
Arithmetic circuit reconstruction:
Part 2

Chandan Saha

Indian Institute of Science

gct2022: School and Conference on Geometric
Complexity Theory

Recap: The reconstruction problem

 Let f(x) be a n-variate degree-d polynomial computed
by a circuit of size s from a class C.

 Reconstruction problem for C. Given black-box access
to f, output a small circuit computing f.

f
a ∈ 𝔽n f(a)

 Black-box access to f
 (membership query access to f)

Recap: The reconstruction problem

 Let f(x) be a n-variate degree-d polynomial computed
by a circuit of size s from a class C.

 Reconstruction problem for C. Given black-box access
to f, output a small circuit computing f.

 Size of the output circuit. Ideally, poly(s).

 Proper learning. Output circuit belongs to C.

 Efficiency. Ideally, poly(d,s).

Recap: Part 1 summary

 Hardness of worst-case reconstruction.

 A survey of known results on worst-case reconstruction.

 Depth-2 circuit reconstruction.

 ∑∧∑ circuit reconstruction

 Improper: ROABP reconstruction

 Proper: Waring decomposition for ∑∧∑(k) circuits.

Recap: Part 1 summary

 Hardness of worst-case reconstruction.

 A survey of known results on worst-case reconstruction.

 Depth-2 circuit reconstruction.

 ∑∧∑ circuit reconstruction

 Improper: ROABP reconstruction

 Proper: Waring decomposition for ∑∧∑(k) circuits.

 This talk: We will discuss average-case reconstruction.

a.k.a. learning in the non-degenerate case

Recap: Depth-3 powering circuits

 A depth-3 powering circuit (a.k.a ∑∧∑ circuit)
computes a sum of powers of linear polynomials, i.e.,

 f = 𝓁1 + … + 𝓁s ,

 where 𝓁i has degree 1.

 The reconstruction problem. Given black-box access to
a ∑∧∑ circuit computing f, output a small circuit for f.

 Proper learning seems hard in the worst-case as
computing Waring rank is NP-hard [Shitov’16].

d1 ds

Recap: Depth-3 powering circuits

 A depth-3 powering circuit (a.k.a ∑∧∑ circuit)
computes a sum of powers of linear polynomials, i.e.,

 f = 𝓁1 + … + 𝓁s ,

 where 𝓁i has degree 1.

 The reconstruction problem. Given black-box access to
a ∑∧∑ circuit computing f, output a small circuit for f.

 What if the coefficients of 𝓁1, …, 𝓁s are chosen randomly?

d1 ds

Learning random ∑∧∑ circuits
 A random ∑∧∑ circuit computes

 f = 𝓁1 + … + 𝓁s ,

where the coefficients of 𝓁1, …, 𝓁s are chosen uniformly
and independently at random from a sufficiently large
finite subset of 𝔽.

 The average-case learning problem. Given black-box
access to a random ∑∧∑ circuit computing f, output a
small ∑∧∑ circuit for f.

d1 ds

Learning random ∑∧∑ circuits
 A random ∑∧∑ circuit computes

 f = 𝓁1 + … + 𝓁s ,

where the coefficients of 𝓁1, …, 𝓁s are chosen uniformly
and independently at random from a sufficiently large
finite subset of 𝔽.

 The average-case learning problem. Given black-box
access to a random ∑∧∑ circuit computing f, output a
small ∑∧∑ circuit for f.

 For simplicity, assume that 𝓁1, …, 𝓁s are linear forms and
d1= … = ds = d.

d1 ds

Learning random ∑∧∑ circuits
 A random ∑∧∑ circuit computes

 f = 𝓁1 + … + 𝓁s ,

where the coefficients of 𝓁1, …, 𝓁s are chosen uniformly
and independently at random from a sufficiently large
finite subset of 𝔽.

 The average-case learning problem. Given black-box
access to a random ∑∧∑ circuit computing f, output a
small ∑∧∑ circuit for f.

 What is the complexity of the above problem?

d d

Learning random ∑∧∑ circuits
 A random ∑∧∑ circuit computes

 f = 𝓁1 + … + 𝓁s ,

where the coefficients of 𝓁1, …, 𝓁s are chosen uniformly
and independently at random from a sufficiently large
finite subset of 𝔽.

 An easier case. Suppose s ≤ n. Then, 𝓁1, …, 𝓁s are 𝔽-
linearly independent w.h.p.

 In other words, f is equivalent to the d-th power
symmetric polynomial PSym in s variables w.h.p.

d d

Learning random ∑∧∑ circuits
 A random ∑∧∑ circuit computes

 f = 𝓁1 + … + 𝓁s ,

where the coefficients of 𝓁1, …, 𝓁s are chosen uniformly
and independently at random from a sufficiently large
finite subset of 𝔽.

 An easier case. Suppose s ≤ n. Then, 𝓁1, …, 𝓁s are 𝔽-
linearly independent w.h.p.

 In other words, f is equivalent to the d-th power
symmetric polynomial PSym in s variables w.h.p.

d d

Let’s take a detour into the polynomial equivalence problem…

The polynomial equivalence problem

Polynomial equivalence problem

 Orbit. The orbit of an n-variate polynomial g over 𝔽 is
the set orb(g) := {g(Ax) : A ∈ GL(n, 𝔽)}.

 Equivalent polynomials. Two n-variate polynomials f, g ∈ 𝔽[x] are equivalent, denoted as f ~ g, if there’s a A ∈
GL(n, 𝔽) s.t. f = g(Ax) (i.e., f ∈ orb(g)).

 For example, f = 𝓁1
d + … + 𝓁n

d , where 𝓁1, …,𝓁n are 𝔽–
linearly independent, is equivalent to the power
symmetric polynomial PSymn,d = x1

d + … + xn
d .

Polynomial equivalence problem

 Orbit. The orbit of an n-variate polynomial g over 𝔽 is
the set orb(g) := {g(Ax) : A ∈ GL(n, 𝔽)}.

 Equivalent polynomials. Two n-variate polynomials f, g ∈ 𝔽[x] are equivalent, denoted as f ~ g, if there’s a A ∈
GL(n, 𝔽) s.t. f = g(Ax) (i.e., f ∈ orb(g)).

 The equivalence problem. Given f and g as lists of
coefficients, check if f ~ g. If equivalent, then find a
certificate A ∈ GL(n, 𝔽).

 Polynomial equivalence (PE) has been studied intensely.

PE: Known results

 Thierauf (1998); Saxena (2006): PE is in NP ∩ coAM
over 𝔽q. Hence, unlikely to be NP-complete.

 Not known to be decidable over ℚ.

 Over arbitrary fields, the best known complexity is the
same as that of polynomial solvability.

PE: Known results

 Thierauf (1998); Saxena (2006): PE is in NP ∩ coAM
over 𝔽q. Hence, unlikely to be NP-complete.

 Not known to be decidable over ℚ.

 Over arbitrary fields, the best known complexity is the
same as that of polynomial solvability.

 What if f and g belong to restricted classes/families of
polynomials?

PE: Known results

 Minkowski (1885); Hasse (1921); Serre (1973); Witt
(1998); Wallenborn (2013): Quadratic form equivalence
can be solved in randomized polynomial time over 𝔽q, ℂ, ℝ, and over ℚ (with access to Integer Factoring oracle).

 Uses well-known classification results for quadratic
forms over 𝔽q, ℂ, ℝ, and ℚ .

