

gct2022: School and Conference on Geometric Complexity Theory

Arithmetic circuit reconstruction: Part 2

Chandan Saha Indian Institute of Science

Recap: The reconstruction problem

- Let f(x) be a n-variate degree-d polynomial computed by a circuit of size s from a class C.
- Reconstruction problem for C. Given black-box access to f, output a <u>small</u> circuit computing f.

Recap: The reconstruction problem

- Let f(x) be a n-variate degree-d polynomial computed by a circuit of size s from a class C.
- Reconstruction problem for C. Given black-box access to f, output a <u>small</u> circuit computing f.
- Size of the output circuit. Ideally, poly(s).
- Proper learning. Output circuit belongs to C.
- Efficiency. Ideally, poly(d,s).

Recap: Part I summary

- Hardness of *worst-case* reconstruction.
- A survey of known results on *worst-case* reconstruction.
- Depth-2 circuit reconstruction.
- $\sum A \sum$ circuit reconstruction
 - Improper: ROABP reconstruction
 - > Proper: Waring decomposition for $\sum A \sum (k)$ circuits.

Recap: Part I summary

- Hardness of *worst-case* reconstruction.
- A survey of known results on *worst-case* reconstruction.
- Depth-2 circuit reconstruction.
- $\sum \wedge \sum$ circuit reconstruction
 - Improper: ROABP reconstruction
 - > Proper: Waring decomposition for $\sum A \sum (k)$ circuits.
- This talk: We will discuss <u>average-case</u> reconstruction.

a.k.a. learning in the non-degenerate case

Recap: Depth-3 powering circuits

• A depth-3 powering circuit (a.k.a $\sum A \sum$ circuit) computes a sum of powers of linear polynomials, i.e., $f = \ell_1^{d_1} + ... + \ell_s^{d_s}$, where ℓ_i has degree 1.

• The reconstruction problem. Given black-box access to a $\sum A \sum$ circuit computing f, output a small circuit for f.

 Proper learning seems hard in the <u>worst-case</u> as computing Waring rank is NP-hard [Shitov'16].

Recap: Depth-3 powering circuits

• A depth-3 powering circuit (a.k.a $\sum A \sum$ circuit) computes a sum of powers of linear polynomials, i.e., $f = \ell_1^{d_1} + ... + \ell_s^{d_s}$, where ℓ_i has degree 1.

• The reconstruction problem. Given black-box access to a $\sum A \sum$ circuit computing f, output a small circuit for f.

• What if the coefficients of ℓ_1, \ldots, ℓ_s are chosen <u>randomly</u>?

• A random $\sum \sum circuit computes$ $f = \ell_1^{d_1} + \dots + \ell_s^{d_s}$,

where the coefficients of $\ell_1, ..., \ell_s$ are chosen <u>uniformly</u> and independently at random from a sufficiently large finite subset of **F**.

The average-case learning problem. Given black-box access to a <u>random</u> ∑∧∑ circuit computing f, output a small ∑∧∑ circuit for f.

• A random $\sum \sum circuit computes$ $f = \ell_1^{d_1} + \dots + \ell_s^{d_s}$,

where the coefficients of $\ell_1, ..., \ell_s$ are chosen <u>uniformly</u> and independently at random from a sufficiently large finite subset of \mathbb{F} .

- The average-case learning problem. Given black-box access to a <u>random</u> ∑∧∑ circuit computing f, output a small ∑∧∑ circuit for f.
- For simplicity, assume that $\ell_1, ..., \ell_s$ are linear forms and $d_1 = ... = d_s = d$.

• A random $\sum \sum circuit computes$ $f = \ell_1^d + \dots + \ell_s^d$,

where the coefficients of $\ell_1, ..., \ell_s$ are chosen <u>uniformly</u> and independently at random from a sufficiently large finite subset of \mathbb{F} .

- The average-case learning problem. Given black-box access to a <u>random</u> ∑∧∑ circuit computing f, output a small ∑∧∑ circuit for f.
- What is the complexity of the above problem?

• A random $\sum \sum circuit computes$ $f = \ell_1^d + \dots + \ell_s^d$,

where the coefficients of $\ell_1, ..., \ell_s$ are chosen <u>uniformly</u> and independently at random from a sufficiently large finite subset of \mathbb{F} .

- An easier case. Suppose $s \le n$. Then, $\ell_1, ..., \ell_s$ are \mathbb{F} -linearly independent w.h.p.
- In other words, f is <u>equivalent</u> to the d-th power symmetric polynomial PSym in s variables w.h.p.

• A random $\sum \sum circuit computes$ $f = \ell_1^d + \dots + \ell_s^d$,

where the coefficients of $\ell_1, ..., \ell_s$ are chosen <u>uniformly</u> and independently at random from a sufficiently large finite subset of \mathbb{F} .

- An easier case. Suppose $s \le n$. Then, $\ell_1, ..., \ell_s$ are \mathbb{F} -linearly independent w.h.p.
- In other words, f is <u>equivalent</u> to the d-th power symmetric polynomial PSym in s variables w.h.p.

Let's take a detour into the polynomial equivalence problem ...

The polynomial equivalence problem

Polynomial equivalence problem

- Orbit. The orbit of an n-variate polynomial g over F is the set orb(g) := {g(Ax) : A ∈ GL(n, F)}.
- Equivalent polynomials. Two n-variate polynomials f, g ∈
 F[x] are equivalent, denoted as f ~ g, if there's a A ∈
 GL(n, F) s.t. f = g(Ax) (i.e., f ∈ orb(g)).
- For example, $f = \ell_1^d + ... + \ell_n^d$, where $\ell_1, ..., \ell_n$ are \mathbb{F} linearly independent, is equivalent to the power symmetric polynomial $PSym_{n,d} = x_1^d + ... + x_n^d$.

Polynomial equivalence problem

- Orbit. The orbit of an n-variate polynomial g over F is the set orb(g) := {g(Ax) : A ∈ GL(n, F)}.
- Equivalent polynomials. Two n-variate polynomials f, g ∈
 F[x] are equivalent, denoted as f ~ g, if there's a A ∈
 GL(n, F) s.t. f = g(Ax) (i.e., f ∈ orb(g)).
- The equivalence problem. Given f and g as <u>lists of</u> <u>coefficients</u>, check if f ~ g. If equivalent, then find a certificate $A \in GL(n, \mathbb{F})$.
- Polynomial equivalence (PE) has been studied intensely.

- Thierauf (1998); Saxena (2006): PE is in NP \cap coAM over \mathbb{F}_{q} . Hence, unlikely to be NP-complete.
- Not known to be decidable over \mathbb{Q} .
- Over arbitrary fields, the best known complexity is the same as that of <u>polynomial solvability</u>.

- Thierauf (1998); Saxena (2006): PE is in NP \cap coAM over \mathbb{F}_{q} . Hence, unlikely to be NP-complete.
- Not known to be decidable over \mathbb{Q} .
- Over arbitrary fields, the best known complexity is the same as that of <u>polynomial solvability</u>.
- What if f and g belong to restricted classes/families of polynomials?

- Minkowski (1885); Hasse (1921); Serre (1973); Witt (1998); Wallenborn (2013): <u>Quadratic form equivalence</u> can be solved in randomized polynomial time over F_q, C, R, and over Q (with access to Integer Factoring oracle).
- Uses well-known classification results for quadratic forms over \mathbb{F}_q , \mathbb{C} , \mathbb{R} , and \mathbb{Q} .
- For e.g., a quadratic form over \mathbb{C} having n essential variables is equivalent to $x_1^2 + ... + x_n^2$.

- Minkowski (1885); Hasse (1921); Serre (1973); Witt (1998); Wallenborn (2013): <u>Quadratic form equivalence</u> can be solved in randomized polynomial time over F_q, C, R, and over Q (with access to Integer Factoring oracle).
- Agrawal & Saxena (2005): <u>Cubic form equivalence</u> is graph isomorphism hard.
- Grochow & Qiao (2019): Tensor isomorphism, matrix space isometry & conjugacy, algebra isomorphism and cubic form equivalence are poly-time equivalent.

