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Recap:  The reconstruction problem 

 Let f(x) be a n-variate degree-d polynomial computed 
by a circuit of size s from a class C. 

 

 Reconstruction problem for C. Given black-box access 
to f, output a small circuit computing f.   

 

f 
a ∈ 𝔽n f(a) 

          Black-box access to f 
 ( membership query access to f ) 



Recap:  The reconstruction problem 

 Let f(x) be a n-variate degree-d polynomial computed 
by a circuit of size s from a class C. 

 

 Reconstruction problem for C. Given black-box access 
to f, output a small circuit computing f.   

 

 Size of the output circuit. Ideally,  poly(s). 

 Proper learning. Output circuit belongs to C. 

 Efficiency. Ideally, poly(d,s).  

 



Recap:  Part 1 summary 

 Hardness of worst-case reconstruction. 

 A survey of known results on worst-case reconstruction. 

 

 Depth-2 circuit reconstruction. 

 ∑∧∑ circuit reconstruction 

 Improper:  ROABP reconstruction 

 Proper:  Waring decomposition for ∑∧∑(k) circuits. 

 

 



Recap:  Part 1 summary 

 Hardness of worst-case reconstruction. 

 A survey of known results on worst-case reconstruction. 

 

 Depth-2 circuit reconstruction. 

 ∑∧∑ circuit reconstruction 

 Improper:  ROABP reconstruction 

 Proper:  Waring decomposition for ∑∧∑(k) circuits. 

 

 This talk:  We will discuss average-case reconstruction. 

 
a.k.a. learning in the non-degenerate case  



Recap:  Depth-3 powering circuits 

 A depth-3 powering circuit (a.k.a ∑∧∑ circuit) 
computes a sum of powers of linear polynomials, i.e.,  

               f  =  𝓁1  + … + 𝓁s   , 

   where 𝓁i has degree 1. 

 

 The reconstruction problem. Given black-box access to 
a ∑∧∑ circuit computing f, output a small circuit for f.  

 

 Proper learning seems hard in the worst-case as 
computing  Waring rank is NP-hard [Shitov’16].  

 

d1 ds 



Recap:  Depth-3 powering circuits 

 A depth-3 powering circuit (a.k.a ∑∧∑ circuit) 
computes a sum of powers of linear polynomials, i.e.,  

               f  =  𝓁1  + … + 𝓁s   , 

   where 𝓁i has degree 1. 

 

 The reconstruction problem. Given black-box access to 
a ∑∧∑ circuit computing f, output a small circuit for f.  

 

 What if the coefficients of 𝓁1, …, 𝓁s are chosen randomly? 

 

d1 ds 



Learning random ∑∧∑ circuits 
 A random ∑∧∑ circuit computes 

               f  =  𝓁1  + … + 𝓁s   , 

where the coefficients of 𝓁1, …, 𝓁s  are chosen uniformly 
and independently at random from a sufficiently large 
finite subset of 𝔽. 

 The average-case learning problem. Given black-box 
access to a random ∑∧∑ circuit computing f, output a 
small ∑∧∑ circuit for f.  
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Learning random ∑∧∑ circuits 
 A random ∑∧∑ circuit computes 

               f  =  𝓁1  + … + 𝓁s   , 

where the coefficients of 𝓁1, …, 𝓁s  are chosen uniformly 
and independently at random from a sufficiently large 
finite subset of 𝔽. 

 The average-case learning problem. Given black-box 
access to a random ∑∧∑ circuit computing f, output a 
small ∑∧∑ circuit for f.  

 

 For simplicity, assume that  𝓁1, …, 𝓁s  are linear forms and 
d1= … = ds = d.     

d1 ds 



Learning random ∑∧∑ circuits 
 A random ∑∧∑ circuit computes 

               f  =  𝓁1  + … + 𝓁s   , 

where the coefficients of 𝓁1, …, 𝓁s  are chosen uniformly 
and independently at random from a sufficiently large 
finite subset of 𝔽. 

 The average-case learning problem. Given black-box 
access to a random ∑∧∑ circuit computing f, output a 
small ∑∧∑ circuit for f.  

 

 What is the complexity of the above problem? 
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Learning random ∑∧∑ circuits 
 A random ∑∧∑ circuit computes 

               f  =  𝓁1  + … + 𝓁s   , 

where the coefficients of 𝓁1, …, 𝓁s  are chosen uniformly 
and independently at random from a sufficiently large 
finite subset of 𝔽. 

 An easier case. Suppose s ≤ n. Then, 𝓁1, …, 𝓁s  are 𝔽-
linearly independent w.h.p. 

 

 In other words, f is equivalent to the d-th power 
symmetric polynomial PSym in s variables w.h.p. 
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Learning random ∑∧∑ circuits 
 A random ∑∧∑ circuit computes 

               f  =  𝓁1  + … + 𝓁s   , 

where the coefficients of 𝓁1, …, 𝓁s  are chosen uniformly 
and independently at random from a sufficiently large 
finite subset of 𝔽. 

 An easier case. Suppose s ≤ n. Then, 𝓁1, …, 𝓁s  are 𝔽-
linearly independent w.h.p. 

 

 In other words, f is equivalent to the d-th power 
symmetric polynomial PSym in s variables w.h.p. 

d d 

Let’s take a detour into the polynomial equivalence problem…   



The polynomial equivalence problem 



Polynomial equivalence problem 

 Orbit. The orbit of an n-variate polynomial g over 𝔽 is 
the set orb(g) := {g(Ax) :  A ∈ GL(n, 𝔽)}.   
 

 Equivalent polynomials. Two n-variate polynomials f, g ∈ 𝔽[x] are equivalent, denoted as f ~ g, if there’s a A ∈ 
GL(n, 𝔽) s.t. f = g(Ax) (i.e., f ∈ orb(g)).   

 

 For example, f = 𝓁1
d + … + 𝓁n

d , where 𝓁1, …,𝓁n are 𝔽–
linearly independent, is equivalent to the power 
symmetric polynomial PSymn,d = x1

d + … + xn
d . 

 

 

 



Polynomial equivalence problem 

 Orbit. The orbit of an n-variate polynomial g over 𝔽 is 
the set orb(g) := {g(Ax) :  A ∈ GL(n, 𝔽)}.   
 

 Equivalent polynomials. Two n-variate polynomials f, g ∈ 𝔽[x] are equivalent, denoted as f ~ g, if there’s a A ∈ 
GL(n, 𝔽) s.t. f = g(Ax) (i.e., f ∈ orb(g)).   

 

 The equivalence problem. Given f and g as lists of 
coefficients, check if f ~ g. If equivalent, then find a 
certificate A ∈ GL(n, 𝔽). 
 

 Polynomial equivalence (PE) has been studied intensely. 

 



PE:  Known results 

 Thierauf (1998); Saxena (2006): PE is in NP ∩ coAM 
over 𝔽q.  Hence, unlikely to be NP-complete. 

 

 Not known to be decidable over ℚ.  

 

 Over arbitrary fields, the best known complexity is the 
same as that of polynomial solvability. 

 

 

 

 



PE:  Known results 

 Thierauf (1998); Saxena (2006): PE is in NP ∩ coAM 
over 𝔽q.  Hence, unlikely to be NP-complete. 

 

 Not known to be decidable over ℚ.  

 

 Over arbitrary fields, the best known complexity is the 
same as that of polynomial solvability. 

 

 What if f and g belong to restricted classes/families of 
polynomials? 

 

 



PE:  Known results 

 Minkowski (1885); Hasse (1921); Serre (1973); Witt 
(1998); Wallenborn (2013): Quadratic form equivalence 
can be solved in randomized polynomial time over 𝔽q, ℂ, ℝ, and over ℚ (with access to Integer Factoring oracle). 