 For e.g., a quadratic form over ℂ having n essential
variables is equivalent to x1

2 +…+ xn
2 .

PE: Known results

 Minkowski (1885); Hasse (1921); Serre (1973); Witt
(1998); Wallenborn (2013): Quadratic form equivalence
can be solved in randomized polynomial time over 𝔽q, ℂ, ℝ, and over ℚ (with access to Integer Factoring oracle).

 Agrawal & Saxena (2005): Cubic form equivalence is
graph isomorphism hard.

 Grochow & Qiao (2019): Tensor isomorphism, matrix
space isometry & conjugacy, algebra isomorphism and
cubic form equivalence are poly-time equivalent.

PE: Known results

 Kayal (2011): Initiated the study of a natural variant of
PE for well-known polynomial families.

 Let G = {gm : m ∈ ℕ} be a polynomial family, say Det .

 PE for G. Given b.b.a to f, check if f ∈ orb(gm) for some
m ∈ ℕ. If yes, then find a certificate A ∈ GL(n, 𝔽).

PE: Known results

 Kayal (2011): Initiated the study of a natural variant of
PE for well-known polynomial families.

 Let G = {gm : m ∈ ℕ} be a polynomial family, say Det .

 PE for G. Given b.b.a to f, check if f ∈ orb(gm) for some
m ∈ ℕ. If yes, then find a certificate A ∈ GL(n, 𝔽).

 Why is this version of PE interesting?

PE: Known results

 Kayal (2011): Initiated the study of a natural variant of
PE for well-known polynomial families.

 Let G = {gm : m ∈ ℕ} be a polynomial family, say Det .

 Affine projections. The set of affine projections of a n-
variate g is aproj(g) := {g(Ax + b) : A∈𝔽n x n, b∈𝔽n}.

PE: Known results

 Kayal (2011): Initiated the study of a natural variant of
PE for well-known polynomial families.

 Let G = {gm : m ∈ ℕ} be a polynomial family, say Det .

 Affine projections. The set of affine projections of a n-
variate g is aproj(g) := {g(Ax + b) : A∈𝔽n x n, b∈𝔽n}.

 Affine projections of a “simple” G can be very powerful.

 aproj(PSym) captures ∑∧∑ circuits,

 aproj(SumProd) captures ∑∏∑ circuits, (SumProd has a depth-2 ROF)

 aproj(ANF) captures formulas, (ANF has a ROF)

 aproj(Det) & aproj(IMM) capture ABPs.

PE: Known results

 Kayal (2011): Initiated the study of a natural variant of
PE for well-known polynomial families.

 Let G = {gm : m ∈ ℕ} be a polynomial family, say Det .

 Orbit closure. The orbit closure of g over 𝔽, denoted as
orb(g), is the Zariski closure of orb(g).

 Fact. orb(g) ⊆ aproj(g) ⊆ orb(g). (char(𝔽) = 0)

PE: Known results

 Kayal (2011): Initiated the study of a natural variant of
PE for well-known polynomial families.

 Let G = {gm : m ∈ ℕ} be a polynomial family, say Det .

 Orbit closure. The orbit closure of g over 𝔽, denoted as
orb(g), is the Zariski closure of orb(g).

 Fact. orb(g) ⊆ aproj(g) ⊆ orb(g). (char(𝔽) = 0)

 Natural to study the learning problem for orbits of well-
known polynomial families.

PE: Known results

 Kayal (2011): Initiated the study of a natural variant of
PE for well-known polynomial families.

 Let G = {gm : m ∈ ℕ} be a polynomial family, say Det .

 PE for G. Given b.b.a to f, check if f ∈ orb(gm) for some
m ∈ ℕ. If yes, then find a certificate A ∈ GL(n, 𝔽).

 Kayal (2011, 2012); Kayal, Nair, S., Tavenas (2017); Garg,
Gupta, Kayal, S. (2019); Murthy, Nair, S. (2020):
Randomized poly-time PE are known for Det, Perm,
IMM, tr-IMM, ESym, PSym, SumProduct etc.

PE for Power Symmetric Polynomials

 Let PSym = x1
d + … + xs

d . Assume d ≥ 3, char(𝔽) = 0.

 Let f = 𝓁1
d + … + 𝓁s

d , where 𝓁1, …, 𝓁s are 𝔽-l.i.

 Recall, a quadratic form over ℂ having n essential
variables is equivalent to x1

2 +…+ xn
2 .

PE for Power Symmetric Polynomials

 Let PSym = x1
d + … + xs

d . Assume d ≥ 3, char(𝔽) = 0.

 Let f = 𝓁1
d + … + 𝓁s

d , where 𝓁1, …, 𝓁s are 𝔽-l.i.

 Given b.b.a. to f, can we recover 𝓁1, …, 𝓁s? (up to dth roots of 1)

PE for Power Symmetric Polynomials

 Let PSym = x1
d + … + xs

d . Assume d ≥ 3, char(𝔽) = 0.

 Let f = 𝓁1
d + … + 𝓁s

d , where 𝓁1, …, 𝓁s are 𝔽-l.i.

 Given b.b.a. to f, can we recover 𝓁1, …, 𝓁s? (up to dth roots of 1)

 Obs. The number of essential variables of f is s.

 Apply the Carlini-Kayal algorithm to remove redundant
variables. So, we can assume w.l.o.g that s = n.

PE for Power Symmetric Polynomials

 Let PSym = x1
d + … + xn

d . Assume d ≥ 3, char(𝔽) = 0.

 Input: Black-box access to f ∈ orb(PSym).

 Output: A matrix A ∈ GL(n, 𝔽) s.t. f = PSym(Ax).

 Algorithm: Uses the Hessian matrix associated with f.

The Hessian of a polynomial

 Let f be an n-variate polynomial and ∂i,jf the derivative of
f w.r.t. xi and xj.

 The Hessian of f. It is the matrix Hesf (x) := (∂i,jf)i,j∈[n] .

 The Hessian matrix appears naturally in the Taylor
expansion of a polynomial and has important
applications in optimization, second derivative tests, etc.

The Hessian of a polynomial

 Let f be an n-variate polynomial and ∂i,jf the derivative of
f w.r.t. xi and xj.

 The Hessian of f. It is the matrix Hesf (x) := (∂i,jf)i,j∈[n] .

 Obs. If f = g(Ax) for some A ∈ 𝔽n x n , then

 Hesf (x) = AT ∙ Hesg (Ax) ∙ A .

The Hessian of a polynomial

 Let f be an n-variate polynomial and ∂i,jf the derivative of
f w.r.t. xi and xj.

 The Hessian of f. It is the matrix Hesf (x) := (∂i,jf)i,j∈[n] .

 Obs. If f = g(Ax) for some A ∈ 𝔽n x n , then

 Hesf (x) = AT ∙ Hesg (Ax) ∙ A .

 Proof~. Uses chain rule. Let ∇f := (∂1f, ∂2f, … ∂nf)
T. Then,

 ∇f = AT ∙ [∇g](Ax) .

The Hessian of a polynomial

 Let f be an n-variate polynomial and ∂i,jf the derivative of
f w.r.t. xi and xj.

 The Hessian of f. It is the matrix Hesf (x) := (∂i,jf)i,j∈[n] .

 Obs. If f = g(Ax) for some A ∈ 𝔽n x n , then

 Hesf (x) = AT ∙ Hesg (Ax) ∙ A .

 Cor. det(Hesf) = c ∙ det(Hesg)(Ax), where c ∈ 𝔽.