- Kayal (2011): Initiated the study of a natural variant of PE for <u>well-known polynomial families</u>.
- Let $G = \{g_m : m \in \mathbb{N}\}$ be a polynomial family, say Det.
- PE for G. Given <u>b.b.a</u> to f, check if $f \in orb(g_m)$ for some $m \in \mathbb{N}$. If yes, then find a certificate $A \in GL(n, \mathbb{F})$.

- Kayal (2011): Initiated the study of a natural variant of PE for <u>well-known polynomial families</u>.
- Let $G = \{g_m : m \in \mathbb{N}\}$ be a polynomial family, say Det.
- PE for G. Given <u>b.b.a</u> to f, check if $f \in orb(g_m)$ for some $m \in \mathbb{N}$. If yes, then find a certificate $A \in GL(n, \mathbb{F})$.
- Why is this version of PE interesting?

- Kayal (2011): Initiated the study of a natural variant of PE for <u>well-known polynomial families</u>.
- Let $G = \{g_m : m \in \mathbb{N}\}$ be a polynomial family, say Det.
- Affine projections. The set of affine projections of a n-variate g is aproj(g) := {g(Ax + b) : A∈F^{n × n}, b∈Fⁿ}.

- Kayal (2011): Initiated the study of a natural variant of PE for <u>well-known polynomial families</u>.
- Let $G = \{g_m : m \in \mathbb{N}\}$ be a polynomial family, say Det.
- Affine projections. The set of affine projections of a n-variate g is aproj(g) := {g(Ax + b) : A∈F^{n × n}, b∈Fⁿ}.
- Affine projections of a "simple" G can be very powerful.
 > aproj(PSym) captures ∑∧∑ circuits,
 > aproj(SumProd) captures ∑∏∑ circuits, (SumProd has a depth-2 ROF)
 > aproj(ANF) captures formulas, (ANF has a ROF)
 > aproj(Det) & aproj(IMM) capture ABPs.

- Kayal (2011): Initiated the study of a natural variant of PE for <u>well-known polynomial families</u>.
- Let $G = \{g_m : m \in \mathbb{N}\}$ be a polynomial family, say Det.
- Orbit closure. The orbit closure of g over F, denoted as orb(g), is the Zariski closure of orb(g).
- Fact. $orb(g) \subseteq aproj(g) \subseteq \overline{orb(g)}$. $(char(\mathbb{F}) = 0)$

- Kayal (2011): Initiated the study of a natural variant of PE for <u>well-known polynomial families</u>.
- Let $G = \{g_m : m \in \mathbb{N}\}$ be a polynomial family, say Det.
- Orbit closure. The orbit closure of g over F, denoted as orb(g), is the Zariski closure of orb(g).
- Fact. $orb(g) \subseteq aproj(g) \subseteq \overline{orb(g)}$. $(char(\mathbb{F}) = 0)$
- Natural to study the learning problem for orbits of wellknown polynomial families.

- Kayal (2011): Initiated the study of a natural variant of PE for <u>well-known polynomial families</u>.
- Let $G = \{g_m : m \in \mathbb{N}\}$ be a polynomial family, say Det.
- PE for G. Given b.b.a to f, check if $f \in orb(g_m)$ for some $m \in \mathbb{N}$. If yes, then find a certificate $A \in GL(n, \mathbb{F})$.
- Kayal (2011, 2012); Kayal, Nair, S., Tavenas (2017); Garg, Gupta, Kayal, S. (2019); Murthy, Nair, S. (2020): Randomized poly-time PE are known for Det, Perm, IMM, tr-IMM, ESym, PSym, SumProduct etc.

- Let PSym = $x_1^d + ... + x_s^d$. Assume $d \ge 3$, $char(\mathbb{F}) = 0$.
- Let $f = \ell_1^d + \dots + \ell_s^d$, where ℓ_1, \dots, ℓ_s are \mathbb{F} -l.i.
- Recall, a quadratic form over \mathbb{C} having **n** essential variables is equivalent to $x_1^2 + ... + x_n^2$.

- Let PSym = $x_1^d + ... + x_s^d$. Assume $d \ge 3$, char(\mathbb{F}) = 0.
- Let $f = \ell_1^d + ... + \ell_s^d$, where $\ell_1, ..., \ell_s$ are F-l.i.
- Given b.b.a. to f, can we recover ℓ_1, \ldots, ℓ_s ? (up to dth roots of I)

- Let PSym = $x_1^d + ... + x_s^d$. Assume $d \ge 3$, $char(\mathbb{F}) = 0$.
- Let $f = \ell_1^d + ... + \ell_s^d$, where $\ell_1, ..., \ell_s$ are F-l.i.
- Given b.b.a. to f, can we recover ℓ_1, \ldots, ℓ_s ? (up to dth roots of I)
- Obs. The number of essential variables of f is s.
- Apply the Carlini-Kayal algorithm to remove redundant variables. So, we can assume w.l.o.g that s = n.

- Let PSym = $x_1^d + ... + x_n^d$. Assume $d \ge 3$, $char(\mathbb{F}) = 0$.
- Input: Black-box access to $f \in orb(PSym)$. Output: A matrix $A \in GL(n, \mathbb{F})$ s.t. f = PSym(Ax).
- Algorithm: Uses the <u>Hessian matrix</u> associated with f.

- Let f be an n-variate polynomial and ∂_{i,j}f the derivative of f w.r.t. x_i and x_j.
- The Hessian of f. It is the matrix $\operatorname{Hes}_{f}(\mathbf{x}) := (\partial_{i,i}f)_{i,i \in [n]}$.
- The Hessian matrix appears naturally in the Taylor expansion of a polynomial and has important applications in optimization, second derivative tests, etc.

- Let f be an n-variate polynomial and ∂_{i,j}f the derivative of f w.r.t. x_i and x_j.
- The Hessian of f. It is the matrix $\operatorname{Hes}_{f}(\mathbf{x}) := (\partial_{i,i}f)_{i,i \in [n]}$.
- Obs. If $f = g(A\mathbf{x})$ for some $A \in \mathbb{F}^{n \times n}$, then $\operatorname{Hes}_{f}(\mathbf{x}) = A^{T} \cdot \operatorname{Hes}_{g}(A\mathbf{x}) \cdot A$.

- Let f be an n-variate polynomial and ∂_{i,j}f the derivative of f w.r.t. x_i and x_j.
- The Hessian of f. It is the matrix $\operatorname{Hes}_{f}(\mathbf{x}) := (\partial_{i,j}f)_{i,j \in [n]}$.

• Obs. If f = g(Ax) for some $A \in \mathbb{F}^{n \times n}$, then $\operatorname{Hes}_{f}(x) = A^{T} \cdot \operatorname{Hes}_{g}(Ax) \cdot A$.

• Proof~. Uses chain rule. Let $\nabla f := (\partial_1 f, \partial_2 f, \dots, \partial_n f)^T$. Then, $\nabla f = A^T \cdot [\nabla g](A\mathbf{x})$.

- Let f be an n-variate polynomial and ∂_{i,j}f the derivative of f w.r.t. x_i and x_j.
- The Hessian of f. It is the matrix $\operatorname{Hes}_{f}(\mathbf{x}) := (\partial_{i,j}f)_{i,j\in[n]}$.
- Obs. If $f = g(A\mathbf{x})$ for some $A \in \mathbb{F}^{n \times n}$, then $\operatorname{Hes}_{f}(\mathbf{x}) = A^{T} \cdot \operatorname{Hes}_{g}(A\mathbf{x}) \cdot A$.
- Cor. det(Hes_f) = $c \cdot det(Hes_g)(Ax)$, where $c \in \mathbb{F}$.

- Let PSym = $x_1^d + ... + x_n^d$. Assume $d \ge 3$, $char(\mathbb{F}) = 0$.
- Input: Black-box access to f ∈ orb(PSym).
 Output: A matrix A ∈ GL(n, F) s.t. f = PSym(Ax).
- Algorithm: (high-level) Hes_f(x) = A^T · Hes_{PSym} (Ax) · A
 > Step I. Compute b.b.a to H := det(Hes_f).
 Obs. B.b.a. to ∂_{i,j}f can be computed efficiently from b.b.a. to f.