 

 Uses well-known classification results for quadratic 
forms over 𝔽q, ℂ, ℝ, and ℚ .  

 

 For e.g., a quadratic form over ℂ having n essential 
variables is equivalent to x1

2 +…+ xn
2 . 

 

 



PE:  Known results 

 Minkowski (1885); Hasse (1921); Serre (1973); Witt 
(1998); Wallenborn (2013): Quadratic form equivalence 
can be solved in randomized polynomial time over 𝔽q, ℂ, ℝ, and over ℚ (with access to Integer Factoring oracle). 

 

 Agrawal & Saxena (2005): Cubic form equivalence is 
graph isomorphism hard. 

 

 Grochow & Qiao (2019): Tensor isomorphism,  matrix 
space isometry & conjugacy, algebra isomorphism and 
cubic form equivalence are poly-time equivalent. 

 



PE:  Known results 

 Kayal (2011): Initiated the study of a natural variant of 
PE for well-known polynomial families. 

 Let G = {gm : m ∈ ℕ} be a polynomial family, say Det . 

 

 PE for G.  Given b.b.a to f, check if f ∈ orb(gm) for some 
m ∈ ℕ.  If yes, then find a certificate  A ∈ GL(n, 𝔽). 
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PE for well-known polynomial families. 

 Let G = {gm : m ∈ ℕ} be a polynomial family, say Det . 

 

 PE for G.  Given b.b.a to f, check if f ∈ orb(gm) for some 
m ∈ ℕ.  If yes, then find a certificate  A ∈ GL(n, 𝔽). 

 

 Why is this version of PE interesting? 

 

 

 



PE:  Known results 

 Kayal (2011): Initiated the study of a natural variant of 
PE for well-known polynomial families. 

 Let G = {gm : m ∈ ℕ} be a polynomial family, say Det . 
 

 Affine projections. The set of affine projections of a n-
variate g is aproj(g) := {g(Ax + b) :  A∈𝔽n x n, b∈𝔽n}. 
 

 

 

 

 

 



PE:  Known results 

 Kayal (2011): Initiated the study of a natural variant of 
PE for well-known polynomial families. 

 Let G = {gm : m ∈ ℕ} be a polynomial family, say Det . 
 

 Affine projections. The set of affine projections of a n-
variate g is aproj(g) := {g(Ax + b) :  A∈𝔽n x n, b∈𝔽n}. 
 

 Affine projections of a “simple” G can be very powerful.  

 aproj(PSym) captures ∑∧∑ circuits, 

 aproj(SumProd) captures ∑∏∑ circuits, (SumProd has a depth-2 ROF) 

 aproj(ANF) captures formulas,               (ANF has a ROF) 

 aproj(Det) & aproj(IMM) capture ABPs.  

 



PE:  Known results 

 Kayal (2011): Initiated the study of a natural variant of 
PE for well-known polynomial families. 

 Let G = {gm : m ∈ ℕ} be a polynomial family, say Det . 
 

 Orbit closure. The orbit closure of g over 𝔽, denoted as 
orb(g), is the Zariski closure of orb(g). 
 

 Fact.  orb(g) ⊆ aproj(g) ⊆ orb(g).   (char(𝔽) = 0) 

 

 

 

 



PE:  Known results 

 Kayal (2011): Initiated the study of a natural variant of 
PE for well-known polynomial families. 

 Let G = {gm : m ∈ ℕ} be a polynomial family, say Det . 
 

 Orbit closure. The orbit closure of g over 𝔽, denoted as 
orb(g), is the Zariski closure of orb(g). 
 

 Fact.  orb(g) ⊆ aproj(g) ⊆ orb(g).   (char(𝔽) = 0) 

 

 Natural to study the learning problem for orbits of well-
known polynomial families. 

 



PE:  Known results 

 Kayal (2011): Initiated the study of a natural variant of 
PE for well-known polynomial families. 

 Let G = {gm : m ∈ ℕ} be a polynomial family, say Det . 

 

 PE for G.  Given b.b.a to f, check if f ∈ orb(gm) for some 
m ∈ ℕ.  If yes, then find a certificate  A ∈ GL(n, 𝔽). 

 

 Kayal (2011, 2012); Kayal, Nair, S., Tavenas (2017); Garg, 
Gupta, Kayal, S. (2019); Murthy, Nair, S. (2020): 
Randomized poly-time PE are known for Det, Perm, 
IMM, tr-IMM, ESym, PSym, SumProduct etc.   

 



PE for Power Symmetric Polynomials 

 Let PSym  =  x1
d + … + xs

d .  Assume d ≥ 3, char(𝔽) = 0. 

 Let f  =  𝓁1
d  + … + 𝓁s

d , where 𝓁1, …, 𝓁s are 𝔽-l.i. 

 

 Recall, a quadratic form over ℂ having n essential 
variables is equivalent to x1

2 +…+ xn
2 . 
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d  + … + 𝓁s

d , where 𝓁1, …, 𝓁s are 𝔽-l.i. 

 

 Given b.b.a. to f, can we recover 𝓁1, …, 𝓁s? (up to dth roots of 1)  

 

 

 

 

 

 



PE for Power Symmetric Polynomials 

 Let PSym  =  x1
d + … + xs

d .  Assume d ≥ 3, char(𝔽) = 0. 

 Let f  =  𝓁1
d  + … + 𝓁s

d , where 𝓁1, …, 𝓁s are 𝔽-l.i. 

 

 Given b.b.a. to f, can we recover 𝓁1, …, 𝓁s? (up to dth roots of 1)  

 

 Obs.  The number of essential variables of f is s. 

 

 Apply the Carlini-Kayal algorithm to remove redundant 
variables.  So, we can assume w.l.o.g that s = n. 

 

 



PE for Power Symmetric Polynomials 

 Let PSym  =  x1
d + … + xn

d .  Assume d ≥ 3, char(𝔽) = 0. 

 

 Input:  Black-box access to f ∈ orb(PSym). 

  Output:  A matrix A ∈ GL(n, 𝔽) s.t. f = PSym(Ax). 
 

 Algorithm:  Uses the Hessian matrix associated with f. 

 

 

 

 

 

 



The Hessian of a polynomial 

 Let f be an n-variate polynomial and ∂i,jf the derivative of 
f w.r.t. xi and xj.  

 

 The Hessian of f.  It is the matrix Hesf (x) := ( ∂i,jf )i,j∈[n] . 

 

 The Hessian matrix appears naturally in the Taylor 
expansion of a polynomial and has important 
applications in optimization, second derivative tests, etc. 

 

 

 

 



The Hessian of a polynomial 

 Let f be an n-variate polynomial and ∂i,jf the derivative of 
f w.r.t. xi and xj.  

 

 The Hessian of f.  It is the matrix Hesf (x) := ( ∂i,jf )i,j∈[n] . 

 

 Obs.  If f = g(Ax) for some A ∈ 𝔽n x n , then 

  Hesf (x)  =  AT ∙ Hesg (Ax) ∙ A . 

 

 

 

 



The Hessian of a polynomial 

 Let f be an n-variate polynomial and ∂i,jf the derivative of 
f w.r.t. xi and xj.  

 

 The Hessian of f.  It is the matrix Hesf (x) := ( ∂i,jf )i,j∈[n] . 

 

 Obs.  If f = g(Ax) for some A ∈ 𝔽n x n , then 

  Hesf (x)  =  AT ∙ Hesg (Ax) ∙ A . 

 Proof~. Uses chain rule. Let ∇f := (∂1f, ∂2f, … ∂nf)
T. Then, 

  ∇f  = AT ∙ [∇g](Ax)  . 

 

 



The Hessian of a polynomial 

 Let f be an n-variate polynomial and ∂i,jf the derivative of 
f w.r.t. xi and xj.  

 

 The Hessian of f.  It is the matrix Hesf (x) := ( ∂i,jf )i,j∈[n] . 