PE for Power Symmetric Polynomials

 Let PSym = x1
d + … + xn

d . Assume d ≥ 3, char(𝔽) = 0.

 Input: Black-box access to f ∈ orb(PSym).

 Output: A matrix A ∈ GL(n, 𝔽) s.t. f = PSym(Ax).

 Algorithm: (high-level)

 Step 1. Compute b.b.a to H := det(Hesf).

Obs. B.b.a. to ∂i,jf can be computed efficiently from

 b.b.a. to f.

Hesf (x) = AT ∙ HesPSym (Ax) ∙ A

PE for Power Symmetric Polynomials

 Let PSym = x1
d + … + xn

d . Assume d ≥ 3, char(𝔽) = 0.

 Input: Black-box access to f ∈ orb(PSym).

 Output: A matrix A ∈ GL(n, 𝔽) s.t. f = PSym(Ax).

 Algorithm: (high-level)

 Step 1. Compute b.b.a to H := det(Hesf).

 Step 2. Compute b.b.a to the factors of H.

 (using b.b. polynomial factorization)

Hesf (x) = AT ∙ HesPSym (Ax) ∙ A

PE for Power Symmetric Polynomials

 Let PSym = x1
d + … + xn

d . Assume d ≥ 3, char(𝔽) = 0.

 Input: Black-box access to f ∈ orb(PSym).

 Output: A matrix A ∈ GL(n, 𝔽) s.t. f = PSym(Ax).

 Algorithm: (high-level)

 Step 1. Compute b.b.a to H := det(Hesf).

 Step 2. Compute b.b.a to the factors of H.

 Step 3. Recover A from the linear factors of H.

Hesf (x) = AT ∙ HesPSym (Ax) ∙ A

PE for Power Symmetric Polynomials

 Let PSym = x1
d + … + xn

d . Assume d ≥ 3, char(𝔽) = 0.

 Input: Black-box access to f ∈ orb(PSym).

 Output: A matrix A ∈ GL(n, 𝔽) s.t. f = PSym(Ax).

 Algorithm: (correctness)

 Step 3. Recover A from the linear factors of H.

Proof~. HesPSym(x) = diag (d’x1
d-2, …, d’xn

d-2), where

 d’ = d(d-1).

Hesf (x) = AT ∙ HesPSym (Ax) ∙ A

PE for Power Symmetric Polynomials

 Let PSym = x1
d + … + xn

d . Assume d ≥ 3, char(𝔽) = 0.

 Input: Black-box access to f ∈ orb(PSym).

 Output: A matrix A ∈ GL(n, 𝔽) s.t. f = PSym(Ax).

 Algorithm: (correctness)

 Step 3. Recover A from the linear factors of H.

Proof~. HesPSym(x) = diag (d’x1
d-2, …, d’xn

d-2)

 HesPSym(Ax) = diag (d’𝓁1
d-2, …, d’𝓁n

d-2), where

 Ax = (𝓁1, …, 𝓁n)
T

Hesf (x) = AT ∙ HesPSym (Ax) ∙ A

PE for Power Symmetric Polynomials

 Let PSym = x1
d + … + xn

d . Assume d ≥ 3, char(𝔽) = 0.

 Input: Black-box access to f ∈ orb(PSym).

 Output: A matrix A ∈ GL(n, 𝔽) s.t. f = PSym(Ax).

 Algorithm: (correctness)

 Step 3. Recover A from the linear factors of H.

Proof~. HesPSym(x) = diag (d’x1
d-2, …, d’xn

d-2)

 HesPSym(Ax) = diag (d’𝓁1
d-2, …, d’𝓁n

d-2)

 H = c ∙ 𝓁1
d-2 ∙ … ∙ 𝓁n

d-2, c ∈ 𝔽 .

Hesf (x) = AT ∙ HesPSym (Ax) ∙ A

PE for Power Symmetric Polynomials

 Let PSym = x1
d + … + xn

d . Assume d ≥ 3, char(𝔽) = 0.

 Input: Black-box access to f ∈ orb(PSym).

 Output: A matrix A ∈ GL(n, 𝔽) s.t. f = PSym(Ax).

 Algorithm: (correctness)

 Step 3. Recover A from the linear factors of H.

Proof~. HesPSym(x) = diag (d’x1
d-2, …, d’xn

d-2)

 HesPSym(Ax) = diag (d’𝓁1
d-2, …, d’𝓁n

d-2)

 H = c ∙ 𝓁1
d-2 ∙ … ∙ 𝓁n

d-2, c ∈ 𝔽 .

Recover 𝓁1 ,…, 𝓁n (up to 𝔽-multiples)

Hesf (x) = AT ∙ HesPSym (Ax) ∙ A

PE for Power Symmetric Polynomials

 Let PSym = x1
d + … + xn

d . Assume d ≥ 3, char(𝔽) = 0.

 Input: Black-box access to f ∈ orb(PSym).

 Output: A matrix A ∈ GL(n, 𝔽) s.t. f = PSym(Ax).

 Algorithm: (correctness)

 Step 3. Recover A from the linear factors of H.

Proof~. HesPSym(x) = diag (d’x1
d-2, …, d’xn

d-2)

 HesPSym(Ax) = diag (d’𝓁1
d-2, …, d’𝓁n

d-2)

 H = c ∙ 𝓁1
d-2 ∙ … ∙ 𝓁n

d-2, c ∈ 𝔽 .

Recover 𝓁’1 ,…, 𝓁’n

Hesf (x) = AT ∙ HesPSym (Ax) ∙ A

PE for Power Symmetric Polynomials

 Let PSym = x1
d + … + xn

d . Assume d ≥ 3, char(𝔽) = 0.

 Input: Black-box access to f ∈ orb(PSym).

 Output: A matrix A ∈ GL(n, 𝔽) s.t. f = PSym(Ax).

 Algorithm: (correctness)

 Step 3. Recover A from the linear factors of H.

Proof~. Observe, f = z1 ∙ 𝓁’1d + … + zn ∙ 𝓁’nd for some
unknown z1, …, zn. Set up a linear system in z1, …, zn by
evaluating f and 𝓁’1, …, 𝓁’n at n random points. Solve for
z1, …, zn and take d-th roots.

PE for Sum-Product polynomials

 Let SumProd = x11x12∙∙∙ x1d + … + xs1xs2∙∙∙ xsd .

 Observe, aproj(SumProd) captures ∑∏∑ circuits.

 A quadratic form over ℂ having n essential variables
(where n is even) is equivalent to x1x2 + … + xn-1xn .

PE for Sum-Product polynomials

 Let SumProd = x11x12∙∙∙ x1d + … + xs1xs2∙∙∙ xsd .

 Observe, aproj(SumProd) captures ∑∏∑ circuits.

 Input: Black-box access to f ∈ orb(SumProd).

 Output: A matrix A ∈ GL(n, 𝔽) s.t. f = SumProd(Ax).

 Here, n = sd.

PE for Sum-Product polynomials

 Let SumProd = x11x12∙∙∙ x1d + … + xs1xs2∙∙∙ xsd .

 Observe, aproj(SumProd) captures ∑∏∑ circuits.

 Input: Black-box access to f ∈ orb(SumProd).

 Output: A matrix A ∈ GL(n, 𝔽) s.t. f = SumProd(Ax).

 Algorithm: (high-level)

 Step 1. Compute b.b.a to H := det(Hesf).