- Let PSym = $x_1^d + ... + x_n^d$. Assume $d \ge 3$, $char(\mathbb{F}) = 0$.
- Input: Black-box access to f ∈ orb(PSym).
 Output: A matrix A ∈ GL(n, F) s.t. f = PSym(Ax).
- Algorithm: (high-level) Hes_f(x) = A^T · Hes_{PSym} (Ax) · A
 > Step I. Compute b.b.a to H := det(Hes_f).
 > Step 2. Compute b.b.a to the factors of H. (using b.b. polynomial factorization)
- Let PSym = $x_1^d + ... + x_n^d$. Assume $d \ge 3$, $char(\mathbb{F}) = 0$.
- Input: Black-box access to $f \in orb(PSym)$. Output: A matrix $A \in GL(n, \mathbb{F})$ s.t. f = PSym(Ax).
- Algorithm: (high-level) Hes_f(x) = A^T · Hes_{PSym} (Ax) · A
 > Step I. Compute b.b.a to H := det(Hes_f).
 > Step 2. Compute b.b.a to the factors of H.
 > Step 3. Recover A from the <u>linear</u> factors of H.

- Let PSym = $x_1^d + ... + x_n^d$. Assume $d \ge 3$, $char(\mathbb{F}) = 0$.
- Input: Black-box access to $f \in orb(PSym)$. Output: A matrix $A \in GL(n, \mathbb{F})$ s.t. f = PSym(Ax).
- Algorithm: (correctness) $Hes_f(\mathbf{x}) = A^T \cdot Hes_{PSym}(A\mathbf{x}) \cdot A$ > Step 3. Recover A from the linear factors of H. Proof~. $Hes_{PSym}(\mathbf{x}) = diag(d'x_1^{d-2}, ..., d'x_n^{d-2})$, where d' = d(d-1).

- Let PSym = $x_1^d + ... + x_n^d$. Assume $d \ge 3$, $char(\mathbb{F}) = 0$.
- Input: Black-box access to $f \in orb(PSym)$. Output: A matrix $A \in GL(n, \mathbb{F})$ s.t. f = PSym(Ax).
- Algorithm: (correctness) $| \operatorname{Hes}_{f}(\mathbf{x}) = A^{T} \cdot \operatorname{Hes}_{PSym}(A\mathbf{x}) \cdot A$ > Step 3. Recover A from the linear factors of H. Proof~. $\operatorname{Hes}_{PSym}(\mathbf{x}) = \operatorname{diag}(d'x_{1}^{d-2}, ..., d'x_{n}^{d-2})$ $\operatorname{Hes}_{PSym}(A\mathbf{x}) = \operatorname{diag}(d'\ell_{1}^{d-2}, ..., d'\ell_{n}^{d-2}), \text{ where}$ $A\mathbf{x} = (\ell_{1}, ..., \ell_{n})^{T}$

- Let PSym = $x_1^d + ... + x_n^d$. Assume $d \ge 3$, $char(\mathbb{F}) = 0$.
- Input: Black-box access to $f \in orb(PSym)$. Output: A matrix $A \in GL(n, \mathbb{F})$ s.t. f = PSym(Ax).
- Algorithm: (correctness) $\begin{array}{l} \operatorname{Hes}_{f}(\mathbf{x}) = A^{\mathsf{T}} \cdot \operatorname{Hes}_{\mathsf{PSym}}(A\mathbf{x}) \cdot A \\ & \searrow \text{ Step 3. Recover A from the linear factors of H.} \\ \operatorname{Proof}_{\sim} \cdot \operatorname{Hes}_{\mathsf{PSym}}(\mathbf{x}) & = \operatorname{diag}(d'x_{1}^{d-2}, \ldots, d'x_{n}^{d-2}) \\ & \operatorname{Hes}_{\mathsf{PSym}}(A\mathbf{x}) & = \operatorname{diag}(d'\ell_{1}^{d-2}, \ldots, d'\ell_{n}^{d-2}) \\ & \operatorname{H} & = \mathsf{c} \cdot \ell_{1}^{d-2} \cdot \ldots \cdot \ell_{n}^{d-2}, \quad \mathsf{c} \in \mathbb{F} . \end{array}$

- Let PSym = $x_1^d + ... + x_n^d$. Assume $d \ge 3$, $char(\mathbb{F}) = 0$.
- Input: Black-box access to $f \in orb(PSym)$. Output: A matrix $A \in GL(n, \mathbb{F})$ s.t. f = PSym(Ax).
- Algorithm: (correctness) Hes_f(x) = A^T · Hes_{PSym}(Ax) · A > Step 3. Recover A from the linear factors of H. Proof~. Hes_{PSym}(x) = diag (d'x₁^{d-2}, ..., d'x_n^{d-2}) Hes_{PSym}(Ax) = diag (d' ℓ_1^{d-2} , ..., d' ℓ_n^{d-2}) H = c · ℓ_1^{d-2} · ... · ℓ_n^{d-2} , c $\in \mathbb{F}$. Recover ℓ_1^{d-2} , ..., ℓ_n^{d} (up to \mathbb{F} -multiples)

- Let PSym = $x_1^d + ... + x_n^d$. Assume $d \ge 3$, $char(\mathbb{F}) = 0$.
- Input: Black-box access to $f \in orb(PSym)$. Output: A matrix $A \in GL(n, \mathbb{F})$ s.t. f = PSym(Ax).
- Algorithm: (correctness) Hes_f(x) = A^T · Hes_{PSym}(Ax) · A Step 3. Recover A from the linear factors of H. Proof~. Hes_{PSym}(x) = diag (d'x₁^{d-2}, ..., d'x_n^{d-2}) Hes_{PSym}(Ax) = diag (d' ℓ_1^{d-2} , ..., d' ℓ_n^{d-2}) H = c · ℓ_1^{d-2} · ... · ℓ_n^{d-2} , c $\in \mathbb{F}$. Recover $\ell'_1, ..., \ell'_n$

- Let PSym = $x_1^d + ... + x_n^d$. Assume $d \ge 3$, $char(\mathbb{F}) = 0$.
- Input: Black-box access to $f \in orb(PSym)$. Output: A matrix $A \in GL(n, \mathbb{F})$ s.t. f = PSym(Ax).
- Algorithm: (correctness)
 > Step 3. Recover A from the linear factors of H.
 Proof~. Observe, f = z₁ · l'₁^d + ... + z_n · l'_n^d for some unknown z₁, ..., z_n. Set up a linear system in z₁, ..., z_n by evaluating f and l'₁, ..., l'_n at n random points. Solve for z₁, ..., z_n and take d-th roots.

- Let SumProd = $x_{11}x_{12}\cdots x_{1d} + \dots + x_{s1}x_{s2}\cdots x_{sd}$.
- Observe, aproj(SumProd) captures $\sum \prod \sum$ circuits.
- A quadratic form over \mathbb{C} having **n** essential variables (where **n** is even) is equivalent to $x_1x_2 + ... + x_{n-1}x_n$.

- Let SumProd = $x_{11}x_{12}\cdots x_{1d} + \dots + x_{s1}x_{s2}\cdots x_{sd}$.
- Observe, aproj(SumProd) captures $\sum \prod \sum$ circuits.
- Input: Black-box access to $f \in orb(SumProd)$. Output: A matrix $A \in GL(n, \mathbb{F})$ s.t. f = SumProd(Ax).
- Here, n = sd.

- Let SumProd = $x_{11}x_{12}\cdots x_{1d} + \dots + x_{s1}x_{s2}\cdots x_{sd}$.
- Observe, aproj(SumProd) captures $\sum \prod \sum$ circuits.
- Input: Black-box access to f ∈ orb(SumProd).
 Output: A matrix A ∈ GL(n, F) s.t. f = SumProd(Ax).
- Algorithm: (high-level) Hes_f(x) = A^T · Hes_{SumProd}(Ax) · A
 Step I. Compute b.b.a to H := det(Hes_f).
 Step 2. Compute b.b.a to the factors of H.
 Step 3. Recover A from the linear factors of H.