 

 Obs.  If f = g(Ax) for some A ∈ 𝔽n x n , then 

  Hesf (x)  =  AT ∙ Hesg (Ax) ∙ A . 

 

 Cor.  det(Hesf )  =  c ∙ det(Hesg)(Ax),  where c ∈ 𝔽. 

  

 



PE for Power Symmetric Polynomials 

 Let PSym  =  x1
d + … + xn

d .  Assume d ≥ 3, char(𝔽) = 0.  

 

 Input:  Black-box access to f ∈ orb(PSym). 

  Output:  A matrix A ∈ GL(n, 𝔽) s.t. f = PSym(Ax). 
 

 Algorithm:  (high-level) 

 Step 1. Compute b.b.a to H := det(Hesf ). 

Obs.  B.b.a. to ∂i,jf can be computed efficiently from 

         b.b.a. to f. 

 

 

 

Hesf (x)  =  AT ∙ HesPSym (Ax) ∙ A  



PE for Power Symmetric Polynomials 

 Let PSym  =  x1
d + … + xn

d .  Assume d ≥ 3, char(𝔽) = 0.  

 

 Input:  Black-box access to f ∈ orb(PSym). 

  Output:  A matrix A ∈ GL(n, 𝔽) s.t. f = PSym(Ax). 
 

 Algorithm:  (high-level) 

 Step 1. Compute b.b.a to H := det(Hesf ). 

 Step 2. Compute b.b.a to the factors of H. 

  (using b.b. polynomial factorization) 

 

 

 

Hesf (x)  =  AT ∙ HesPSym (Ax) ∙ A  



PE for Power Symmetric Polynomials 

 Let PSym  =  x1
d + … + xn

d .  Assume d ≥ 3, char(𝔽) = 0.  

 

 Input:  Black-box access to f ∈ orb(PSym). 

  Output:  A matrix A ∈ GL(n, 𝔽) s.t. f = PSym(Ax). 
 

 Algorithm:  (high-level) 

 Step 1. Compute b.b.a to H := det(Hesf ). 

 Step 2. Compute b.b.a to the factors of H. 

 Step 3. Recover A from the linear factors of H. 
  

 

 

Hesf (x)  =  AT ∙ HesPSym (Ax) ∙ A  



PE for Power Symmetric Polynomials 

 Let PSym  =  x1
d + … + xn

d .  Assume d ≥ 3, char(𝔽) = 0.  

 

 Input:  Black-box access to f ∈ orb(PSym). 

  Output:  A matrix A ∈ GL(n, 𝔽) s.t. f = PSym(Ax). 
 

 Algorithm:  (correctness) 

 Step 3. Recover A from the linear factors of H. 

Proof~.  HesPSym(x)    =  diag (d’x1
d-2, …, d’xn

d-2), where  

       d’ = d(d-1). 

  

 

 

Hesf (x)  =  AT ∙ HesPSym (Ax) ∙ A  



PE for Power Symmetric Polynomials 

 Let PSym  =  x1
d + … + xn

d .  Assume d ≥ 3, char(𝔽) = 0.  

 

 Input:  Black-box access to f ∈ orb(PSym). 

  Output:  A matrix A ∈ GL(n, 𝔽) s.t. f = PSym(Ax). 
 

 Algorithm:  (correctness) 

 Step 3. Recover A from the linear factors of H. 

Proof~.  HesPSym(x)    =  diag (d’x1
d-2, …, d’xn

d-2) 

        HesPSym(Ax)  =  diag (d’𝓁1
d-2, …, d’𝓁n

d-2), where 

    Ax   = (𝓁1, …, 𝓁n)
T  

 

 

Hesf (x)  =  AT ∙ HesPSym (Ax) ∙ A  



PE for Power Symmetric Polynomials 

 Let PSym  =  x1
d + … + xn

d .  Assume d ≥ 3, char(𝔽) = 0.  

 

 Input:  Black-box access to f ∈ orb(PSym). 

  Output:  A matrix A ∈ GL(n, 𝔽) s.t. f = PSym(Ax). 
 

 Algorithm:  (correctness) 

 Step 3. Recover A from the linear factors of H. 

Proof~.  HesPSym(x)    =  diag (d’x1
d-2, …, d’xn

d-2) 

        HesPSym(Ax)  =  diag (d’𝓁1
d-2, …, d’𝓁n

d-2) 

    H     = c ∙ 𝓁1
d-2 ∙ … ∙ 𝓁n

d-2,    c ∈ 𝔽 . 

 

 

Hesf (x)  =  AT ∙ HesPSym (Ax) ∙ A  



PE for Power Symmetric Polynomials 

 Let PSym  =  x1
d + … + xn

d .  Assume d ≥ 3, char(𝔽) = 0.  

 

 Input:  Black-box access to f ∈ orb(PSym). 

  Output:  A matrix A ∈ GL(n, 𝔽) s.t. f = PSym(Ax). 
 

 Algorithm:  (correctness) 

 Step 3. Recover A from the linear factors of H. 

Proof~.  HesPSym(x)    =  diag (d’x1
d-2, …, d’xn

d-2) 

        HesPSym(Ax)  =  diag (d’𝓁1
d-2, …, d’𝓁n

d-2) 

    H     = c ∙ 𝓁1
d-2 ∙ … ∙ 𝓁n

d-2,    c ∈ 𝔽 . 

 

 

Recover 𝓁1 ,…, 𝓁n (up to 𝔽-multiples)   

Hesf (x)  =  AT ∙ HesPSym (Ax) ∙ A  



PE for Power Symmetric Polynomials 

 Let PSym  =  x1
d + … + xn

d .  Assume d ≥ 3, char(𝔽) = 0.  

 

 Input:  Black-box access to f ∈ orb(PSym). 

  Output:  A matrix A ∈ GL(n, 𝔽) s.t. f = PSym(Ax). 
 

 Algorithm:  (correctness) 

 Step 3. Recover A from the linear factors of H. 

Proof~.  HesPSym(x)    =  diag (d’x1
d-2, …, d’xn

d-2) 

        HesPSym(Ax)  =  diag (d’𝓁1
d-2, …, d’𝓁n

d-2) 

    H     = c ∙ 𝓁1
d-2 ∙ … ∙ 𝓁n

d-2,    c ∈ 𝔽 . 

 

 

Recover 𝓁’1 ,…, 𝓁’n 

Hesf (x)  =  AT ∙ HesPSym (Ax) ∙ A  



PE for Power Symmetric Polynomials 

 Let PSym  =  x1
d + … + xn

d .  Assume d ≥ 3, char(𝔽) = 0.  

 

 Input:  Black-box access to f ∈ orb(PSym). 

  Output:  A matrix A ∈ GL(n, 𝔽) s.t. f = PSym(Ax). 
 

 Algorithm:  (correctness) 

 Step 3. Recover A from the linear factors of H. 

Proof~.  Observe, f = z1 ∙ 𝓁’1d + … + zn ∙ 𝓁’nd for some 
unknown z1, …, zn.  Set up a linear system in z1, …, zn by 
evaluating f and  𝓁’1, …, 𝓁’n at n random points. Solve for 
z1, …, zn and take d-th roots.  



PE for Sum-Product polynomials 

 Let SumProd  =  x11x12∙∙∙ x1d  + … +  xs1xs2∙∙∙ xsd  . 

 Observe, aproj(SumProd) captures ∑∏∑ circuits. 
 

 A quadratic form over ℂ having n essential variables 
(where n is even) is equivalent to x1x2 + … + xn-1xn . 

   

 

 

 

 



PE for Sum-Product polynomials 

 Let SumProd  =  x11x12∙∙∙ x1d  + … +  xs1xs2∙∙∙ xsd  . 