 Step 2. Compute b.b.a to the factors of H.

 Step 3. Recover A from the linear factors of H.

Hesf (x) = AT ∙ HesSumProd (Ax) ∙ A

PE for Sum-Product polynomials

 Let SumProd = x11x12∙∙∙ x1d + … + xs1xs2∙∙∙ xsd .

 Observe, aproj(SumProd) captures ∑∏∑ circuits.

 Input: Black-box access to f ∈ orb(SumProd).

 Output: A matrix A ∈ GL(n, 𝔽) s.t. f = SumProd(Ax).

 Algorithm: (correctness)

 Step 3. Recover A from the linear factors of H.

Proof~. HesSumProd(x) = blocdiag (Hes (x) ,…, Hes (x)),
where hi = xi1xi2∙∙∙ xid is a monomial.

h1 hs

Hesf (x) = AT ∙ HesSumProd (Ax) ∙ A

PE for Sum-Product polynomials

 Let SumProd = x11x12∙∙∙ x1d + … + xs1xs2∙∙∙ xsd .

 Observe, aproj(SumProd) captures ∑∏∑ circuits.

 Input: Black-box access to f ∈ orb(SumProd).

 Output: A matrix A ∈ GL(n, 𝔽) s.t. f = SumProd(Ax).

 Algorithm: (correctness)

 Step 3. Recover A from the linear factors of H.

Proof~.

 Clm. det(Hes (x)) = (-1)d-1(d-1) ∙ xi1
d-2 ∙∙∙ xid

d-2.

hi

Hessian determinant of a monomial is a monomial.

Hesf (x) = AT ∙ HesSumProd (Ax) ∙ A

PE for Sum-Product polynomials

 Let SumProd = x11x12∙∙∙ x1d + … + xs1xs2∙∙∙ xsd .

 Observe, aproj(SumProd) captures ∑∏∑ circuits.

 Input: Black-box access to f ∈ orb(SumProd).

 Output: A matrix A ∈ GL(n, 𝔽) s.t. f = SumProd(Ax).

 Algorithm: (correctness)

 Step 3. Recover A from the linear factors of H.

Proof~. Hence, H = c ∙ 𝓁11
d-2 ∙ … ∙ 𝓁sd

d-2, c ∈ 𝔽 ,
where Ax = (𝓁11, …, 𝓁sd)

T .

Hesf (x) = AT ∙ HesSumProd (Ax) ∙ A

PE for Sum-Product polynomials

 Let SumProd = x11x12∙∙∙ x1d + … + xs1xs2∙∙∙ xsd .

 Observe, aproj(SumProd) captures ∑∏∑ circuits.

 Input: Black-box access to f ∈ orb(SumProd).

 Output: A matrix A ∈ GL(n, 𝔽) s.t. f = SumProd(Ax).

 Algorithm: (correctness)

 Step 3. Recover A from the linear factors of H.

Proof~. Hence, H = c ∙ 𝓁11
d-2 ∙ … ∙ 𝓁sd

d-2, c ∈ 𝔽 ,
where Ax = (𝓁11, …, 𝓁sd)

T . The rest of the argument is
similar to PE for PSym.

Hesf (x) = AT ∙ HesSumProd (Ax) ∙ A

PE for Read-once formulas

 Let SumProd = x11x12∙∙∙ x1d + … + xs1xs2∙∙∙ xsd .

 Observe, SumProd is a ROF. Recall, affine projections of
ROFs capture formulas.

 Can PE for ROFs be solved efficiently?

PE for Read-once formulas

 Let SumProd = x11x12∙∙∙ x1d + … + xs1xs2∙∙∙ xsd .

 Observe, SumProd is a ROF. Recall, affine projections of
ROFs capture formulas.

 Can PE for ROFs be solved efficiently?

 Gupta, S., Thankey (ongoing). Given b.b.a. to f, g in the
orbits of ROFs*, the problem of checking if f ~ g and
finding a witness A can be solved in randomized poly-time.

 Analyzes the Hessian of a general ROF.

*mild conditions apply

PE for Read-once formulas

 Let SumProd = x11x12∙∙∙ x1d + … + xs1xs2∙∙∙ xsd .

 Observe, SumProd is a ROF. Recall, affine projections of
ROFs capture formulas.

 Can PE for ROFs be solved efficiently?

 Gupta, S., Thankey (ongoing). Given b.b.a. to f, g in the
orbits of ROFs*, the problem of checking if f ~ g and
finding a witness A can be solved in randomized poly-time.

 A generalization of quadratic form equivalence:

 A quadratic form over ℂ is equivalent to x1x2+…+xn-1xn (n even).

PE for PSym w/o poly factoring

 Koiran & Saha (2021); Koiran & Skomra (2020). Solves the
decision version of PE for PSym over ℂ in randomized
poly-time without appealing to polynomial factorization.

 Involves only arithmetic operations and equality tests.

 If f has rational coefficients, then the algorithm requires
polynomial number of bit operations.

Back to learning random ∑∧∑ circuits

 A random ∑∧∑ circuit computes

 f = 𝓁1 + … + 𝓁s ,

where the coefficients of 𝓁1, …, 𝓁s are chosen uniformly
and independently at random from a sufficiently large
subset of 𝔽.

 The average-case learning problem. Given black-box
access to a random ∑∧∑ circuit computing f, output a
small ∑∧∑ circuit for f.

 Can we handle s > n? Does Hessian help?

d d

Back to learning random ∑∧∑ circuits

 Garcia-Marco, Koiran, Pecatte (2018). Random ∑∧∑
circuits can be reconstructed in randomized poly-time
provided s ≈ n2/2 and d ≥ 5.

 Uses 4-th order Hessian and shows that the determinant is
nonzero (w.h.p) and factorizes into linear factors.

Back to learning random ∑∧∑ circuits

 Garcia-Marco, Koiran, Pecatte (2018). Random ∑∧∑
circuits can be reconstructed in randomized poly-time
provided s ≈ n2/2 and d ≥ 5.

 Uses 4-th order Hessian and shows that the determinant is
nonzero (w.h.p) and factorizes into linear factors.

 Unclear if the strategy scales to higher s. More
importantly, it is not clear how effective Hessian is in
learning other − more powerful − models.

 It seems we need a different strategy…

Learning from lower bounds:
A paradigm

Learning from lower bounds?

 Fortnow & Klivans (2009): A randomized poly-time
reconstruction algorithm for C implies super-polynomial
lower bound for C. (Learning −> lower bound)

 Does lower bound imply worst-case reconstruction?
Unlikely. Reconstruction appears to be inherently hard.

Learning from lower bounds?

 Fortnow & Klivans (2009): A randomized poly-time
reconstruction algorithm for C implies super-polynomial
lower bound for C. (Learning −> lower bound)

 Does lower bound imply worst-case reconstruction?
Unlikely. Reconstruction appears to be inherently hard.

 Does lower bound imply average-case reconstruction?

A typical lower bound proof

 Suppose that a circuit from C computes a polynomial

 f = T1 + … + Ts ,

where each term Ti is “simple” is some sense.

 For example, Ti is a power of a linear polynomial for
∑∧∑ circuits.

A typical lower bound proof

 Suppose that a circuit from C computes a polynomial

 f = T1 + … + Ts ,

where each term Ti is “simple” is some sense.

 A typical lower bound proof for C proceeds by defining
a complexity measure (map) 𝛍 : 𝔽[x] −> ℕ s.t.