- Let SumProd = $x_{11}x_{12}\cdots x_{1d} + \dots + x_{s1}x_{s2}\cdots x_{sd}$.
- Observe, aproj(SumProd) captures $\sum \prod \sum$ circuits.
- Input: Black-box access to $f \in orb(SumProd)$. Output: A matrix $A \in GL(n, \mathbb{F})$ s.t. f = SumProd(Ax).
- Algorithm: (correctness) $Hes_f(\mathbf{x}) = A^T \cdot Hes_{SumProd}(A\mathbf{x}) \cdot A$ > Step 3. Recover A from the linear factors of H. Proof~. $Hes_{SumProd}(\mathbf{x}) = blocdiag (Hes_{h_i}(\mathbf{x}), ..., Hes_{h_s}(\mathbf{x})),$ where $h_i = \mathbf{x}_{i1}\mathbf{x}_{i2}\cdots\mathbf{x}_{id}$ is a monomial.

- Let SumProd = $x_{11}x_{12}\cdots x_{1d} + \dots + x_{s1}x_{s2}\cdots x_{sd}$.
- Observe, aproj(SumProd) captures $\sum \prod \sum$ circuits.
- Input: Black-box access to $f \in orb(SumProd)$. Output: A matrix $A \in GL(n, \mathbb{F})$ s.t. f = SumProd(Ax).
- Algorithm: (correctness) Hes_f(x) = A^T · Hes_{SumProd}(Ax) · A
 > Step 3. Recover A from the linear factors of H.
 Proof~.

Clm. det(Hes_h (**x**)) = (-1)^{d-1}(d-1) · $x_{i1}^{d-2} \cdots x_{id}^{d-2}$.

Hessian determinant of a monomial is a monomial.

- Let SumProd = $x_{11}x_{12}\cdots x_{1d} + \dots + x_{s1}x_{s2}\cdots x_{sd}$.
- Observe, aproj(SumProd) captures $\sum \prod \sum$ circuits.
- Input: Black-box access to $f \in orb(SumProd)$. Output: A matrix $A \in GL(n, \mathbb{F})$ s.t. f = SumProd(Ax).
- Algorithm: (correctness) $Hes_f(\mathbf{x}) = A^T \cdot Hes_{SumProd}(A\mathbf{x}) \cdot A$ > Step 3. Recover A from the linear factors of H. Proof~. Hence, $H = \mathbf{c} \cdot \ell_{11}^{d-2} \cdot \ldots \cdot \ell_{sd}^{d-2}$, $\mathbf{c} \in \mathbb{F}$, where $A\mathbf{x} = (\ell_{11}, \ldots, \ell_{sd})^T$.

- Let SumProd = $x_{11}x_{12}\cdots x_{1d} + \dots + x_{s1}x_{s2}\cdots x_{sd}$.
- Observe, aproj(SumProd) captures $\sum \prod \sum$ circuits.
- Input: Black-box access to $f \in orb(SumProd)$. Output: A matrix $A \in GL(n, \mathbb{F})$ s.t. f = SumProd(Ax).
- Algorithm: (correctness) $Hes_f(\mathbf{x}) = A^T \cdot Hes_{SumProd}(A\mathbf{x}) \cdot A$ > Step 3. Recover A from the linear factors of H. Proof~. Hence, $H = \mathbf{c} \cdot \ell_{11}^{d-2} \cdot \ldots \cdot \ell_{sd}^{d-2}$, $\mathbf{c} \in \mathbb{F}$, where $A\mathbf{x} = (\ell_{11}, \ldots, \ell_{sd})^T$. The rest of the argument is similar to PE for PSym.

PE for Read-once formulas

- Let SumProd = $x_{11}x_{12}\cdots x_{1d} + \dots + x_{s1}x_{s2}\cdots x_{sd}$.
- Observe, SumProd is a ROF. Recall, affine projections of ROFs capture formulas.
- Can PE for ROFs be solved efficiently?

PE for Read-once formulas

- Let SumProd = $x_{11}x_{12}\cdots x_{1d} + \dots + x_{s1}x_{s2}\cdots x_{sd}$.
- Observe, SumProd is a ROF. Recall, affine projections of ROFs capture formulas.
- Can PE for ROFs be solved efficiently?
- Gupta, S., Thankey (ongoing). Given b.b.a. to f, g in the orbits of ROFs*, the problem of checking if f ~ g and finding a witness A can be solved in randomized poly-time.
- Analyzes the Hessian of a <u>general</u> ROF.

*mild conditions apply

PE for Read-once formulas

- Let SumProd = $x_{11}x_{12}\cdots x_{1d} + \dots + x_{s1}x_{s2}\cdots x_{sd}$.
- Observe, SumProd is a ROF. Recall, affine projections of ROFs capture formulas.
- Can PE for ROFs be solved efficiently?
- Gupta, S., Thankey (ongoing). Given b.b.a. to f, g in the orbits of ROFs*, the problem of checking if f ~ g and finding a witness A can be solved in randomized poly-time.
- A generalization of quadratic form equivalence:
 A quadratic form over C is equivalent to x₁x₂+...+x_{n-1}x_n (n even).

PE for PSym w/o poly factoring

- Koiran & Saha (2021); Koiran & Skomra (2020). Solves the <u>decision version</u> of PE for PSym over C in randomized poly-time <u>without appealing to polynomial factorization</u>.
- Involves only arithmetic operations and equality tests.
- If f has rational coefficients, then the algorithm requires polynomial number of bit operations.

Back to learning random $\sum \sum circuits$

• A random $\sum \sum circuit computes$ $f = \ell_1^d + \dots + \ell_s^d$,

where the coefficients of $\ell_1, ..., \ell_s$ are chosen <u>uniformly</u> and independently at random from a sufficiently large subset of \mathbb{F} .

- The average-case learning problem. Given black-box access to a random ∑∧∑ circuit computing f, output a small ∑∧∑ circuit for f.
- Can we handle s > n? Does Hessian help?

Back to learning random $\sum \sum circuits$

- Garcia-Marco, Koiran, Pecatte (2018). Random ∑∧∑ circuits can be reconstructed in randomized poly-time provided s ≈ n²/2 and d ≥ 5.
- Uses <u>4-th order Hessian</u> and shows that the determinant is nonzero (w.h.p) and factorizes into linear factors.

Back to learning random $\sum \sum circuits$

- Garcia-Marco, Koiran, Pecatte (2018). Random ∑∧∑ circuits can be reconstructed in randomized poly-time provided s ≈ n²/2 and d ≥ 5.
- Uses <u>4-th order Hessian</u> and shows that the determinant is nonzero (w.h.p) and factorizes into linear factors.
- Unclear if the strategy scales to <u>higher s</u>. More importantly, it is not clear how effective Hessian is in learning other – more powerful – models.
- It seems we need a different strategy...

Learning from lower bounds: A paradigm

Learning from lower bounds?

- Fortnow & Klivans (2009): A randomized poly-time reconstruction algorithm for C implies super-polynomial lower bound for C. (Learning -> lower bound)
- Does lower bound imply <u>worst-case</u> reconstruction? Unlikely. Reconstruction appears to be inherently hard.

Learning from lower bounds?

- Fortnow & Klivans (2009): A randomized poly-time reconstruction algorithm for C implies super-polynomial lower bound for C. (Learning -> lower bound)
- Does lower bound imply <u>worst-case</u> reconstruction? Unlikely. Reconstruction appears to be inherently hard.
- Does lower bound imply *average-case* reconstruction?

Suppose that a circuit from C computes a polynomial

 $f = T_1 + ... + T_s$,

where each term T_i is "simple" is some sense.

• For example, T_i is a power of a linear polynomial for $\sum A \sum C$ circuits.

Suppose that a circuit from C computes a polynomial

 $f = T_1 + ... + T_s$,

where each term T_i is "simple" is some sense.

 A typical lower bound proof for C proceeds by defining a <u>complexity measure</u> (map) µ : F[x] → N s.t.

 $\geq \mu(f + g) \leq \mu(f) + \mu(g)$ (subadditivity)

- $\geq \mu(T_i) \leq L$, where L is a "small" quantity,
- $\geq \mu(f) \geq H$, where H is a "large" quantity.