 Observe, aproj(SumProd) captures ∑∏∑ circuits. 
 

 Input:  Black-box access to f ∈ orb(SumProd). 

  Output:  A matrix A ∈ GL(n, 𝔽) s.t. f = SumProd(Ax). 
 

 Here, n = sd. 

   

 

 

 

 



PE for Sum-Product polynomials 

 Let SumProd  =  x11x12∙∙∙ x1d  + … +  xs1xs2∙∙∙ xsd  . 

 Observe, aproj(SumProd) captures ∑∏∑ circuits. 
 

 Input:  Black-box access to f ∈ orb(SumProd). 

  Output:  A matrix A ∈ GL(n, 𝔽) s.t. f = SumProd(Ax). 
 

 Algorithm:  (high-level) 

 Step 1. Compute b.b.a to H := det(Hesf ). 

 Step 2. Compute b.b.a to the factors of H. 

 Step 3. Recover A from the linear factors of H. 
  

 

Hesf (x)  =  AT ∙ HesSumProd (Ax) ∙ A  



PE for Sum-Product polynomials 

 Let SumProd  =  x11x12∙∙∙ x1d  + … +  xs1xs2∙∙∙ xsd  . 

 Observe, aproj(SumProd) captures ∑∏∑ circuits. 
 

 Input:  Black-box access to f ∈ orb(SumProd). 

  Output:  A matrix A ∈ GL(n, 𝔽) s.t. f = SumProd(Ax). 
 

 Algorithm:  (correctness) 

 Step 3. Recover A from the linear factors of H. 

Proof~.  HesSumProd(x) = blocdiag (Hes  (x) ,…, Hes  (x)), 
where hi =  xi1xi2∙∙∙ xid is a monomial. 
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 Let SumProd  =  x11x12∙∙∙ x1d  + … +  xs1xs2∙∙∙ xsd  . 

 Observe, aproj(SumProd) captures ∑∏∑ circuits. 
 

 Input:  Black-box access to f ∈ orb(SumProd). 

  Output:  A matrix A ∈ GL(n, 𝔽) s.t. f = SumProd(Ax). 
 

 Algorithm:  (correctness) 

 Step 3. Recover A from the linear factors of H. 

Proof~.  

     Clm.  det(Hes   (x)) = (-1)d-1(d-1) ∙ xi1
d-2 ∙∙∙ xid

d-2.  

   

 

hi 

Hessian determinant of a monomial is a monomial.  

Hesf (x)  =  AT ∙ HesSumProd (Ax) ∙ A  



PE for Sum-Product polynomials 

 Let SumProd  =  x11x12∙∙∙ x1d  + … +  xs1xs2∙∙∙ xsd  . 

 Observe, aproj(SumProd) captures ∑∏∑ circuits. 
 

 Input:  Black-box access to f ∈ orb(SumProd). 

  Output:  A matrix A ∈ GL(n, 𝔽) s.t. f = SumProd(Ax). 
 

 Algorithm:  (correctness) 

 Step 3. Recover A from the linear factors of H. 

Proof~.  Hence,   H     = c ∙ 𝓁11
d-2 ∙ … ∙ 𝓁sd

d-2,    c ∈ 𝔽 , 
where  Ax   = (𝓁11, …, 𝓁sd)

T . 
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PE for Sum-Product polynomials 

 Let SumProd  =  x11x12∙∙∙ x1d  + … +  xs1xs2∙∙∙ xsd  . 

 Observe, aproj(SumProd) captures ∑∏∑ circuits. 
 

 Input:  Black-box access to f ∈ orb(SumProd). 

  Output:  A matrix A ∈ GL(n, 𝔽) s.t. f = SumProd(Ax). 
 

 Algorithm:  (correctness) 

 Step 3. Recover A from the linear factors of H. 

Proof~.  Hence,   H     = c ∙ 𝓁11
d-2 ∙ … ∙ 𝓁sd

d-2,    c ∈ 𝔽 , 
where  Ax   = (𝓁11, …, 𝓁sd)

T . The rest of the argument is 
similar to PE for PSym. 
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PE for Read-once formulas 

 Let SumProd  =  x11x12∙∙∙ x1d  + … +  xs1xs2∙∙∙ xsd  . 

 Observe, SumProd is a ROF. Recall, affine projections of 
ROFs capture formulas. 

 Can PE for ROFs be solved efficiently? 

 

 



PE for Read-once formulas 

 Let SumProd  =  x11x12∙∙∙ x1d  + … +  xs1xs2∙∙∙ xsd  . 

 Observe, SumProd is a ROF. Recall, affine projections of 
ROFs capture formulas. 

 Can PE for ROFs be solved efficiently? 

 

 Gupta, S., Thankey (ongoing). Given b.b.a. to f, g in the 
orbits of ROFs*, the problem of checking if f ~ g and 
finding a witness A can be solved in randomized poly-time. 
 

 Analyzes the Hessian of a general ROF.    

 

 
*mild conditions apply 



PE for Read-once formulas 

 Let SumProd  =  x11x12∙∙∙ x1d  + … +  xs1xs2∙∙∙ xsd  . 

 Observe, SumProd is a ROF. Recall, affine projections of 
ROFs capture formulas. 

 Can PE for ROFs be solved efficiently? 

 

 Gupta, S., Thankey (ongoing). Given b.b.a. to f, g in the 
orbits of ROFs*, the problem of checking if f ~ g and 
finding a witness A can be solved in randomized poly-time. 
 

 A generalization of quadratic form equivalence:     

    A quadratic form over ℂ is equivalent to x1x2+…+xn-1xn (n even). 

 



PE for PSym w/o poly factoring  

 

 Koiran & Saha (2021); Koiran & Skomra (2020). Solves the 
decision version of PE for PSym over ℂ in randomized 
poly-time without appealing to polynomial factorization.  

 

 Involves only arithmetic operations and equality tests. 

 If f has rational coefficients, then the algorithm requires 
polynomial number of bit operations.  

 

 

 

 



Back to learning random ∑∧∑ circuits 

 A random ∑∧∑ circuit computes 

               f  =  𝓁1  + … + 𝓁s   , 

where the coefficients of 𝓁1, …, 𝓁s  are chosen uniformly 
and independently at random from a sufficiently large 
subset of 𝔽. 

 The average-case learning problem. Given black-box 
access to a random ∑∧∑ circuit computing f, output a 
small ∑∧∑ circuit for f.  

 

 Can we handle s > n?  Does Hessian help? 

 

d d 



Back to learning random ∑∧∑ circuits 

 Garcia-Marco, Koiran, Pecatte (2018). Random ∑∧∑ 
circuits can be reconstructed in randomized poly-time 
provided s ≈ n2/2 and d ≥ 5.  

 

 Uses 4-th order Hessian and shows that the determinant is 
nonzero (w.h.p) and factorizes into linear factors.  



Back to learning random ∑∧∑ circuits 

 Garcia-Marco, Koiran, Pecatte (2018). Random ∑∧∑ 
circuits can be reconstructed in randomized poly-time 
provided s ≈ n2/2 and d ≥ 5.  

 

 Uses 4-th order Hessian and shows that the determinant is 
nonzero (w.h.p) and factorizes into linear factors.  

 

 Unclear if the strategy scales to higher s. More 
importantly, it is not clear how effective Hessian is in 
learning other − more powerful − models. 

 It seems we need a different strategy… 



Learning from lower bounds:  
A paradigm 



Learning from lower bounds? 

 Fortnow & Klivans (2009): A randomized poly-time 
reconstruction algorithm for C implies super-polynomial 
lower bound for C.  (Learning −> lower bound) 

 

 Does lower bound imply worst-case reconstruction? 
Unlikely.  Reconstruction appears to be inherently hard. 

 



Learning from lower bounds? 