 𝛍(f + g) ≤ 𝛍(f) + 𝛍(g) (subadditivity)

 𝛍(Ti) ≤ L, where L is a “small” quantity,

 𝛍(f) ≥ H, where H is a “large” quantity.

A typical lower bound proof

 Suppose that a circuit from C computes a polynomial

 f = T1 + … + Ts ,

where each term Ti is “simple” is some sense.

 A typical lower bound proof for C proceeds by defining
a complexity measure (map) 𝛍 : 𝔽[x] −> ℕ s.t.

 𝛍(f + g) ≤ 𝛍(f) + 𝛍(g) (subadditivity)

 𝛍(Ti) ≤ L, where L is a “small” quantity,

 𝛍(f) ≥ H, where H is a “large” quantity.

 Any C-circuit computing f must have s ≥ H/L terms.

A typical lower bound proof

 Suppose that a circuit from C computes a polynomial

 f = T1 + … + Ts ,

where each term Ti is “simple” is some sense.

 A typical lower bound proof for C proceeds by defining
a complexity measure (map) 𝛍 : 𝔽[x] −> ℕ s.t.

 𝛍(f + g) ≤ 𝛍(f) + 𝛍(g) (subadditivity)

 𝛍(Ti) ≤ L, where L is a “small” quantity,

 𝛍(f) ≥ H, where H is a “large” quantity.

 Any C-circuit computing f must have s ≥ H/L terms.

Typically, 𝛍(f) is the dimension of a vector space U associated with f.

Lower bound for ∑∧∑ circuits
 A ∑∧∑ circuit computes

 f = 𝓁1
d + … + 𝓁s

d ,

where a term Ti = 𝓁i
d .

 Let ∂k
 f be the set of k-th order partials of f, U := ⟨∂k

 f⟩
and Ui := ⟨∂k

 Ti⟩. Define 𝛍(f) := dim U, 𝛍(Ti) := dim Ui .

Lower bound for ∑∧∑ circuits
 A ∑∧∑ circuit computes

 f = 𝓁1
d + … + 𝓁s

d ,

where a term Ti = 𝓁i
d .

 Let ∂k
 f be the set of k-th order partials of f, U := ⟨∂k

 f⟩
and Ui := ⟨∂k

 Ti⟩. Define 𝛍(f) := dim U, 𝛍(Ti) := dim Ui .

 As ∂k is a set of linear operators on 𝔽[x],

 U ⊆ U1 +…+ Us , and so,

 𝛍(f) ≤ 𝛍(T1) +…+ 𝛍(Ts) (subadditivity).

Lower bound for ∑∧∑ circuits
 A ∑∧∑ circuit computes

 f = 𝓁1
d + … + 𝓁s

d ,

where a term Ti = 𝓁i
d .

 Let ∂k
 f be the set of k-th order partials of f, U := ⟨∂k

 f⟩
and Ui := ⟨∂k

 Ti⟩. Define 𝛍(f) := dim U, 𝛍(Ti) := dim Ui .

 Obs. 𝛍(Ti) = 1 whereas 𝛍(x1x2 ∙∙∙ xn) = ().

 Choose k = n/2. This gives a s = 𝝮(2n) lower bound for
∑∧∑ circuits computing x1x2 ∙∙∙ xn .

n
k

~

A typical lower bound proof

 A C-circuit computes a polynomial

 f = T1 + … + Ts ,

where each term Ti is “simple” is some sense.

 A typical lower bound proof for C involves a set of

linear operators 𝓛 on 𝔽[x] s.t. dim ⟨𝓛 ∘Ti⟩ is “small”.

 In the lower bound proof for ∑∧∑ circuits, 𝓛 = ∂k
 .

A typical lower bound proof

 A C-circuit computes a polynomial

 f = T1 + … + Ts ,

where each term Ti is “simple” is some sense.

 As 𝓛 is linear, ⟨𝓛 ∘ f⟩ ⊆ ⟨𝓛 ∘T1⟩ +…+ ⟨𝓛 ∘Ts⟩.

Learning from LB: A framework

 A C-circuit computes a polynomial

 f = T1 + … + Ts ,

where each term Ti is “simple” is some sense.

 As 𝓛 is linear, ⟨𝓛 ∘ f⟩ ⊆ ⟨𝓛 ∘T1⟩ +…+ ⟨𝓛 ∘Ts⟩.
 If T1, …, Ts are random, we do expect

1. ⟨𝓛 ∘T1⟩ +…+ ⟨𝓛 ∘Ts⟩ = ⟨𝓛 ∘T1⟩ ⊕…⊕ ⟨𝓛 ∘Ts⟩
2. ⟨𝓛 ∘ f⟩ = ⟨𝓛 ∘T1⟩ +…+ ⟨𝓛 ∘Ts⟩ , implying

 ⟨𝓛 ∘ f⟩ = ⟨𝓛 ∘T1⟩ ⊕…⊕ ⟨𝓛 ∘Ts⟩
(as dim⟨𝓛∘Ti⟩ is “small”)

Learning from LB: A framework

 f = T1 + … + Ts .

 A (crude) approach to learn the terms.

 Compute a basis of ⟨𝓛 ∘ f⟩ from f.

 Decompose ⟨𝓛 ∘ f⟩ = ⟨𝓛 ∘T1⟩ ⊕…⊕ ⟨𝓛 ∘Ts⟩.
 Obtain Ti from a basis of ⟨𝓛 ∘Ti⟩ .

Learning from LB: A framework

 f = T1 + … + Ts .

 A (crude) approach to learn the terms.

 Compute a basis of ⟨𝓛 ∘ f⟩ from f.

 Decompose ⟨𝓛 ∘ f⟩ = ⟨𝓛 ∘T1⟩ ⊕…⊕ ⟨𝓛 ∘Ts⟩.
 Obtain Ti from a basis of ⟨𝓛 ∘Ti⟩ .

 What makes ⟨𝓛 ∘T1⟩, …, ⟨𝓛 ∘Ts⟩ special subspaces of

 ⟨𝓛 ∘ f⟩ ?
How?

Learning from LB: A framework

 f = T1 + … + Ts .

 Turns out in a typical l.b. proof 𝓛 can be expressed as 𝓛
= 𝓛2 ∘ 𝓛1 , where 𝓛1, 𝓛2 are sets of linear operators.

 For example, ∂k+1 = ∂ ∘ ∂k .

Learning from LB: A framework

 f = T1 + … + Ts .

 Turns out in a typical l.b. proof 𝓛 can be expressed as 𝓛
= 𝓛2 ∘ 𝓛1 , where 𝓛1, 𝓛2 are sets of linear operators.

 If T1, …, Ts are random, then we do expect

1. ⟨𝓛1 ∘ f⟩ = ⟨𝓛1 ∘T1⟩ ⊕…⊕ ⟨𝓛1 ∘Ts⟩
2. ⟨𝓛 ∘ f⟩ = ⟨𝓛 ∘T1⟩ ⊕…⊕ ⟨𝓛 ∘Ts⟩ 𝓛2

Learning from LB: A framework

 f = T1 + … + Ts .

 Turns out in a typical l.b. proof 𝓛 can be expressed as 𝓛
= 𝓛2 ∘ 𝓛1 , where 𝓛1, 𝓛2 are sets of linear operators.