Suppose that a circuit from C computes a polynomial

 $f = T_1 + ... + T_s$,

where each term T_i is "simple" is some sense.

 A typical lower bound proof for C proceeds by defining a <u>complexity measure</u> (map) µ : F[x] → N s.t.

 $\geq \mu(f + g) \leq \mu(f) + \mu(g)$ (subadditivity)

 $\geq \mu(T_i) \leq L$, where L is a "small" quantity,

 $\geq \mu(f) \geq H$, where H is a "large" quantity.

• Any C-circuit computing f must have $s \ge H/L$ terms.

Suppose that a circuit from C computes a polynomial

 $f = T_1 + ... + T_s$,

where each term T_i is "simple" is some sense.

Typically, $\mu(f)$ is the <u>dimension of a vector space</u> U associated with f.

 A typical lower bound proof for C proceeds by defining a <u>complexity measure</u> (map) µ : F[x] → N s.t.

 $\ge \mu(f + g) \le \mu(f) + \mu(g)$ (subadditivity)

 $\geq \mu(T_i) \leq L$, where L is a "small" quantity,

 $\geq \mu(f) \geq H$, where H is a "large" quantity.

• Any C-circuit computing f must have $s \ge H/L$ terms.

Lower bound for $\sum \sum circuits$

• A $\sum \Lambda \sum$ circuit computes

 $f = \ell_1^{d} + \dots + \ell_s^{d} ,$ where a term $T_i = \ell_i^{d}$.

• Let $\partial^k f$ be the set of k-th order partials of f, U := $\langle \partial^k f \rangle$ and $U_i := \langle \partial^k T_i \rangle$. Define $\mu(f) := \dim U, \ \mu(T_i) := \dim U_i$.

Lower bound for $\sum A \sum$ circuits

• A $\sum \wedge \sum$ circuit computes

 $f = \ell_1^{d} + \dots + \ell_s^{d} ,$ where a term $T_i = \ell_i^{d}$.

- Let $\partial^k f$ be the set of k-th order partials of f, U := $\langle \partial^k f \rangle$ and $U_i := \langle \partial^k T_i \rangle$. Define $\mu(f) := \dim U, \ \mu(T_i) := \dim U_i$.
- As ∂^k is a <u>set of linear operators</u> on $\mathbb{F}[\mathbf{x}]$, $U \subseteq U_1 + ... + U_s$, and so, $\mu(f) \leq \mu(T_1) + ... + \mu(T_s)$ (subadditivity).

Lower bound for $\sum A \sum$ circuits

• A $\sum \Lambda \sum$ circuit computes

 $f = \ell_1^{d} + \dots + \ell_s^{d} ,$ where a term $T_i = \ell_i^{d}$.

- Let $\partial^k f$ be the set of k-th order partials of f, U := $\langle \partial^k f \rangle$ and $U_i := \langle \partial^k T_i \rangle$. Define $\mu(f) := \dim U, \ \mu(T_i) := \dim U_i$.
- Obs. $\mu(T_i) = I$ whereas $\mu(x_1x_2 \cdots x_n) = \binom{n}{k}$.
- Choose k = n/2. This gives a $s = \tilde{\Omega}(2^n)$ lower bound for $\sum \Lambda \sum C$ circuits computing $x_1 x_2 \cdots x_n$.

• A C-circuit computes a polynomial

 $f = T_1 + ... + T_s$,

where each term T_i is "simple" is some sense.

- A typical lower bound proof for C involves a <u>set of</u> <u>linear operators</u> \mathcal{L} on $\mathbb{F}[\mathbf{x}]$ s.t. dim $\langle \mathcal{L} \circ T_i \rangle$ is "small".

• A C-circuit computes a polynomial

 $f = T_1 + ... + T_s$,

where each term T_i is "simple" is some sense.

• As \mathcal{L} is linear, $\langle \mathcal{L} \circ f \rangle \subseteq \langle \mathcal{L} \circ T_{|} \rangle + ... + \langle \mathcal{L} \circ T_{s} \rangle$.

Learning from LB: A framework

• A C-circuit computes a polynomial

 $f = T_1 + ... + T_s$,

where each term T_i is "simple" is some sense.

- As \mathcal{L} is linear, $\langle \mathcal{L} \circ f \rangle \subseteq \langle \mathcal{L} \circ T_{|} \rangle + ... + \langle \mathcal{L} \circ T_{s} \rangle$.
- If T_1, \ldots, T_s are <u>random</u>, we do expect (as $\dim \langle \mathcal{L} \circ T_i \rangle$ is "small")
 - $| \mathcal{L} \circ \mathsf{T}_{|} \rangle + \ldots + \langle \mathcal{L} \circ \mathsf{T}_{s} \rangle = \langle \mathcal{L} \circ \mathsf{T}_{|} \rangle \bigoplus \ldots \bigoplus \langle \mathcal{L} \circ \mathsf{T}_{s} \rangle$

2.
$$\langle \mathcal{L} \circ f \rangle = \langle \mathcal{L} \circ T_1 \rangle + ... + \langle \mathcal{L} \circ T_s \rangle$$
, implying

$$\langle \mathcal{L} \circ f \rangle = \langle \mathcal{L} \circ T_{|} \rangle \oplus ... \oplus \langle \mathcal{L} \circ T_{s} \rangle$$

Learning from LB: A framework

$$f = T_1 + \dots + T_s$$

• A (crude) approach to learn the terms.

> Compute a basis of $\langle \mathcal{L} \circ f \rangle$ from f.

 $\succ \text{Decompose } \langle \mathcal{L} \circ f \rangle = \langle \mathcal{L} \circ T_{I} \rangle \oplus ... \oplus \langle \mathcal{L} \circ T_{s} \rangle.$

> Obtain T_i from a basis of $\langle \mathcal{L} \circ T_i \rangle$.

Learning from LB: A framework

$$f = T_1 + \dots + T_s$$

• A (crude) approach to learn the terms.

> Compute a basis of $\langle \mathcal{L} \circ f \rangle$ from f.

Decompose $\langle \mathcal{L} \circ f \rangle = \langle \mathcal{L} \circ T_i \rangle \oplus \ldots \oplus \langle \mathcal{L} \circ T_s \rangle$.
How?
Obtain T_i from a basis of $\langle \mathcal{L} \circ T_i \rangle$.

• What makes $\langle \mathcal{L} \circ \mathsf{T}_1 \rangle$, ..., $\langle \mathcal{L} \circ \mathsf{T}_s \rangle$ special subspaces of $\langle \mathcal{L} \circ \mathsf{f} \rangle$?
- Turns out in a typical l.b. proof \mathcal{L} can be expressed as $\mathcal{L} = \mathcal{L}_2 \circ \mathcal{L}_1$, where \mathcal{L}_1 , \mathcal{L}_2 are sets of linear operators.
- For example, $\partial^{k+1} = \partial \circ \partial^k$.

 $f = T_1 + ... + T_s$.

Turns out in a typical l.b. proof *L* can be expressed as *L* = *L*₂ ∘ *L*₁, where *L*₁, *L*₂ are sets of linear operators.
If T₁,...,T_s are <u>random</u>, then we do expect

(*L*₁ ∘ f) = (*L*₁ ∘ T₁) ⊕...⊕ (*L*₁ ∘ T_s)
(*L* ∘ f) = (*L* ∘ T₁) ⊕...⊕ (*L* ∘ T_s)

 $f = T_1 + ... + T_s$.

Turns out in a typical l.b. proof *L* can be expressed as *L* = *L*₂ • *L*₁, where *L*₁, *L*₂ are sets of linear operators.
If T₁,...,T_s are <u>random</u>, then we do expect

1.
$$\langle \mathcal{L}_{1} \circ f \rangle = \langle \mathcal{L}_{1} \circ T_{1} \rangle \oplus ... \oplus \langle \mathcal{L}_{1} \circ T_{s} \rangle$$

2. $\langle \mathcal{L} \circ f \rangle = \langle \mathcal{L} \circ T_{1} \rangle \oplus ... \oplus \langle \mathcal{L} \circ T_{s} \rangle$

• Let $U := \langle \mathcal{L}_1 \circ f \rangle$, $U_i := \langle \mathcal{L}_1 \circ T_i \rangle$, $V := \langle \mathcal{L} \circ f \rangle$, $V_i := \langle \mathcal{L} \circ T_i \rangle$.

