniqueness). Show that the above decomposition 
of U and V under the action of 𝓛2 is unique. 
 

 Task 3 (Vector space decomposition). Carry out the 
decomposition of U and V under the action of  𝓛2 . 
 

 Task 4 (Terms from subspaces). Recover Ti from Ui . 



Known results 

Known results that implement the framework: 
 

 Kayal & S. (2019). Proper learns ∑∧∑ ckts, tensors, and 
homogeneous ∑∏∑ ckts in the non-degenerate case. 

 

 Introduced the framework in a rudimentary form. 

Proper learns random ∑∧∑ circuits for s ≤ (         ).  

 

n + d/3 
n 



Known results 

Known results that implement the framework: 
 

 Kayal & S. (2019). Proper learns ∑∧∑ ckts, tensors, and 
homogeneous ∑∏∑ ckts in the non-degenerate case. 
 

 Garg, Kayal & S. (2020). Proper learns ∑∧∑∏[t] circuits 
in the non-degenerate case. 

 

 Laid down the framework completely.  

The t = 2 case has a potential application in learning 
mixtures of Gaussians. 

 



Known results 

Known results that implement the framework: 
 

 Kayal & S. (2019). Proper learns ∑∧∑ ckts, tensors, and 
homogeneous ∑∏∑ ckts in the non-degenerate case. 
 

 Garg, Kayal & S. (2020). Proper learns ∑∧∑∏[t] circuits 
in the non-degenerate case. 
 

 Bhargava, Garg, Kayal & S. (2021). Proper learns 
generalized ∑∏∑ circuits in the non-degenerate case. 

 g1(𝓁11∙∙∙𝓁1d) + … + gs(𝓁s1∙∙∙𝓁sd);   gi = mono.,  Det, IMM, etc. 

Gives a reasonably general way to accomplish Task 1.  



Elaboration on the technical challenges 

   f  =  T1 + … +  Ts .   
 

 Task 1 (Direct Sum).  Show that U = U1 ⊕…⊕ Us and  V 
=  V1 ⊕…⊕  Vs w.h.p.  if  T1, …, Ts are random. 

 

 As 𝓛1 and 𝓛2 are linear operators, this task essentially 
boils down to showing that certain matrices (whose 
entries are polynomials in the “coefficients” of the 
terms) have the maximum possible rank. 

 The “bad” coefficients lie in an algebraic variety. So, 
random coefficients are “good”.  

 



Elaboration on the technical challenges 

   f  =  T1 + … +  Ts .   
 

 Task 1 (Direct Sum).  Show that U = U1 ⊕…⊕ Us and  V 
=  V1 ⊕…⊕  Vs w.h.p.  if  T1, …, Ts are random. 

 

 For a ∑∧∑ circuit, it is fairly easy to show that ⟨∂k
 f⟩ = ⟨𝓁1

d-k⟩ ⊕…⊕ ⟨𝓁s
d-k⟩ for random 𝓁1, …, 𝓁s . 

 Note.  Although easy for ∑∧∑ and homogeneous ∑∏∑ 
circuits, this task is nontrivial for ∑∧∑∏[t] circuits and 
generalized ∑∏∑ circuits. 

 



Elaboration on the technical challenges 

   f  =  T1 + … +  Ts .   
 

 Task 2 (Uniqueness). Show that the decomposition of U 
and V under the action of 𝓛2 is unique. 

 

 Need to understand all possible valid decompositions of 
U and  V under the action of 𝓛2 . 

 

 This understanding is provided by the adjoint algebra. 



The adjoint algebra 

 Definition. Let  𝛗:  U −> U  and  𝛙:  V −> V  be linear 
maps.  The adjoint algebra associated with (U,V, 𝓛2) is 

 adj(U,V, 𝓛2) := {(𝛗, 𝛙) :  𝛌∘𝛗 = 𝛙∘𝛌,  ∀𝛌 ∈ 𝓛2} . 

 



The adjoint algebra 

 Definition. Let  𝛗:  U −> U  and  𝛙:  V −> V  be linear 
maps.  The adjoint algebra associated with (U,V, 𝓛2) is 

 adj(U,V, 𝓛2) := {(𝛗, 𝛙) :  𝛌∘𝛗 = 𝛙∘𝛌,  ∀𝛌 ∈ 𝓛2} . 