 If T1, …, Ts are random, then we do expect

1. ⟨𝓛1 ∘ f⟩ = ⟨𝓛1 ∘T1⟩ ⊕…⊕ ⟨𝓛1 ∘Ts⟩
2. ⟨𝓛 ∘ f⟩ = ⟨𝓛 ∘T1⟩ ⊕…⊕ ⟨𝓛 ∘Ts⟩

 Let U := ⟨𝓛1∘f⟩, Ui := ⟨𝓛1∘Ti⟩, V := ⟨𝓛∘f⟩, Vi := ⟨𝓛∘Ti⟩.

𝓛2

Learning from LB: A framework

 f = T1 + … + Ts .

 Turns out in a typical l.b. proof 𝓛 can be expressed as 𝓛
= 𝓛2 ∘ 𝓛1 , where 𝓛1, 𝓛2 are sets of linear operators.

 If T1, …, Ts are random, then we do expect

1. U = U1 ⊕…⊕ Us

2. V = V1 ⊕…⊕ Vs

 Let U := ⟨𝓛1∘f⟩, Ui := ⟨𝓛1∘Ti⟩, V := ⟨𝓛∘f⟩, Vi := ⟨𝓛∘Ti⟩.

𝓛2

Learning from LB: A framework

 f = T1 + … + Ts .

 Turns out in a typical l.b. proof 𝓛 can be expressed as 𝓛
= 𝓛2 ∘ 𝓛1 , where 𝓛1, 𝓛2 are sets of linear operators.

 If T1, …, Ts are random, then we do expect

1. U = U1 ⊕…⊕ Us

2. V = V1 ⊕…⊕ Vs

 Observe, V = ⟨𝓛2 ∘ U⟩, Vi = ⟨𝓛2 ∘ Ui⟩.

𝓛2

Learning from LB: A framework

 f = T1 + … + Ts .

 Turns out in a typical l.b. proof 𝓛 can be expressed as 𝓛
= 𝓛2 ∘ 𝓛1 , where 𝓛1, 𝓛2 are sets of linear operators.

 If T1, …, Ts are random, then we do expect

1. U = U1 ⊕…⊕ Us

2. V = V1 ⊕…⊕ Vs

3. The above decomposition is the unique
decomposition of U and V into indecomposable

subspaces s.t. Vi = ⟨𝓛2 ∘ Ui⟩.

𝓛2

Learning from LB: A framework

 f = T1 + … + Ts .

 Turns out in a typical l.b. proof 𝓛 can be expressed as 𝓛
= 𝓛2 ∘ 𝓛1 , where 𝓛1, 𝓛2 are sets of linear operators.

 If T1, …, Ts are random, then we do expect

1. U = U1 ⊕…⊕ Us

2. V = V1 ⊕…⊕ Vs

3. The above decomposition is the unique
decomposition of U and V under the action of 𝓛2 .

𝓛2

Learning from LB: A framework

 f = T1 + … + Ts .

 A meta-algorithm to learn the terms.

 Compute bases of U = ⟨𝓛1 ∘ f⟩ and V = ⟨𝓛 ∘ f⟩.
 Decompose U and V under the action of 𝓛2 .

 Obtain Ti from a basis of Ui.

𝓛 = 𝓛2 ∘ 𝓛1

Learning from LB: A framework

 f = T1 + … + Ts .

 A meta-algorithm to learn the terms.

 Compute bases of U = ⟨𝓛1 ∘ f⟩ and V = ⟨𝓛 ∘ f⟩.
 Decompose U and V under the action of 𝓛2 .

 Obtain Ti from a basis of Ui.

 Learning the terms −> vector space decomposition

𝓛 = 𝓛2 ∘ 𝓛1

Learning from LB: A framework

 f = T1 + … + Ts .

 A meta-algorithm to learn the terms.

 Compute bases of U = ⟨𝓛1 ∘ f⟩ and V = ⟨𝓛 ∘ f⟩.
 Decompose U and V under the action of 𝓛2 .

 Obtain Ti from a basis of Ui.

 Although easy-to-state, one needs to overcome a few
technical challenges to make the meta-algorithm work.

𝓛 = 𝓛2 ∘ 𝓛1

Technical challenges

 f = T1 + … + Ts .

 Task 1 (Direct Sum). Show that U = U1 ⊕…⊕ Us and V
= V1 ⊕…⊕ Vs w.h.p. if T1, …, Ts are random.

Technical challenges

 f = T1 + … + Ts .

 Task 1 (Direct Sum). Show that U = U1 ⊕…⊕ Us and V
= V1 ⊕…⊕ Vs w.h.p. if T1, …, Ts are random.

 Task 2 (Uniqueness). Show that the above decomposition
of U and V under the action of 𝓛2 is unique.

Technical challenges

 f = T1 + … + Ts .

 Task 1 (Direct Sum). Show that U = U1 ⊕…⊕ Us and V
= V1 ⊕…⊕ Vs w.h.p. if T1, …, Ts are random.

 Task 2 (Uniqueness). Show that the above decomposition
of U and V under the action of 𝓛2 is unique.

 A C-circuit satisfying the direct sum and the uniqueness
criteria is called a non-degenerate C-circuit.

 Task 1 & 2 ≡ Show that a random C-circuit is non-
degenerate w.h.p.

Technical challenges

 f = T1 + … + Ts .

 Task 1 (Direct Sum). Show that U = U1 ⊕…⊕ Us and V
= V1 ⊕…⊕ Vs w.h.p. if T1, …, Ts are random.

 Task 2 (Uniqueness). Show that the above decomposition
of U and V under the action of 𝓛2 is unique.

 Task 3 (Vector space decomposition). Carry out the
decomposition of U and V under the action of 𝓛2 .

Technical challenges

 f = T1 + … + Ts .

 Task 1 (Direct Sum). Show that U = U1 ⊕…⊕ Us and V
= V1 ⊕…⊕ Vs w.h.p. if T1, …, Ts are random.

 Task 2 (Uniqueness). Show that the above decomposition
of U and V under the action of 𝓛2 is unique.

 Task 3 (Vector space decomposition). Carry out the
decomposition of U and V under the action of 𝓛2 .

 Task 4 (Terms from subspaces). Recover Ti from Ui .

Known results

Known results that implement the framework:

 Kayal & S. (2019). Proper learns ∑∧∑ ckts, tensors, and
homogeneous ∑∏∑ ckts in the non-degenerate case.

 Introduced the framework in a rudimentary form.

Proper learns random ∑∧∑ circuits for s ≤ ().

n + d/3
n

Known results

Known results that implement the framework:

 Kayal & S. (2019). Proper learns ∑∧∑ ckts, tensors, and
homogeneous ∑∏∑ ckts in the non-degenerate case.

 Garg, Kayal & S. (2020). Proper learns ∑∧∑∏[t] circuits
in the non-degenerate case.

 Laid down the framework completely.

The t = 2 case has a potential application in learning
mixtures of Gaussians.

Known results

Known results that implement the framework:

 Kayal & S. (2019). Proper learns ∑∧∑ ckts, tensors, and
homogeneous ∑∏∑ ckts in the non-degenerate case.

 Garg, Kayal & S. (2020). Proper learns ∑∧∑∏[t] circuits
in the non-degenerate case.

 Bhargava, Garg, Kayal & S. (2021). Proper learns
generalized ∑∏∑ circuits in the non-degenerate case.

 g1(𝓁11∙∙∙𝓁1d) + … + gs(𝓁s1∙∙∙𝓁sd); gi = mono., Det, IMM, etc.

Gives a reasonably general way to accomplish Task 1.