 $f = T_1 + ... + T_s$.

Turns out in a typical l.b. proof *L* can be expressed as *L* = *L*₂ ∘ *L*₁, where *L*₁, *L*₂ are sets of linear operators.
If T₁, ...,T_s are <u>random</u>, then we do expect

U = U₁ ⊕...⊕ U_s
V = V₁ ⊕...⊕ V_s

• Let
$$U := \langle \mathcal{L}_{|} \circ f \rangle$$
, $U_{i} := \langle \mathcal{L}_{|} \circ T_{i} \rangle$, $V := \langle \mathcal{L} \circ f \rangle$, $V_{i} := \langle \mathcal{L} \circ T_{i} \rangle$.

 $f = T_1 + ... + T_s$.

Turns out in a typical l.b. proof *L* can be expressed as *L* = *L*₂ ∘ *L*₁, where *L*₁, *L*₂ are sets of linear operators.
If T₁, ...,T_s are <u>random</u>, then we do expect

U = U₁ ⊕...⊕ U_s
V = V₁ ⊕...⊕ V_s

• Observe,
$$V = \langle \mathcal{L}_2 \circ U \rangle$$
, $V_i = \langle \mathcal{L}_2 \circ U_i \rangle$.

- Turns out in a typical l.b. proof \mathcal{L} can be expressed as \mathcal{L} = $\mathcal{L}_2 \circ \mathcal{L}_1$, where \mathcal{L}_1 , \mathcal{L}_2 are sets of linear operators.
- If T_1, \ldots, T_n are <u>random</u>, then we do <u>expect</u>

 - 1. $U = U_1 \bigoplus ... \bigoplus U_s \longrightarrow \mathcal{L}_2$ 2. $V = V_1 \bigoplus ... \bigoplus V_s$
 - above decomposition is the 3. The <u>unique</u> <u>decomposition</u> of U and V into <u>indecomposable</u> <u>subspaces</u> s.t. $V_i = \langle \mathcal{L}_2 \circ U_i \rangle$.

- Turns out in a typical l.b. proof \mathcal{L} can be expressed as \mathcal{L} = $\mathcal{L}_2 \circ \mathcal{L}_1$, where \mathcal{L}_1 , \mathcal{L}_2 are sets of linear operators.
- If T_1, \ldots, T_n are <u>random</u>, then we do expect

 - 1. $U = U_1 \bigoplus ... \bigoplus U_s \longrightarrow \mathcal{L}_2$ 2. $V = V_1 \bigoplus ... \bigoplus V_s$
 - 3. The above decomposition is the *unique* <u>decomposition</u> of U and V under the action of \mathcal{L}_{2} .

$f = T_1 + ... + T_s$.

A meta-algorithm to learn the terms. L = L₂ ∘ L₁
Compute bases of U = (L₁ ∘ f) and V = (L ∘ f).
Decompose U and V under the action of L₂.
Obtain T_i from a basis of U_i.

- A meta-algorithm to learn the terms. L = L₂ ∘ L₁
 Compute bases of U = (L₁ ∘ f) and V = (L ∘ f).
 Decompose U and V under the action of L₂.
 Obtain T_i from a basis of U_i.
- Learning the terms -> vector space decomposition

- A meta-algorithm to learn the terms. L = L₂ ∘ L₁
 Compute bases of U = (L₁ ∘ f) and V = (L ∘ f).
 Decompose U and V under the action of L₂.
 Obtain T_i from a basis of U_i.
- Although easy-to-state, one needs to overcome a few <u>technical challenges</u> to make the meta-algorithm work.

$$f = T_1 + \dots + T_s$$

• Task I (*Direct Sum*). Show that $U = U_1 \bigoplus ... \bigoplus U_s$ and $V = V_1 \bigoplus ... \bigoplus V_s$ w.h.p. if $T_1, ..., T_s$ are <u>random</u>.

- Task I (*Direct Sum*). Show that $U = U_1 \bigoplus ... \bigoplus U_s$ and $V = V_1 \bigoplus ... \bigoplus V_s$ w.h.p. if $T_1, ..., T_s$ are <u>random</u>.
- Task 2 (Uniqueness). Show that the above decomposition of U and V under the action of L₂ is unique.

$f = T_1 + \ldots + T_s.$

- Task I (*Direct Sum*). Show that $U = U_1 \bigoplus ... \bigoplus U_s$ and $V = V_1 \bigoplus ... \bigoplus V_s$ w.h.p. if $T_1, ..., T_s$ are <u>random</u>.
- Task 2 (Uniqueness). Show that the above decomposition of U and V under the action of L₂ is unique.
- A C-circuit satisfying the direct sum and the uniqueness criteria is called a <u>non-degenerate C-circuit</u>.
- Task I & 2 ≡ Show that a random C-circuit is nondegenerate w.h.p.

- Task I (*Direct Sum*). Show that $U = U_1 \bigoplus ... \bigoplus U_s$ and $V = V_1 \bigoplus ... \bigoplus V_s$ w.h.p. if $T_1, ..., T_s$ are <u>random</u>.
- Task 2 (Uniqueness). Show that the above decomposition of U and V under the action of L₂ is unique.
- Task 3 (Vector space decomposition). Carry out the decomposition of U and V under the action of \mathcal{L}_2 .

- Task I (*Direct Sum*). Show that $U = U_1 \bigoplus ... \bigoplus U_s$ and $V = V_1 \bigoplus ... \bigoplus V_s$ w.h.p. if $T_1, ..., T_s$ are <u>random</u>.
- Task 2 (Uniqueness). Show that the above decomposition of U and V under the action of L₂ is unique.
- Task 3 (Vector space decomposition). Carry out the decomposition of U and V under the action of L₂.
- Task 4 (Terms from subspaces). Recover T_i from U_i.

Known results

Known results that implement the framework:

 Kayal & S. (2019). Proper learns ∑∧∑ ckts, tensors, and homogeneous ∑∏∑ ckts in the *non-degenerate* case.

> Introduced the framework in a rudimentary form.

≥ <u>Proper learns</u> random $\sum A \sum$ circuits for $s \leq \binom{n + d/3}{n}$.

Known results

Known results that implement the framework:

- Kayal & S. (2019). Proper learns ∑∧∑ ckts, tensors, and homogeneous ∑∏∑ ckts in the *non-degenerate* case.
- Garg, Kayal & S. (2020). Proper learns ∑∧∑∏^[t] circuits in the non-degenerate case.
 - \geq Laid down the framework completely.

The t = 2 case has a potential application in learning *mixtures of Gaussians*.

Known results

Known results that implement the framework:

- Kayal & S. (2019). Proper learns ∑∧∑ ckts, tensors, and homogeneous ∑∏∑ ckts in the *non-degenerate* case.
- Garg, Kayal & S. (2020). Proper learns ∑∧∑∏^[t] circuits in the non-degenerate case.
- Bhargava, Garg, Kayal & S. (2021). Proper learns <u>generalized</u> ∑∏∑ circuits in the *non-degenerate* case.
 > g₁(ℓ₁₁…ℓ_{1d}) + ... + g_s(ℓ_{s1}…ℓ_{sd}); g_i = mono., Det, IMM, etc.
 > Gives a reasonably general way to accomplish Task 1.

- Task I (Direct Sum). Show that $U = U_1 \bigoplus ... \bigoplus U_s$ and $V = V_1 \bigoplus ... \bigoplus V_s$ w.h.p. if $T_1, ..., T_s$ are random.
- As \mathcal{L}_1 and \mathcal{L}_2 are linear operators, this task essentially boils down to showing that certain matrices (whose entries are polynomials in the "coefficients" of the terms) have the maximum possible rank.
- The <u>"bad" coefficients lie in an algebraic variety</u>. So, random coefficients are "good".

$f = T_1 + ... + T_s$.