 

 Obs.  adj(U,V, 𝓛2) is a vector space over 𝔽. 

 

 Obs. We can compute a basis of adj(U,V, 𝓛2) in 
polynomial time from bases of U and V, and the 
operators in 𝓛2,  by solving a linear system.  

 



The adjoint algebra 

 Definition. Let  𝛗:  U −> U  and  𝛙:  V −> V  be linear 
maps.  The adjoint algebra associated with (U,V, 𝓛2) is 

 adj(U,V, 𝓛2) := {(𝛗, 𝛙) :  𝛌∘𝛗 = 𝛙∘𝛌,  ∀𝛌 ∈ 𝓛2} . 

 

 Obs. If (𝛗, 𝛙) ∈ adj(U,V, 𝓛2) and 𝛗, 𝛙 are invertible, then 
U = 𝛗(U1) ⊕…⊕ 𝛗(Us) and  V =  𝛙(V1) ⊕…⊕ 𝛙( Vs), 

and 𝛙(Vi) = ⟨𝓛2 ∘ 𝛗(Ui)⟩. 



The adjoint algebra 

 Definition. Let  𝛗:  U −> U  and  𝛙:  V −> V  be linear 
maps.  The adjoint algebra associated with (U,V, 𝓛2) is 

 adj(U,V, 𝓛2) := {(𝛗, 𝛙) :  𝛌∘𝛗 = 𝛙∘𝛌,  ∀𝛌 ∈ 𝓛2} . 

 

 Obs. If (𝛗, 𝛙) ∈ adj(U,V, 𝓛2) and 𝛗, 𝛙 are invertible, then 
U = 𝛗(U1) ⊕…⊕ 𝛗(Us) and  V =  𝛙(V1) ⊕…⊕ 𝛙( Vs), 

and 𝛙(Vi) = ⟨𝓛2 ∘ 𝛗(Ui)⟩. 
 Proof~. Direct sum follows from the fact that 𝛗, 𝛙 are 

invertible.  For 𝛌 ∈ 𝓛2,   𝛌∘𝛗(Ui) = 𝛙∘𝛌(Ui) ⊆ 𝛙(Vi) . 

Equality follows from  V = ⟨𝓛2 ∘ U⟩. 



The adjoint algebra 

 Definition. Let  𝛗:  U −> U  and  𝛙:  V −> V  be linear 
maps.  The adjoint algebra associated with (U,V, 𝓛2) is 

 adj(U,V, 𝓛2) := {(𝛗, 𝛙) :  𝛌∘𝛗 = 𝛙∘𝛌,  ∀𝛌 ∈ 𝓛2} . 

 

 Obs. If (𝛗, 𝛙) ∈ adj(U,V, 𝓛2) and 𝛗, 𝛙 are invertible, then 
U = 𝛗(U1) ⊕…⊕ 𝛗(Us) and  V =  𝛙(V1) ⊕…⊕ 𝛙( Vs), 

and 𝛙(Vi) = ⟨𝓛2 ∘ 𝛗(Ui)⟩. 
 

 Krull-Schmidt theorem. These are the only 
decompositions of U and V under the action of  𝓛2 . 



The adjoint algebra 
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 Obs. If (𝛗, 𝛙) ∈ adj(U,V, 𝓛2) and 𝛗, 𝛙 are invertible, then 
U = 𝛗(U1) ⊕…⊕ 𝛗(Us) and  V =  𝛙(V1) ⊕…⊕ 𝛙( Vs), 

and 𝛙(Vi) = ⟨𝓛2 ∘ 𝛗(Ui)⟩. 
 

 We need to understand adj(U,V, 𝓛2) to show uniqueness 
of decomposition.  When is the decomposition unique? 



The adjoint algebra 

 Definition. Let  𝛗:  U −> U  and  𝛙:  V −> V  be linear 
maps.  The adjoint algebra associated with (U,V, 𝓛2) is 

 adj(U,V, 𝓛2) := {(𝛗, 𝛙) :  𝛌∘𝛗 = 𝛙∘𝛌,  ∀𝛌 ∈ 𝓛2} . 

 

 Let 𝛗i be the projection map from U to Ui, and 𝛙i the 
projection map from V to Vi . 

 Obs.  (𝛗i, 𝛙i) ∈ adj(U,V, 𝓛2) for all i ∈ [s]. 