Elaboration on the technical challenges

 f = T1 + … + Ts .

 Task 1 (Direct Sum). Show that U = U1 ⊕…⊕ Us and V
= V1 ⊕…⊕ Vs w.h.p. if T1, …, Ts are random.

 As 𝓛1 and 𝓛2 are linear operators, this task essentially
boils down to showing that certain matrices (whose
entries are polynomials in the “coefficients” of the
terms) have the maximum possible rank.

 The “bad” coefficients lie in an algebraic variety. So,
random coefficients are “good”.

Elaboration on the technical challenges

 f = T1 + … + Ts .

 Task 1 (Direct Sum). Show that U = U1 ⊕…⊕ Us and V
= V1 ⊕…⊕ Vs w.h.p. if T1, …, Ts are random.

 For a ∑∧∑ circuit, it is fairly easy to show that ⟨∂k
 f⟩ = ⟨𝓁1

d-k⟩ ⊕…⊕ ⟨𝓁s
d-k⟩ for random 𝓁1, …, 𝓁s .

 Note. Although easy for ∑∧∑ and homogeneous ∑∏∑
circuits, this task is nontrivial for ∑∧∑∏[t] circuits and
generalized ∑∏∑ circuits.

Elaboration on the technical challenges

 f = T1 + … + Ts .

 Task 2 (Uniqueness). Show that the decomposition of U
and V under the action of 𝓛2 is unique.

 Need to understand all possible valid decompositions of
U and V under the action of 𝓛2 .

 This understanding is provided by the adjoint algebra.

The adjoint algebra

 Definition. Let 𝛗: U −> U and 𝛙: V −> V be linear
maps. The adjoint algebra associated with (U,V, 𝓛2) is

 adj(U,V, 𝓛2) := {(𝛗, 𝛙) : 𝛌∘𝛗 = 𝛙∘𝛌, ∀𝛌 ∈ 𝓛2} .

The adjoint algebra

 Definition. Let 𝛗: U −> U and 𝛙: V −> V be linear
maps. The adjoint algebra associated with (U,V, 𝓛2) is

 adj(U,V, 𝓛2) := {(𝛗, 𝛙) : 𝛌∘𝛗 = 𝛙∘𝛌, ∀𝛌 ∈ 𝓛2} .

 Obs. adj(U,V, 𝓛2) is a vector space over 𝔽.

 Obs. We can compute a basis of adj(U,V, 𝓛2) in
polynomial time from bases of U and V, and the
operators in 𝓛2, by solving a linear system.

The adjoint algebra

 Definition. Let 𝛗: U −> U and 𝛙: V −> V be linear
maps. The adjoint algebra associated with (U,V, 𝓛2) is

 adj(U,V, 𝓛2) := {(𝛗, 𝛙) : 𝛌∘𝛗 = 𝛙∘𝛌, ∀𝛌 ∈ 𝓛2} .

 Obs. If (𝛗, 𝛙) ∈ adj(U,V, 𝓛2) and 𝛗, 𝛙 are invertible, then
U = 𝛗(U1) ⊕…⊕ 𝛗(Us) and V = 𝛙(V1) ⊕…⊕ 𝛙(Vs),

and 𝛙(Vi) = ⟨𝓛2 ∘ 𝛗(Ui)⟩.

The adjoint algebra

 Definition. Let 𝛗: U −> U and 𝛙: V −> V be linear
maps. The adjoint algebra associated with (U,V, 𝓛2) is

 adj(U,V, 𝓛2) := {(𝛗, 𝛙) : 𝛌∘𝛗 = 𝛙∘𝛌, ∀𝛌 ∈ 𝓛2} .

 Obs. If (𝛗, 𝛙) ∈ adj(U,V, 𝓛2) and 𝛗, 𝛙 are invertible, then
U = 𝛗(U1) ⊕…⊕ 𝛗(Us) and V = 𝛙(V1) ⊕…⊕ 𝛙(Vs),

and 𝛙(Vi) = ⟨𝓛2 ∘ 𝛗(Ui)⟩.
 Proof~. Direct sum follows from the fact that 𝛗, 𝛙 are

invertible. For 𝛌 ∈ 𝓛2, 𝛌∘𝛗(Ui) = 𝛙∘𝛌(Ui) ⊆ 𝛙(Vi) .

Equality follows from V = ⟨𝓛2 ∘ U⟩.

The adjoint algebra

 Definition. Let 𝛗: U −> U and 𝛙: V −> V be linear
maps. The adjoint algebra associated with (U,V, 𝓛2) is

 adj(U,V, 𝓛2) := {(𝛗, 𝛙) : 𝛌∘𝛗 = 𝛙∘𝛌, ∀𝛌 ∈ 𝓛2} .

 Obs. If (𝛗, 𝛙) ∈ adj(U,V, 𝓛2) and 𝛗, 𝛙 are invertible, then
U = 𝛗(U1) ⊕…⊕ 𝛗(Us) and V = 𝛙(V1) ⊕…⊕ 𝛙(Vs),

and 𝛙(Vi) = ⟨𝓛2 ∘ 𝛗(Ui)⟩.

 Krull-Schmidt theorem. These are the only
decompositions of U and V under the action of 𝓛2 .

The adjoint algebra

 Definition. Let 𝛗: U −> U and 𝛙: V −> V be linear
maps. The adjoint algebra associated with (U,V, 𝓛2) is

 adj(U,V, 𝓛2) := {(𝛗, 𝛙) : 𝛌∘𝛗 = 𝛙∘𝛌, ∀𝛌 ∈ 𝓛2} .

 Obs. If (𝛗, 𝛙) ∈ adj(U,V, 𝓛2) and 𝛗, 𝛙 are invertible, then
U = 𝛗(U1) ⊕…⊕ 𝛗(Us) and V = 𝛙(V1) ⊕…⊕ 𝛙(Vs),

and 𝛙(Vi) = ⟨𝓛2 ∘ 𝛗(Ui)⟩.

 We need to understand adj(U,V, 𝓛2) to show uniqueness
of decomposition. When is the decomposition unique?

The adjoint algebra

 Definition. Let 𝛗: U −> U and 𝛙: V −> V be linear
maps. The adjoint algebra associated with (U,V, 𝓛2) is

 adj(U,V, 𝓛2) := {(𝛗, 𝛙) : 𝛌∘𝛗 = 𝛙∘𝛌, ∀𝛌 ∈ 𝓛2} .

 Let 𝛗i be the projection map from U to Ui, and 𝛙i the
projection map from V to Vi .

 Obs. (𝛗i, 𝛙i) ∈ adj(U,V, 𝓛2) for all i ∈ [s].

The adjoint algebra

 Definition. Let 𝛗: U −> U and 𝛙: V −> V be linear
maps. The adjoint algebra associated with (U,V, 𝓛2) is

 adj(U,V, 𝓛2) := {(𝛗, 𝛙) : 𝛌∘𝛗 = 𝛙∘𝛌, ∀𝛌 ∈ 𝓛2} .

 Let 𝛗i be the projection map from U to Ui, and 𝛙i the
projection map from V to Vi .

 Obs. (𝛗i, 𝛙i) ∈ adj(U,V, 𝓛2) for all i ∈ [s].

 Proof~. Let u = u1 + … + us for u ∈ U and ui ∈ Ui.
Then, 𝛌∘𝛗i(u) = 𝛌(ui) ∈ Vi .