 Fortnow & Klivans (2009): A randomized poly-time 
reconstruction algorithm for C implies super-polynomial 
lower bound for C.  (Learning −> lower bound) 

 

 Does lower bound imply worst-case reconstruction? 
Unlikely.  Reconstruction appears to be inherently hard. 

 

 Does lower bound imply average-case reconstruction?  



A typical lower bound proof 

 Suppose that a circuit from C computes a polynomial  

   f  =  T1 + … +  Ts ,  

where each term Ti is “simple” is some sense.  

 

 For example, Ti is a power of a linear polynomial for 
∑∧∑ circuits.  

 



A typical lower bound proof 

 Suppose that a circuit from C computes a polynomial  

   f  =  T1 + … +  Ts ,  

where each term Ti is “simple” is some sense.  

 

 A typical lower bound proof for C proceeds by defining 
a complexity measure (map) 𝛍 :  𝔽[x] −> ℕ  s.t. 

 𝛍(f + g) ≤ 𝛍(f) + 𝛍(g)    (subadditivity) 

 𝛍(Ti)  ≤  L,  where L is a “small” quantity, 

 𝛍(f) ≥  H,  where H is a “large” quantity. 
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a complexity measure (map) 𝛍 :  𝔽[x] −> ℕ  s.t. 

 𝛍(f + g) ≤ 𝛍(f) + 𝛍(g)    (subadditivity) 

 𝛍(Ti)  ≤  L,  where L is a “small” quantity, 

 𝛍(f) ≥  H,  where H is a “large” quantity. 

 Any C-circuit computing f must have s ≥ H/L terms.  



A typical lower bound proof 

 Suppose that a circuit from C computes a polynomial  

   f  =  T1 + … +  Ts ,  

where each term Ti is “simple” is some sense.  

 

 A typical lower bound proof for C proceeds by defining 
a complexity measure (map) 𝛍 :  𝔽[x] −> ℕ  s.t. 

 𝛍(f + g) ≤ 𝛍(f) + 𝛍(g)    (subadditivity) 

 𝛍(Ti)  ≤  L,  where L is a “small” quantity, 

 𝛍(f) ≥  H,  where H is a “large” quantity. 

 Any C-circuit computing f must have s ≥ H/L terms.  

Typically, 𝛍(f) is the dimension of a vector space U associated with f. 



Lower bound for ∑∧∑ circuits 
 A  ∑∧∑ circuit computes 

               f  =  𝓁1
d  + … + 𝓁s

d   , 

where a term  Ti =  𝓁i
d .  

 Let ∂k
 f be the set of k-th order partials of f, U := ⟨∂k

 f⟩ 
and Ui := ⟨∂k

 Ti⟩.  Define 𝛍(f) := dim U,  𝛍(Ti) := dim Ui . 

 



Lower bound for ∑∧∑ circuits 
 A  ∑∧∑ circuit computes 

               f  =  𝓁1
d  + … + 𝓁s

d   , 

where a term  Ti =  𝓁i
d .  

 Let ∂k
 f be the set of k-th order partials of f, U := ⟨∂k

 f⟩ 
and Ui := ⟨∂k

 Ti⟩.  Define 𝛍(f) := dim U,  𝛍(Ti) := dim Ui . 

 

 As ∂k is a set of linear operators on 𝔽[x], 

    U ⊆ U1 +…+ Us ,          and so, 

  𝛍(f) ≤ 𝛍(T1) +…+ 𝛍(Ts)   (subadditivity).  



Lower bound for ∑∧∑ circuits 
 A  ∑∧∑ circuit computes 

               f  =  𝓁1
d  + … + 𝓁s

d   , 

where a term  Ti =  𝓁i
d .  

 Let ∂k
 f be the set of k-th order partials of f, U := ⟨∂k

 f⟩ 
and Ui := ⟨∂k

 Ti⟩.  Define 𝛍(f) := dim U,  𝛍(Ti) := dim Ui . 

 

 Obs.  𝛍(Ti) = 1 whereas 𝛍(x1x2 ∙∙∙ xn) = (  ).  
 

 Choose k = n/2.  This gives a s = 𝝮(2n) lower bound for 
∑∧∑ circuits computing x1x2 ∙∙∙ xn . 

n 
k 

~ 



A typical lower bound proof 

 A C-circuit computes a polynomial  

   f  =  T1 + … +  Ts ,  

where each term Ti is “simple” is some sense.  
 

 A typical lower bound proof for C involves a set of 

linear operators 𝓛 on 𝔽[x]  s.t.  dim ⟨𝓛 ∘Ti⟩ is “small”.  

 

 In the lower bound proof for ∑∧∑ circuits,  𝓛 = ∂k
 . 



A typical lower bound proof 

 A C-circuit computes a polynomial  

   f  =  T1 + … +  Ts ,  

where each term Ti is “simple” is some sense.  

 As 𝓛 is linear,  ⟨𝓛 ∘ f⟩ ⊆ ⟨𝓛 ∘T1⟩ +…+ ⟨𝓛 ∘Ts⟩. 
 



Learning from LB:  A framework 

 A C-circuit computes a polynomial  

   f  =  T1 + … +  Ts ,  

where each term Ti is “simple” is some sense.  

 As 𝓛 is linear,  ⟨𝓛 ∘ f⟩ ⊆ ⟨𝓛 ∘T1⟩ +…+ ⟨𝓛 ∘Ts⟩. 
 If  T1, …, Ts are random,  we do expect  

1.  ⟨𝓛 ∘T1⟩ +…+ ⟨𝓛 ∘Ts⟩ = ⟨𝓛 ∘T1⟩ ⊕…⊕ ⟨𝓛 ∘Ts⟩  
2.  ⟨𝓛 ∘ f⟩ = ⟨𝓛 ∘T1⟩ +…+ ⟨𝓛 ∘Ts⟩ , implying 

 ⟨𝓛 ∘ f⟩ = ⟨𝓛 ∘T1⟩ ⊕…⊕ ⟨𝓛 ∘Ts⟩  
(as dim⟨𝓛∘Ti⟩ is “small” ) 



Learning from LB:  A framework 

   f  =  T1 + … +  Ts .   

 A (crude) approach to learn the terms. 

 Compute a basis of ⟨𝓛 ∘ f⟩ from f. 

 Decompose ⟨𝓛 ∘ f⟩ = ⟨𝓛 ∘T1⟩ ⊕…⊕ ⟨𝓛 ∘Ts⟩. 
 Obtain Ti from a basis of ⟨𝓛 ∘Ti⟩ . 

 



Learning from LB:  A framework 

   f  =  T1 + … +  Ts .   

 A (crude) approach to learn the terms. 

 Compute a basis of ⟨𝓛 ∘ f⟩ from f. 

 Decompose ⟨𝓛 ∘ f⟩ = ⟨𝓛 ∘T1⟩ ⊕…⊕ ⟨𝓛 ∘Ts⟩.  
 Obtain Ti from a basis of ⟨𝓛 ∘Ti⟩ . 

 

 What makes ⟨𝓛 ∘T1⟩, …, ⟨𝓛 ∘Ts⟩ special subspaces of 

   ⟨𝓛 ∘ f⟩ ? 
How? 



Learning from LB:  A framework 

   f  =  T1 + … +  Ts .   

 Turns out in a typical l.b. proof 𝓛 can be expressed as 𝓛 
= 𝓛2 ∘ 𝓛1 , where  𝓛1,  𝓛2 are sets of linear operators. 

 For example, ∂k+1 = ∂ ∘ ∂k . 
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 Turns out in a typical l.b. proof 𝓛 can be expressed as 𝓛 
= 𝓛2 ∘ 𝓛1 , where  𝓛1,  𝓛2 are sets of linear operators. 