The adjoint algebra 
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 Let 𝛗i be the projection map from U to Ui, and 𝛙i the 
projection map from V to Vi . 

 Obs.  (𝛗i, 𝛙i) ∈ adj(U,V, 𝓛2) for all i ∈ [s]. 

 Proof~. Let u = u1 + … + us for u ∈ U and ui ∈ Ui. 
Then, 𝛌∘𝛗i(u) = 𝛌(ui) ∈ Vi .   

    Also, 𝛙i∘𝛌(u) = 𝛙i∘𝛌(u1 + … + us) = 𝛌(ui) . 



The adjoint algebra 

 Definition. Let  𝛗:  U −> U  and  𝛙:  V −> V  be linear 
maps.  The adjoint algebra associated with (U,V, 𝓛2) is 

 adj(U,V, 𝓛2) := {(𝛗, 𝛙) :  𝛌∘𝛗 = 𝛙∘𝛌,  ∀𝛌 ∈ 𝓛2} . 

 

 Let 𝛗i be the projection map from U to Ui, and 𝛙i the 
projection map from V to Vi . 

 Obs.  (𝛗i, 𝛙i) ∈ adj(U,V, 𝓛2) for all i ∈ [s]. 

 

 The adjoint is trivial if it is generated as a vector space 
over 𝔽 by (𝛗1, 𝛙1), …, (𝛗s, 𝛙s). 



The adjoint algebra 

 Definition. Let  𝛗:  U −> U  and  𝛙:  V −> V  be linear 
maps.  The adjoint algebra associated with (U,V, 𝓛2) is 

 adj(U,V, 𝓛2) := {(𝛗, 𝛙) :  𝛌∘𝛗 = 𝛙∘𝛌,  ∀𝛌 ∈ 𝓛2} . 

 

 Let 𝛗i be the projection map from U to Ui, and 𝛙i the 
projection map from V to Vi . 

 Obs.  (𝛗i, 𝛙i) ∈ adj(U,V, 𝓛2) for all i ∈ [s]. 

 

 Clm. If adj(U,V, 𝓛2) is trivial, then U = U1 ⊕…⊕ Us and  
V =  V1 ⊕…⊕ Vs is the unique decomposition of U and 
V under the action of 𝓛2. 



The adjoint algebra 

 Clm. If adj(U,V, 𝓛2) is trivial, then U = U1 ⊕…⊕ Us and  
V =  V1 ⊕…⊕ Vs is the unique decomposition of U and 
V under the action of 𝓛2. 

 Proof~. Let U = 𝛗(U1) ⊕…⊕ 𝛗(Us) and  V =  𝛙(V1) ⊕…⊕ 𝛙( Vs) be another decomposition for some (𝛗, 𝛙) ∈ adj(U,V, 𝓛2), where 𝛗, 𝛙 are invertible.   



The adjoint algebra 

 Clm. If adj(U,V, 𝓛2) is trivial, then U = U1 ⊕…⊕ Us and  
V =  V1 ⊕…⊕ Vs is the unique decomposition of U and 
V under the action of 𝓛2. 

 Proof~. Let U = 𝛗(U1) ⊕…⊕ 𝛗(Us) and  V =  𝛙(V1) ⊕…⊕ 𝛙( Vs) be another decomposition for some (𝛗, 𝛙) ∈ adj(U,V, 𝓛2), where 𝛗, 𝛙 are invertible.   

 

 As adj(U,V, 𝓛2) is trivial, 𝛗 = a1𝛗1 + … + as𝛗s and 𝛙 = 
b1𝛙1 + … + bs𝛙s for some non-zero ai , bi ∈ 𝔽.  

 



The adjoint algebra 

 Clm. If adj(U,V, 𝓛2) is trivial, then U = U1 ⊕…⊕ Us and  
V =  V1 ⊕…⊕ Vs is the unique decomposition of U and 
V under the action of 𝓛2. 

 Proof~. Let U = 𝛗(U1) ⊕…⊕ 𝛗(Us) and  V =  𝛙(V1) ⊕…⊕ 𝛙( Vs) be another decomposition for some (𝛗, 𝛙) ∈ adj(U,V, 𝓛2), where 𝛗, 𝛙 are invertible.   