 Also, 𝛙i∘𝛌(u) = 𝛙i∘𝛌(u1 + … + us) = 𝛌(ui) .

The adjoint algebra

 Definition. Let 𝛗: U −> U and 𝛙: V −> V be linear
maps. The adjoint algebra associated with (U,V, 𝓛2) is

 adj(U,V, 𝓛2) := {(𝛗, 𝛙) : 𝛌∘𝛗 = 𝛙∘𝛌, ∀𝛌 ∈ 𝓛2} .

 Let 𝛗i be the projection map from U to Ui, and 𝛙i the
projection map from V to Vi .

 Obs. (𝛗i, 𝛙i) ∈ adj(U,V, 𝓛2) for all i ∈ [s].

 The adjoint is trivial if it is generated as a vector space
over 𝔽 by (𝛗1, 𝛙1), …, (𝛗s, 𝛙s).

The adjoint algebra

 Definition. Let 𝛗: U −> U and 𝛙: V −> V be linear
maps. The adjoint algebra associated with (U,V, 𝓛2) is

 adj(U,V, 𝓛2) := {(𝛗, 𝛙) : 𝛌∘𝛗 = 𝛙∘𝛌, ∀𝛌 ∈ 𝓛2} .

 Let 𝛗i be the projection map from U to Ui, and 𝛙i the
projection map from V to Vi .

 Obs. (𝛗i, 𝛙i) ∈ adj(U,V, 𝓛2) for all i ∈ [s].

 Clm. If adj(U,V, 𝓛2) is trivial, then U = U1 ⊕…⊕ Us and
V = V1 ⊕…⊕ Vs is the unique decomposition of U and
V under the action of 𝓛2.

The adjoint algebra

 Clm. If adj(U,V, 𝓛2) is trivial, then U = U1 ⊕…⊕ Us and
V = V1 ⊕…⊕ Vs is the unique decomposition of U and
V under the action of 𝓛2.

 Proof~. Let U = 𝛗(U1) ⊕…⊕ 𝛗(Us) and V = 𝛙(V1) ⊕…⊕ 𝛙(Vs) be another decomposition for some (𝛗, 𝛙) ∈ adj(U,V, 𝓛2), where 𝛗, 𝛙 are invertible.

The adjoint algebra

 Clm. If adj(U,V, 𝓛2) is trivial, then U = U1 ⊕…⊕ Us and
V = V1 ⊕…⊕ Vs is the unique decomposition of U and
V under the action of 𝓛2.

 Proof~. Let U = 𝛗(U1) ⊕…⊕ 𝛗(Us) and V = 𝛙(V1) ⊕…⊕ 𝛙(Vs) be another decomposition for some (𝛗, 𝛙) ∈ adj(U,V, 𝓛2), where 𝛗, 𝛙 are invertible.

 As adj(U,V, 𝓛2) is trivial, 𝛗 = a1𝛗1 + … + as𝛗s and 𝛙 =
b1𝛙1 + … + bs𝛙s for some non-zero ai , bi ∈ 𝔽.

The adjoint algebra

 Clm. If adj(U,V, 𝓛2) is trivial, then U = U1 ⊕…⊕ Us and
V = V1 ⊕…⊕ Vs is the unique decomposition of U and
V under the action of 𝓛2.

 Proof~. Let U = 𝛗(U1) ⊕…⊕ 𝛗(Us) and V = 𝛙(V1) ⊕…⊕ 𝛙(Vs) be another decomposition for some (𝛗, 𝛙) ∈ adj(U,V, 𝓛2), where 𝛗, 𝛙 are invertible.

 As adj(U,V, 𝓛2) is trivial, 𝛗 = a1𝛗1 + … + as𝛗s and 𝛙 =
b1𝛙1 + … + bs𝛙s for some non-zero ai , bi ∈ 𝔽.

 Now observe that 𝛗(Ui) = Ui and 𝛙(Vi) = Vi .

Elaboration on the technical challenges

 f = T1 + … + Ts .

 Task 2 (Uniqueness). Show that the decomposition of U
and V under the action of 𝓛2 is unique.

 This task is accomplished in [GKS’20] and [BGKS’21] by
showing that the adjoint algebra adj(U,V, 𝓛2) is trivial if
T1, …, Ts are randomly chosen.

Elaboration on the technical challenges

 f = T1 + … + Ts .

 Task 3 (Vector space decomposition). Carry out the
decomposition of U and V under the action of 𝓛2 .

 Chistov, Ivanyos & Karpinski (1997); Eberly (1991);
Ronyai (1990); Friedl & Ronyai (1985): There are known
efficient vector space decomposition algorithms.

 Work over finite fields, ℂ and ℝ. Over ℚ, the output
decomposition is over an extension field.

Elaboration on the technical challenges

 f = T1 + … + Ts .

 Task 3 (Vector space decomposition). Carry out the
decomposition of U and V under the action of 𝓛2 .

 Turns out, if the adjoint is trivial, then the vector space
decomposition problem can be reduced to diagonalizing
a random element of the adj(U,V, 𝓛2).

 Vector space decomposition −> diagonalizing a matrix.

Elaboration on the technical challenges

 f = T1 + … + Ts .

 Task 3 (Vector space decomposition). Carry out the
decomposition of U and V under the action of 𝓛2 .

 Turns out, if the adjoint is trivial, then the vector space
decomposition problem can be reduced to diagonalizing
a random element of the adj(U,V, 𝓛2).

 The results in [KS’19], [GKS’20] and [BGKS’21] hold
over ℚ.

Elaboration on the technical challenges

 f = T1 + … + Ts .

 Task 4 (Terms from subspaces). Recover Ti from Ui .

 Mostly easy, if 𝓛 is the set of all partial derivatives.

 Example. For a ∑∧∑ circuit, Ui = ⟨𝓁i
d-k⟩. Obtain a 𝔽-

multiple of 𝓁i (say, 𝓁i’) from Ui using b.b. polynomial
factorization. Observe, f = z1 ∙ 𝓁’1d + … + zs ∙ 𝓁’sd for
unknown z1, …, zs. Set up a linear system in z1, …, zs as
before. Solve it and take d-th roots.

Elaboration on the technical challenges

 f = T1 + … + Ts .

 Task 4 (Terms from subspaces). Recover Ti from Ui .

 Mostly easy, if 𝓛 is the set of all partial derivatives.

 But not necessarily trivial, if 𝓛 is more complex (as is
the case in [GKS’20]).

Other average-case learning results

 Gupta, Kayal & Lokam (2011). Proper learns random
fanin-2 multilinear formulas.

 Gupta, Kayal & Qiao. (2013). Proper learns random
fanin-2 regular formulas.

 Kayal, Nair & S. (2019). Proper learns random ABPs of
low width.

Other average-case learning results

 Gupta, Kayal & Lokam (2011). Proper learns random
fanin-2 multilinear formulas.

 Gupta, Kayal & Qiao. (2013). Proper learns random
fanin-2 regular formulas.

 Kayal, Nair & S. (2019). Proper learns random ABPs of
low width.

 These algorithms are implicitly connected to the
corresponding lower bounds known for these models.

Learning other circuit models?

 Can we implement the learning from lower bound
framework for other circuit models?

Summary

 A survey of known results on polynomial equivalence
and average-case reconstruction.

 Polynomial equivalence problem

 Hessian based equivalence tests.

 Average-case learning

 A framework for designing learning algorithms from
lower bounds based on vector space decomposition.

Thanks!