• Task I (Direct Sum). Show that $U = U_1 \bigoplus ... \bigoplus U_s$ and $V = V_1 \bigoplus ... \bigoplus V_s$ w.h.p. if $T_1, ..., T_s$ are random.

- For a $\sum A \sum$ circuit, it is fairly easy to show that $\langle \partial^k f \rangle = \langle \ell_1^{d-k} \rangle \oplus \ldots \oplus \langle \ell_s^{d-k} \rangle$ for random ℓ_1, \ldots, ℓ_s .
- Note. Although easy for ∑∧∑ and homogeneous ∑∏∑ circuits, this task is nontrivial for ∑∧∑∏^[t] circuits and generalized ∑∏∑ circuits.

- Task 2 (Uniqueness). Show that the decomposition of U and V under the action of L₂ is unique.
- Need to understand all possible valid decompositions of U and V under the action of \mathcal{L}_2 .
- This understanding is provided by the *adjoint algebra*.

• Definition. Let φ : $\cup - \lor \cup$ and ψ : $\lor - \lor \lor$ be linear maps. The *adjoint algebra* associated with $(\cup, \lor, \mathcal{L}_2)$ is $adj(\cup, \lor, \mathcal{L}_2) := \{(\varphi, \psi) : \lambda \circ \varphi = \psi \circ \lambda, \forall \lambda \in \mathcal{L}_2\}$.

- Definition. Let φ : $\cup \lor \cup$ and ψ : $\lor \lor \lor$ be linear maps. The adjoint algebra associated with $(\cup, \lor, \mathcal{L}_2)$ is $adj(\cup, \lor, \mathcal{L}_2) := \{(\varphi, \psi) : \lambda \circ \varphi = \psi \circ \lambda, \forall \lambda \in \mathcal{L}_2\}$.
- Obs. $adj(U,V, \mathcal{L}_2)$ is a vector space over \mathbb{F} .
- Obs. We can compute a basis of $adj(U,V, \mathcal{L}_2)$ in polynomial time from bases of U and V, and the operators in \mathcal{L}_2 , by solving a linear system.

- Definition. Let φ : $\cup \lor \cup$ and ψ : $\lor \lor \lor$ be linear maps. The adjoint algebra associated with $(\cup, \lor, \mathcal{L}_2)$ is $adj(\cup, \lor, \mathcal{L}_2) := \{(\varphi, \psi) : \lambda \circ \varphi = \psi \circ \lambda, \forall \lambda \in \mathcal{L}_2\}$.
- Obs. If $(\boldsymbol{\varphi}, \boldsymbol{\psi}) \in \operatorname{adj}(U, V, \mathcal{L}_2)$ and $\boldsymbol{\varphi}, \boldsymbol{\psi}$ are *invertible*, then $U = \boldsymbol{\varphi}(U_1) \bigoplus \dots \bigoplus \boldsymbol{\varphi}(U_s)$ and $V = \boldsymbol{\psi}(V_1) \bigoplus \dots \bigoplus \boldsymbol{\psi}(V_s)$, and $\boldsymbol{\psi}(V_i) = \langle \mathcal{L}_2 \circ \boldsymbol{\varphi}(U_i) \rangle$.

- Definition. Let φ : $\cup \lor \cup$ and ψ : $\lor \lor \lor$ be linear maps. The *adjoint algebra* associated with $(\cup, \lor, \mathcal{L}_2)$ is $adj(\cup, \lor, \mathcal{L}_2) := \{(\varphi, \psi) : \lambda \circ \varphi = \psi \circ \lambda, \forall \lambda \in \mathcal{L}_2\}$.
- Obs. If $(\varphi, \psi) \in adj(U, V, \mathcal{L}_2)$ and φ, ψ are *invertible*, then $U = \varphi(U_1) \bigoplus ... \bigoplus \varphi(U_s)$ and $V = \psi(V_1) \bigoplus ... \bigoplus \psi(V_s)$, and $\psi(V_i) = \langle \mathcal{L}_2 \circ \varphi(U_i) \rangle$.
- Proof~. Direct sum follows from the fact that φ, ψ are invertible. For λ ∈ L₂, λ∘φ(U_i) = ψ∘λ(U_i) ⊆ ψ(V_i).
 Equality follows from V = ⟨L₂ ∘ U⟩.

- Definition. Let φ : $\cup \lor \cup$ and ψ : $\lor \lor \lor$ be linear maps. The adjoint algebra associated with $(\cup, \lor, \mathcal{L}_2)$ is $adj(\cup, \lor, \mathcal{L}_2) := \{(\varphi, \psi) : \lambda \circ \varphi = \psi \circ \lambda, \forall \lambda \in \mathcal{L}_2\}$.
- Obs. If $(\varphi, \psi) \in adj(U, V, \mathcal{L}_2)$ and φ, ψ are *invertible*, then $U = \varphi(U_1) \bigoplus ... \bigoplus \varphi(U_s)$ and $V = \psi(V_1) \bigoplus ... \bigoplus \psi(V_s)$, and $\psi(V_i) = \langle \mathcal{L}_2 \circ \varphi(U_i) \rangle$.
- Krull-Schmidt theorem. These are the <u>only</u> decompositions of U and V under the action of \mathcal{L}_2 .

- Definition. Let φ : $\cup \lor \cup$ and ψ : $\lor \lor \lor$ be linear maps. The adjoint algebra associated with $(\cup, \lor, \mathcal{L}_2)$ is $adj(\cup, \lor, \mathcal{L}_2) := \{(\varphi, \psi) : \lambda \circ \varphi = \psi \circ \lambda, \forall \lambda \in \mathcal{L}_2\}$.
- Obs. If $(\varphi, \psi) \in adj(U, V, \mathcal{L}_2)$ and φ, ψ are *invertible*, then $U = \varphi(U_1) \bigoplus ... \bigoplus \varphi(U_s)$ and $V = \psi(V_1) \bigoplus ... \bigoplus \psi(V_s)$, and $\psi(V_i) = \langle \mathcal{L}_2 \circ \varphi(U_i) \rangle$.
- We <u>need</u> to understand $adj(U,V, \mathcal{L}_2)$ to show uniqueness of decomposition. When is the decomposition unique?

- Definition. Let φ : $\cup \lor \cup$ and ψ : $\lor \lor \lor$ be linear maps. The adjoint algebra associated with $(\cup, \lor, \mathcal{L}_2)$ is $adj(\cup, \lor, \mathcal{L}_2) := \{(\varphi, \psi) : \lambda \circ \varphi = \psi \circ \lambda, \forall \lambda \in \mathcal{L}_2\}$.
- Let φ_i be the <u>projection map</u> from U to U_i, and ψ_i the projection map from V to V_i.
- Obs. $(\boldsymbol{\phi}_i, \boldsymbol{\psi}_i) \in \operatorname{adj}(U, V, \mathcal{L}_2)$ for all $i \in [s]$.

- Definition. Let φ : $\cup \lor \cup$ and ψ : $\lor \lor \lor$ be linear maps. The adjoint algebra associated with $(\cup, \lor, \mathcal{L}_2)$ is $adj(\cup, \lor, \mathcal{L}_2) := \{(\varphi, \psi) : \lambda \circ \varphi = \psi \circ \lambda, \forall \lambda \in \mathcal{L}_2\}$.
- Let ϕ_i be the <u>projection map</u> from U to U_i, and ψ_i the projection map from V to V_i.
- Obs. $(\boldsymbol{\phi}_i, \boldsymbol{\psi}_i) \in \operatorname{adj}(U, V, \mathcal{L}_2)$ for all $i \in [s]$.
- Proof~. Let $\mathbf{u} = \mathbf{u}_1 + \dots + \mathbf{u}_s$ for $\mathbf{u} \in U$ and $\mathbf{u}_i \in U_i$. Then, $\lambda \circ \varphi_i(\mathbf{u}) = \lambda(\mathbf{u}_i) \in V_i$. Also, $\psi_i \circ \lambda(\mathbf{u}) = \psi_i \circ \lambda(\mathbf{u}_1 + \dots + \mathbf{u}_s) = \lambda(\mathbf{u}_i)$.