 

 As adj(U,V, 𝓛2) is trivial, 𝛗 = a1𝛗1 + … + as𝛗s and 𝛙 = 
b1𝛙1 + … + bs𝛙s for some non-zero ai , bi ∈ 𝔽.  

 

 Now observe that 𝛗(Ui) = Ui and 𝛙(Vi) = Vi . 



Elaboration on the technical challenges 

   f  =  T1 + … +  Ts .   
 

 Task 2 (Uniqueness). Show that the decomposition of U 
and V under the action of 𝓛2 is unique. 

 

 This task is accomplished in [GKS’20] and [BGKS’21] by 
showing that the adjoint algebra adj(U,V, 𝓛2) is trivial if 
T1, …, Ts are randomly chosen. 



Elaboration on the technical challenges 

   f  =  T1 + … +  Ts .   
 

 Task 3 (Vector space decomposition). Carry out the 
decomposition of U and V under the action of  𝓛2 . 

 

 Chistov, Ivanyos & Karpinski (1997); Eberly (1991); 
Ronyai (1990); Friedl & Ronyai (1985):  There are known 
efficient vector space decomposition algorithms.  

 

 Work over finite fields, ℂ and ℝ. Over ℚ, the output 
decomposition is over an extension field. 



Elaboration on the technical challenges 

   f  =  T1 + … +  Ts .   
 

 Task 3 (Vector space decomposition). Carry out the 
decomposition of U and V under the action of  𝓛2 . 
 

 Turns out, if the adjoint is trivial, then the vector space 
decomposition problem can be reduced to diagonalizing 
a random element of the adj(U,V, 𝓛2). 
 

 Vector space decomposition −>  diagonalizing a matrix. 



Elaboration on the technical challenges 

   f  =  T1 + … +  Ts .   
 

 Task 3 (Vector space decomposition). Carry out the 
decomposition of U and V under the action of  𝓛2 . 
 

 Turns out, if the adjoint is trivial, then the vector space 
decomposition problem can be reduced to diagonalizing 
a random element of the adj(U,V, 𝓛2). 
 

 The results in [KS’19], [GKS’20] and [BGKS’21] hold 
over ℚ. 



Elaboration on the technical challenges 

   f  =  T1 + … +  Ts .   
 

 Task 4 (Terms from subspaces). Recover Ti from Ui . 

 

 Mostly easy, if 𝓛 is the set of all partial derivatives. 
 

 Example. For a ∑∧∑ circuit, Ui = ⟨𝓁i
d-k⟩. Obtain a 𝔽-

multiple of 𝓁i (say, 𝓁i’) from Ui using b.b. polynomial 
factorization. Observe, f = z1 ∙ 𝓁’1d + … + zs ∙ 𝓁’sd for 
unknown z1, …, zs.  Set up a linear system in z1, …, zs as 
before.  Solve it and take d-th roots.  



Elaboration on the technical challenges 

   f  =  T1 + … +  Ts .   
 

 Task 4 (Terms from subspaces). Recover Ti from Ui . 

 

 Mostly easy, if 𝓛 is the set of all partial derivatives. 

 

 But not necessarily trivial, if 𝓛 is more complex (as is 
the case in [GKS’20]).  



Other average-case learning results 

 Gupta, Kayal & Lokam (2011). Proper learns random 
fanin-2 multilinear formulas. 

 

 Gupta, Kayal & Qiao. (2013). Proper learns random 
fanin-2 regular formulas. 

 

 Kayal, Nair & S. (2019). Proper learns random ABPs of 
low width.  



Other average-case learning results 

 Gupta, Kayal & Lokam (2011). Proper learns random 
fanin-2 multilinear formulas. 

 

 Gupta, Kayal & Qiao. (2013). Proper learns random 
fanin-2 regular formulas. 

 

 Kayal, Nair & S. (2019). Proper learns random ABPs of 
low width.  

 

 These algorithms are implicitly connected to the 
corresponding lower bounds known for these models.  



Learning other circuit models? 

 

 

 

 

 Can we implement the learning from lower bound 
framework for other circuit models?  



Summary 

 A survey of known results on polynomial equivalence 
and average-case reconstruction. 

 

 Polynomial equivalence problem 

 Hessian based equivalence tests. 

 

 Average-case learning 

 A framework for designing learning algorithms from 
lower bounds based on vector space decomposition. 

 

 



Thanks! 