 If  T1, …, Ts are random,  then we do expect  

1.  ⟨𝓛1 ∘ f⟩ = ⟨𝓛1 ∘T1⟩ ⊕…⊕ ⟨𝓛1 ∘Ts⟩ 
2.  ⟨𝓛 ∘ f⟩  = ⟨𝓛 ∘T1⟩ ⊕…⊕ ⟨𝓛 ∘Ts⟩   
 
 

 Let U := ⟨𝓛1∘f⟩,  Ui := ⟨𝓛1∘Ti⟩,   V := ⟨𝓛∘f⟩,  Vi := ⟨𝓛∘Ti⟩. 
 

𝓛2 



Learning from LB:  A framework 

   f  =  T1 + … +  Ts .   

 Turns out in a typical l.b. proof 𝓛 can be expressed as 𝓛 
= 𝓛2 ∘ 𝓛1 , where  𝓛1,  𝓛2 are sets of linear operators. 

 If  T1, …, Ts are random,  then we do expect  

1.  U = U1 ⊕…⊕ Us 

2.   V =  V1 ⊕…⊕  Vs   
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Learning from LB:  A framework 

   f  =  T1 + … +  Ts .   

 Turns out in a typical l.b. proof 𝓛 can be expressed as 𝓛 
= 𝓛2 ∘ 𝓛1 , where  𝓛1,  𝓛2 are sets of linear operators. 

 If  T1, …, Ts are random,  then we do expect  

1.  U = U1 ⊕…⊕ Us 

2.   V =  V1 ⊕…⊕  Vs   

 
 

 

 Observe,  V = ⟨𝓛2 ∘ U⟩,  Vi = ⟨𝓛2 ∘ Ui⟩. 
 

𝓛2 



Learning from LB:  A framework 

   f  =  T1 + … +  Ts .   

 Turns out in a typical l.b. proof 𝓛 can be expressed as 𝓛 
= 𝓛2 ∘ 𝓛1 , where  𝓛1,  𝓛2 are sets of linear operators. 

 If  T1, …, Ts are random,  then we do expect  

1.  U = U1 ⊕…⊕ Us 

2.   V =  V1 ⊕…⊕  Vs   

3. The above decomposition is the unique 
decomposition of U and V into indecomposable 

subspaces s.t. Vi = ⟨𝓛2 ∘ Ui⟩. 
 

𝓛2 



Learning from LB:  A framework 

   f  =  T1 + … +  Ts .   

 Turns out in a typical l.b. proof 𝓛 can be expressed as 𝓛 
= 𝓛2 ∘ 𝓛1 , where  𝓛1,  𝓛2 are sets of linear operators. 

 If  T1, …, Ts are random,  then we do expect  

1.  U = U1 ⊕…⊕ Us 

2.   V =  V1 ⊕…⊕  Vs   

3. The above decomposition is the unique 
decomposition of U and V under the action of 𝓛2 . 

 

𝓛2 



Learning from LB:  A framework 

   f  =  T1 + … +  Ts .   
 

 A meta-algorithm to learn the terms. 

 Compute bases of U = ⟨𝓛1 ∘ f⟩ and  V = ⟨𝓛 ∘ f⟩. 
 Decompose U and V under the action of 𝓛2 . 

 Obtain Ti from a basis of Ui. 

 

𝓛 = 𝓛2 ∘ 𝓛1 
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 A meta-algorithm to learn the terms. 

 Compute bases of U = ⟨𝓛1 ∘ f⟩ and  V = ⟨𝓛 ∘ f⟩. 
 Decompose U and V under the action of 𝓛2 . 

 Obtain Ti from a basis of Ui. 

 

 Learning the terms  −>   vector space decomposition  

𝓛 = 𝓛2 ∘ 𝓛1 



Learning from LB:  A framework 

   f  =  T1 + … +  Ts .   
 

 A meta-algorithm to learn the terms. 

 Compute bases of U = ⟨𝓛1 ∘ f⟩ and  V = ⟨𝓛 ∘ f⟩. 
 Decompose U and V under the action of 𝓛2 . 

 Obtain Ti from a basis of Ui. 

 

 Although easy-to-state, one needs to overcome a few 
technical challenges to make the meta-algorithm work.  

𝓛 = 𝓛2 ∘ 𝓛1 



Technical challenges 

   f  =  T1 + … +  Ts .   
 

 Task 1 (Direct Sum).  Show that U = U1 ⊕…⊕ Us and  V 
=  V1 ⊕…⊕  Vs w.h.p.  if  T1, …, Ts are random. 
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=  V1 ⊕…⊕  Vs w.h.p.  if  T1, …, Ts are random. 
 

 Task 2 (Uniqueness). Show that the above decomposition 
of U and V under the action of 𝓛2 is unique. 



Technical challenges 

   f  =  T1 + … +  Ts .   
 

 Task 1 (Direct Sum).  Show that U = U1 ⊕…⊕ Us and  V 
=  V1 ⊕…⊕  Vs w.h.p.  if  T1, …, Ts are random. 
 

 Task 2 (Uniqueness). Show that the above decomposition 
of U and V under the action of 𝓛2 is unique. 
 

 A C-circuit satisfying the direct sum and the uniqueness 
criteria is called a non-degenerate C-circuit. 

 Task 1 & 2 ≡ Show that a random C-circuit is non-
degenerate w.h.p. 
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 Task 3 (Vector space decomposition). Carry out the 
decomposition of U and V under the action of  𝓛2 . 



Technical challenges 

   f  =  T1 + … +  Ts .   
 

 Task 1 (Direct Sum).  Show that U = U1 ⊕…⊕ Us and  V 
=  V1 ⊕…⊕  Vs w.h.p.  if  T1, …, Ts are random. 
 

 Task 2 (Uniqueness). Show that the above decomposition 
of U and V under the action of 𝓛2 is unique. 
 

 Task 3 (Vector space decomposition). Carry out the 
decomposition of U and V under the action of  𝓛2 . 
 

 Task 4 (Terms from subspaces). Recover Ti from Ui . 



Known results 

Known results that implement the framework: 
 

 Kayal & S. (2019). Proper learns ∑∧∑ ckts, tensors, and 
homogeneous ∑∏∑ ckts in the non-degenerate case. 

 

 Introduced the framework in a rudimentary form. 

Proper learns random ∑∧∑ circuits for s ≤ (         ).  

 

n + d/3 
n 



Known results 

Known results that implement the framework: 
 

 Kayal & S. (2019). Proper learns ∑∧∑ ckts, tensors, and 
homogeneous ∑∏∑ ckts in the non-degenerate case. 
 

 Garg, Kayal & S. (2020). Proper learns ∑∧∑∏[t] circuits 
in the non-degenerate case. 

 

 Laid down the framework completely.  

The t = 2 case has a potential application in learning 
mixtures of Gaussians. 

 



Known results 

Known results that implement the framework: 
 

 Kayal & S. (2019). Proper learns ∑∧∑ ckts, tensors, and 
homogeneous ∑∏∑ ckts in the non-degenerate case. 
 

 Garg, Kayal & S. (2020). Proper learns ∑∧∑∏[t] circuits 
in the non-degenerate case. 
 

 Bhargava, Garg, Kayal & S. (2021). Proper learns 
generalized ∑∏∑ circuits in the non-degenerate case. 

 g1(𝓁11∙∙∙𝓁1d) + … + gs(𝓁s1∙∙∙𝓁sd);   gi = mono.,  Det, IMM, etc. 

Gives a reasonably general way to accomplish Task 1.  



Elaboration on the technical challenges 

   f  =  T1 + … +  Ts .   
 

 Task 1 (Direct Sum).  Show that U = U1 ⊕…⊕ Us and  V 
=  V1 ⊕…⊕  Vs w.h.p.  if  T1, …, Ts are random. 