- Definition. Let φ : $\cup \lor \cup$ and ψ : $\lor \lor \lor$ be linear maps. The adjoint algebra associated with $(\cup, \lor, \mathcal{L}_2)$ is $adj(\cup, \lor, \mathcal{L}_2) := \{(\varphi, \psi) : \lambda \circ \varphi = \psi \circ \lambda, \forall \lambda \in \mathcal{L}_2\}$.
- Let ϕ_i be the <u>projection map</u> from U to U_i, and ψ_i the projection map from V to V_i.
- Obs. $(\boldsymbol{\phi}_i, \boldsymbol{\psi}_i) \in \operatorname{adj}(U, V, \mathcal{L}_2)$ for all $i \in [s]$.
- The adjoint is <u>trivial</u> if it is generated as a vector space over \mathbb{F} by $(\boldsymbol{\phi}_{|}, \boldsymbol{\psi}_{|}), ..., (\boldsymbol{\phi}_{s}, \boldsymbol{\psi}_{s})$.

- Definition. Let φ : $\cup \lor \cup$ and ψ : $\lor \lor \lor$ be linear maps. The adjoint algebra associated with $(\cup, \lor, \mathcal{L}_2)$ is $adj(\cup, \lor, \mathcal{L}_2) := \{(\varphi, \psi) : \lambda \circ \varphi = \psi \circ \lambda, \forall \lambda \in \mathcal{L}_2\}$.
- Let ϕ_i be the <u>projection map</u> from U to U_i, and ψ_i the projection map from V to V_i.
- Obs. $(\boldsymbol{\phi}_i, \boldsymbol{\psi}_i) \in \operatorname{adj}(U, V, \mathcal{L}_2)$ for all $i \in [s]$.
- Clm. If $adj(U, V, \mathcal{L}_2)$ is <u>trivial</u>, then $U = U_1 \bigoplus ... \bigoplus U_s$ and $V = V_1 \bigoplus ... \bigoplus V_s$ is the <u>unique</u> decomposition of U and V under the action of \mathcal{L}_2 .

- Clm. If $adj(U, V, \mathcal{L}_2)$ is <u>trivial</u>, then $U = U_1 \bigoplus ... \bigoplus U_s$ and $V = V_1 \bigoplus ... \bigoplus V_s$ is the <u>unique</u> decomposition of U and V under the action of \mathcal{L}_2 .
- Proof~. Let $U = \varphi(U_1) \bigoplus \dots \bigoplus \varphi(U_s)$ and $V = \psi(V_1) \bigoplus \dots \bigoplus \psi(V_s)$ be another decomposition for some $(\varphi, \psi) \in adj(U, V, \mathcal{L}_2)$, where φ, ψ are invertible.

- Clm. If $adj(U, V, \mathcal{L}_2)$ is <u>trivial</u>, then $U = U_1 \bigoplus ... \bigoplus U_s$ and $V = V_1 \bigoplus ... \bigoplus V_s$ is the <u>unique</u> decomposition of U and V under the action of \mathcal{L}_2 .
- Proof~. Let $U = \varphi(U_1) \bigoplus \dots \bigoplus \varphi(U_s)$ and $V = \psi(V_1) \bigoplus \dots \bigoplus \psi(V_s)$ be another decomposition for some $(\varphi, \psi) \in adj(U, V, \mathcal{L}_2)$, where φ, ψ are invertible.
- As $adj(U,V, \mathcal{L}_2)$ is trivial, $\varphi = a_1\varphi_1 + ... + a_s\varphi_s$ and $\psi = b_1\psi_1 + ... + b_s\psi_s$ for some <u>non-zero</u> $a_i, b_i \in \mathbb{F}$.

- Clm. If $adj(U, V, \mathcal{L}_2)$ is <u>trivial</u>, then $U = U_1 \bigoplus ... \bigoplus U_s$ and $V = V_1 \bigoplus ... \bigoplus V_s$ is the <u>unique</u> decomposition of U and V under the action of \mathcal{L}_2 .
- Proof~. Let $U = \varphi(U_1) \bigoplus \dots \bigoplus \varphi(U_s)$ and $V = \psi(V_1) \bigoplus \dots \bigoplus \psi(V_s)$ be another decomposition for some $(\varphi, \psi) \in adj(U, V, \mathcal{L}_2)$, where φ, ψ are invertible.
- As $adj(U,V, \mathcal{L}_2)$ is trivial, $\varphi = a_1\varphi_1 + ... + a_s\varphi_s$ and $\psi = b_1\psi_1 + ... + b_s\psi_s$ for some <u>non-zero</u> $a_i, b_i \in \mathbb{F}$.
- Now observe that $\varphi(U_i) = U_i$ and $\psi(V_i) = V_i$.

- Task 2 (Uniqueness). Show that the decomposition of U and V under the action of L₂ is unique.
- This task is accomplished in [GKS'20] and [BGKS'21] by showing that the adjoint algebra $adj(U,V, \mathcal{L}_2)$ is trivial if $T_1, ..., T_s$ are randomly chosen.

- Task 3 (Vector space decomposition). Carry out the decomposition of U and V under the action of \mathcal{L}_2 .
- Chistov, Ivanyos & Karpinski (1997); Eberly (1991); Ronyai (1990); Friedl & Ronyai (1985): There are known efficient vector space decomposition algorithms.
- Work over finite fields, C and ℝ. Over Q, the output decomposition is over an extension field.
- Task 3 (Vector space decomposition). Carry out the decomposition of U and V under the action of \mathcal{L}_2 .
- Turns out, if the adjoint is trivial, then the vector space decomposition problem can be <u>reduced to *diagonalizing*</u> a random element of the $adj(U,V, \mathcal{L}_2)$.
- Vector space decomposition -> diagonalizing a matrix.

- Task 3 (Vector space decomposition). Carry out the decomposition of U and V under the action of \mathcal{L}_2 .
- Turns out, if the adjoint is trivial, then the vector space decomposition problem can be <u>reduced to *diagonalizing*</u> a random element of the $adj(U,V, \mathcal{L}_2)$.
- The results in [KS'19], [GKS'20] and [BGKS'21] hold over Q.

- Task 4 (Terms from subspaces). Recover T_i from U_i.
- Mostly easy, if \mathcal{L} is the set of all partial derivatives.
- Example. For a $\sum \sum circuit$, $U_i = \langle \ell_i^{d-k} \rangle$. Obtain a \mathbb{F} multiple of ℓ_i (say, ℓ_i') from U_i using b.b. polynomial factorization. Observe, $f = z_1 \cdot \ell_1'^d + \ldots + z_s \cdot \ell_s'^d$ for unknown z_1, \ldots, z_s . Set up a linear system in z_1, \ldots, z_s as before. Solve it and take d-th roots.

- Task 4 (Terms from subspaces). Recover T_i from U_i.
- Mostly easy, if \mathcal{L} is the set of all partial derivatives.
- But not necessarily trivial, if *L* is more complex (as is the case in [GKS'20]).

Other average-case learning results

- Gupta, Kayal & Lokam (2011). Proper learns random <u>fanin-2</u> multilinear formulas.
- Gupta, Kayal & Qiao. (2013). Proper learns random <u>fanin-2</u> regular formulas.
- Kayal, Nair & S. (2019). Proper learns random ABPs of <u>low width</u>.

Other average-case learning results

- Gupta, Kayal & Lokam (2011). Proper learns random <u>fanin-2</u> multilinear formulas.
- Gupta, Kayal & Qiao. (2013). Proper learns random <u>fanin-2</u> regular formulas.
- Kayal, Nair & S. (2019). Proper learns random ABPs of <u>low width</u>.
- These algorithms are implicitly connected to the corresponding lower bounds known for these models.

Learning other circuit models?

• Can we implement the learning from lower bound framework for other circuit models?

Summary

- A survey of known results on <u>polynomial equivalence</u> and <u>average-case</u> reconstruction.
- Polynomial equivalence problem
 <u>Hessian</u> based equivalence tests.
- Average-case learning
 - > A framework for designing learning algorithms from lower bounds based on <u>vector space decomposition</u>.

Thanks!