 

 As 𝓛1 and 𝓛2 are linear operators, this task essentially 
boils down to showing that certain matrices (whose 
entries are polynomials in the “coefficients” of the 
terms) have the maximum possible rank. 

 The “bad” coefficients lie in an algebraic variety. So, 
random coefficients are “good”.  

 



Elaboration on the technical challenges 

   f  =  T1 + … +  Ts .   
 

 Task 1 (Direct Sum).  Show that U = U1 ⊕…⊕ Us and  V 
=  V1 ⊕…⊕  Vs w.h.p.  if  T1, …, Ts are random. 

 

 For a ∑∧∑ circuit, it is fairly easy to show that ⟨∂k
 f⟩ = ⟨𝓁1

d-k⟩ ⊕…⊕ ⟨𝓁s
d-k⟩ for random 𝓁1, …, 𝓁s . 

 Note.  Although easy for ∑∧∑ and homogeneous ∑∏∑ 
circuits, this task is nontrivial for ∑∧∑∏[t] circuits and 
generalized ∑∏∑ circuits. 

 



Elaboration on the technical challenges 

   f  =  T1 + … +  Ts .   
 

 Task 2 (Uniqueness). Show that the decomposition of U 
and V under the action of 𝓛2 is unique. 

 

 Need to understand all possible valid decompositions of 
U and  V under the action of 𝓛2 . 

 

 This understanding is provided by the adjoint algebra. 



The adjoint algebra 

 Definition. Let  𝛗:  U −> U  and  𝛙:  V −> V  be linear 
maps.  The adjoint algebra associated with (U,V, 𝓛2) is 

 adj(U,V, 𝓛2) := {(𝛗, 𝛙) :  𝛌∘𝛗 = 𝛙∘𝛌,  ∀𝛌 ∈ 𝓛2} . 

 



The adjoint algebra 

 Definition. Let  𝛗:  U −> U  and  𝛙:  V −> V  be linear 
maps.  The adjoint algebra associated with (U,V, 𝓛2) is 

 adj(U,V, 𝓛2) := {(𝛗, 𝛙) :  𝛌∘𝛗 = 𝛙∘𝛌,  ∀𝛌 ∈ 𝓛2} . 

 

 Obs.  adj(U,V, 𝓛2) is a vector space over 𝔽. 

 

 Obs. We can compute a basis of adj(U,V, 𝓛2) in 
polynomial time from bases of U and V, and the 
operators in 𝓛2,  by solving a linear system.  

 



The adjoint algebra 

 Definition. Let  𝛗:  U −> U  and  𝛙:  V −> V  be linear 
maps.  The adjoint algebra associated with (U,V, 𝓛2) is 

 adj(U,V, 𝓛2) := {(𝛗, 𝛙) :  𝛌∘𝛗 = 𝛙∘𝛌,  ∀𝛌 ∈ 𝓛2} . 

 

 Obs. If (𝛗, 𝛙) ∈ adj(U,V, 𝓛2) and 𝛗, 𝛙 are invertible, then 
U = 𝛗(U1) ⊕…⊕ 𝛗(Us) and  V =  𝛙(V1) ⊕…⊕ 𝛙( Vs), 

and 𝛙(Vi) = ⟨𝓛2 ∘ 𝛗(Ui)⟩. 



The adjoint algebra 

 Definition. Let  𝛗:  U −> U  and  𝛙:  V −> V  be linear 
maps.  The adjoint algebra associated with (U,V, 𝓛2) is 

 adj(U,V, 𝓛2) := {(𝛗, 𝛙) :  𝛌∘𝛗 = 𝛙∘𝛌,  ∀𝛌 ∈ 𝓛2} . 

 

 Obs. If (𝛗, 𝛙) ∈ adj(U,V, 𝓛2) and 𝛗, 𝛙 are invertible, then 
U = 𝛗(U1) ⊕…⊕ 𝛗(Us) and  V =  𝛙(V1) ⊕…⊕ 𝛙( Vs), 

and 𝛙(Vi) = ⟨𝓛2 ∘ 𝛗(Ui)⟩. 
 Proof~. Direct sum follows from the fact that 𝛗, 𝛙 are 

invertible.  For 𝛌 ∈ 𝓛2,   𝛌∘𝛗(Ui) = 𝛙∘𝛌(Ui) ⊆ 𝛙(Vi) . 

Equality follows from  V = ⟨𝓛2 ∘ U⟩. 



The adjoint algebra 

 Definition. Let  𝛗:  U −> U  and  𝛙:  V −> V  be linear 
maps.  The adjoint algebra associated with (U,V, 𝓛2) is 

 adj(U,V, 𝓛2) := {(𝛗, 𝛙) :  𝛌∘𝛗 = 𝛙∘𝛌,  ∀𝛌 ∈ 𝓛2} . 

 

 Obs. If (𝛗, 𝛙) ∈ adj(U,V, 𝓛2) and 𝛗, 𝛙 are invertible, then 
U = 𝛗(U1) ⊕…⊕ 𝛗(Us) and  V =  𝛙(V1) ⊕…⊕ 𝛙( Vs), 

and 𝛙(Vi) = ⟨𝓛2 ∘ 𝛗(Ui)⟩. 
 

 Krull-Schmidt theorem. These are the only 
decompositions of U and V under the action of  𝓛2 . 



The adjoint algebra 

 Definition. Let  𝛗:  U −> U  and  𝛙:  V −> V  be linear 
maps.  The adjoint algebra associated with (U,V, 𝓛2) is 

 adj(U,V, 𝓛2) := {(𝛗, 𝛙) :  𝛌∘𝛗 = 𝛙∘𝛌,  ∀𝛌 ∈ 𝓛2} . 

 

 Obs. If (𝛗, 𝛙) ∈ adj(U,V, 𝓛2) and 𝛗, 𝛙 are invertible, then 
U = 𝛗(U1) ⊕…⊕ 𝛗(Us) and  V =  𝛙(V1) ⊕…⊕ 𝛙( Vs), 

and 𝛙(Vi) = ⟨𝓛2 ∘ 𝛗(Ui)⟩. 
 

 We need to understand adj(U,V, 𝓛2) to show uniqueness 
of decomposition.  When is the decomposition unique? 



The adjoint algebra 

 Definition. Let  𝛗:  U −> U  and  𝛙:  V −> V  be linear 
maps.  The adjoint algebra associated with (U,V, 𝓛2) is 

 adj(U,V, 𝓛2) := {(𝛗, 𝛙) :  𝛌∘𝛗 = 𝛙∘𝛌,  ∀𝛌 ∈ 𝓛2} . 

 

 Let 𝛗i be the projection map from U to Ui, and 𝛙i the 
projection map from V to Vi . 

 Obs.  (𝛗i, 𝛙i) ∈ adj(U,V, 𝓛2) for all i ∈ [s]. 



The adjoint algebra 

 Definition. Let  𝛗:  U −> U  and  𝛙:  V −> V  be linear 
maps.  The adjoint algebra associated with (U,V, 𝓛2) is 

 adj(U,V, 𝓛2) := {(𝛗, 𝛙) :  𝛌∘𝛗 = 𝛙∘𝛌,  ∀𝛌 ∈ 𝓛2} . 

 

 Let 𝛗i be the projection map from U to Ui, and 𝛙i the 
projection map from V to Vi . 

 Obs.  (𝛗i, 𝛙i) ∈ adj(U,V, 𝓛2) for all i ∈ [s]. 

 Proof~. Let u = u1 + … + us for u ∈ U and ui ∈ Ui. 
Then, 𝛌∘𝛗i(u) = 𝛌(ui) ∈ Vi .   

    Also, 𝛙i∘𝛌(u) = 𝛙i∘𝛌(u1 + … + us) = 𝛌(ui) . 



The adjoint algebra 

 Definition. Let  𝛗:  U −> U  and  𝛙:  V −> V  be linear 
maps.  The adjoint algebra associated with (U,V, 𝓛2) is 

 adj(U,V, 𝓛2) := {(𝛗, 𝛙) :  𝛌∘𝛗 = 𝛙∘𝛌,  ∀𝛌 ∈ 𝓛2} . 

 

 Let 𝛗i be the projection map from U to Ui, and 𝛙i the 
projection map from V to Vi . 

 Obs.  (𝛗i, 𝛙i) ∈ adj(U,V, 𝓛2) for all i ∈ [s]. 

 

 The adjoint is trivial if it is generated as a vector space 
over 𝔽 by (𝛗1, 𝛙1), …, (𝛗s, 𝛙s). 



The adjoint algebra 

 Definition. Let  𝛗:  U −> U  and  𝛙:  V −> V  be linear 
maps.  The adjoint algebra associated with (U,V, 𝓛2) is 

 adj(U,V, 𝓛2) := {(𝛗, 𝛙) :  𝛌∘𝛗 = 𝛙∘𝛌,  ∀𝛌 ∈ 𝓛2} . 

 

 Let 𝛗i be the projection map from U to Ui, and 𝛙i the 
projection map from V to Vi . 

 Obs.  (𝛗i, 𝛙i) ∈ adj(U,V, 𝓛2) for all i ∈ [s]. 

 

 Clm. If adj(U,V, 𝓛2) is trivial, then U = U1 ⊕…⊕ Us and  
V =  V1 ⊕…⊕ Vs is the unique decomposition of U and 
V under the action of 𝓛2. 



The adjoint algebra 

 Clm. If adj(U,V, 𝓛2) is trivial, then U = U1 ⊕…⊕ Us and  
V =  V1 ⊕…⊕ Vs is the unique decomposition of U and 
V under the action of 𝓛2. 

 Proof~. Let U = 𝛗(U1) ⊕…⊕ 𝛗(Us) and  V =  𝛙(V1) ⊕…⊕ 𝛙( Vs) be another decomposition for some (𝛗, 𝛙) ∈ adj(U,V, 𝓛2), where 𝛗, 𝛙 are invertible.   



The adjoint algebra 

 Clm. If adj(U,V, 𝓛2) is trivial, then U = U1 ⊕…⊕ Us and  
V =  V1 ⊕…⊕ Vs is the unique decomposition of U and 
V under the action of 𝓛2. 

 Proof~. Let U = 𝛗(U1) ⊕…⊕ 𝛗(Us) and  V =  𝛙(V1) ⊕…⊕ 𝛙( Vs) be another decomposition for some (𝛗, 𝛙) ∈ adj(U,V, 𝓛2), where 𝛗, 𝛙 are invertible.   

 

 As adj(U,V, 𝓛2) is trivial, 𝛗 = a1𝛗1 + … + as𝛗s and 𝛙 = 
b1𝛙1 + … + bs𝛙s for some non-zero ai , bi ∈ 𝔽.  

 



The adjoint algebra 

 Clm. If adj(U,V, 𝓛2) is trivial, then U = U1 ⊕…⊕ Us and  
V =  V1 ⊕…⊕ Vs is the unique decomposition of U and 
V under the action of 𝓛2. 

 Proof~. Let U = 𝛗(U1) ⊕…⊕ 𝛗(Us) and  V =  𝛙(V1) ⊕…⊕ 𝛙( Vs) be another decomposition for some (𝛗, 𝛙) ∈ adj(U,V, 𝓛2), where 𝛗, 𝛙 are invertible.   

 

 As adj(U,V, 𝓛2) is trivial, 𝛗 = a1𝛗1 + … + as𝛗s and 𝛙 = 
b1𝛙1 + … + bs𝛙s for some non-zero ai , bi ∈ 𝔽.  

 

 Now observe that 𝛗(Ui) = Ui and 𝛙(Vi) = Vi . 



Elaboration on the technical challenges 

   f  =  T1 + … +  Ts .   
 

 Task 2 (Uniqueness). Show that the decomposition of U 
and V under the action of 𝓛2 is unique. 

 

 This task is accomplished in [GKS’20] and [BGKS’21] by 
showing that the adjoint algebra adj(U,V, 𝓛2) is trivial if 
T1, …, Ts are randomly chosen. 



Elaboration on the technical challenges 

   f  =  T1 + … +  Ts .   
 

 Task 3 (Vector space decomposition). Carry out the 
decomposition of U and V under the action of  𝓛2 . 

 

 Chistov, Ivanyos & Karpinski (1997); Eberly (1991); 
Ronyai (1990); Friedl & Ronyai (1985):  There are known 
efficient vector space decomposition algorithms.  

 

 Work over finite fields, ℂ and ℝ. Over ℚ, the output 
decomposition is over an extension field. 



Elaboration on the technical challenges 

   f  =  T1 + … +  Ts .   
 

 Task 3 (Vector space decomposition). Carry out the 
decomposition of U and V under the action of  𝓛2 . 
 

 Turns out, if the adjoint is trivial, then the vector space 
decomposition problem can be reduced to diagonalizing 
a random element of the adj(U,V, 𝓛2). 
 

 Vector space decomposition −>  diagonalizing a matrix. 



Elaboration on the technical challenges 

   f  =  T1 + … +  Ts .   
 

 Task 3 (Vector space decomposition). Carry out the 
decomposition of U and V under the action of  𝓛2 . 
 

 Turns out, if the adjoint is trivial, then the vector space 
decomposition problem can be reduced to diagonalizing 
a random element of the adj(U,V, 𝓛2). 
 

 The results in [KS’19], [GKS’20] and [BGKS’21] hold 
over ℚ. 



Elaboration on the technical challenges 

   f  =  T1 + … +  Ts .   
 

 Task 4 (Terms from subspaces). Recover Ti from Ui . 

 

 Mostly easy, if 𝓛 is the set of all partial derivatives. 
 

 Example. For a ∑∧∑ circuit, Ui = ⟨𝓁i
d-k⟩. Obtain a 𝔽-

multiple of 𝓁i (say, 𝓁i’) from Ui using b.b. polynomial 
factorization. Observe, f = z1 ∙ 𝓁’1d + … + zs ∙ 𝓁’sd for 
unknown z1, …, zs.  Set up a linear system in z1, …, zs as 
before.  Solve it and take d-th roots.  



Elaboration on the technical challenges 

   f  =  T1 + … +  Ts .   
 

 Task 4 (Terms from subspaces). Recover Ti from Ui . 

 

 Mostly easy, if 𝓛 is the set of all partial derivatives. 

 

 But not necessarily trivial, if 𝓛 is more complex (as is 
the case in [GKS’20]).  



Other average-case learning results 

 Gupta, Kayal & Lokam (2011). Proper learns random 
fanin-2 multilinear formulas. 

 

 Gupta, Kayal & Qiao. (2013). Proper learns random 
fanin-2 regular formulas. 

 

 Kayal, Nair & S. (2019). Proper learns random ABPs of 
low width.  



Other average-case learning results 

 Gupta, Kayal & Lokam (2011). Proper learns random 
fanin-2 multilinear formulas. 

 

 Gupta, Kayal & Qiao. (2013). Proper learns random 
fanin-2 regular formulas. 

 

 Kayal, Nair & S. (2019). Proper learns random ABPs of 
low width.  

 

 These algorithms are implicitly connected to the 
corresponding lower bounds known for these models.  



Learning other circuit models? 

 

 

 

 

 Can we implement the learning from lower bound 
framework for other circuit models?  



Summary 

 A survey of known results on polynomial equivalence 
and average-case reconstruction. 

 

 Polynomial equivalence problem 

 Hessian based equivalence tests. 

 

 Average-case learning 

 A framework for designing learning algorithms from 
lower bounds based on vector space decomposition. 

 

 



Thanks! 


