
Arithmetic circuit reconstruction:
Part 2

Chandan Saha

Indian Institute of Science

gct2022: School and Conference on Geometric
Complexity Theory

Recap: The reconstruction problem

 Let f(x) be a n-variate degree-d polynomial computed
by a circuit of size s from a class C.

 Reconstruction problem for C. Given black-box access
to f, output a small circuit computing f.

f
a ∈ 𝔽n f(a)

 Black-box access to f
 (membership query access to f)

Recap: The reconstruction problem

 Let f(x) be a n-variate degree-d polynomial computed
by a circuit of size s from a class C.

 Reconstruction problem for C. Given black-box access
to f, output a small circuit computing f.

 Size of the output circuit. Ideally, poly(s).

 Proper learning. Output circuit belongs to C.

 Efficiency. Ideally, poly(d,s).

Recap: Part 1 summary

 Hardness of worst-case reconstruction.

 A survey of known results on worst-case reconstruction.

 Depth-2 circuit reconstruction.

 ∑∧∑ circuit reconstruction

 Improper: ROABP reconstruction

 Proper: Waring decomposition for ∑∧∑(k) circuits.

Recap: Part 1 summary

 Hardness of worst-case reconstruction.

 A survey of known results on worst-case reconstruction.

 Depth-2 circuit reconstruction.

 ∑∧∑ circuit reconstruction

 Improper: ROABP reconstruction

 Proper: Waring decomposition for ∑∧∑(k) circuits.

 This talk: We will discuss average-case reconstruction.

a.k.a. learning in the non-degenerate case

Recap: Depth-3 powering circuits

 A depth-3 powering circuit (a.k.a ∑∧∑ circuit)
computes a sum of powers of linear polynomials, i.e.,

 f = 𝓁1 + … + 𝓁s ,

 where 𝓁i has degree 1.

 The reconstruction problem. Given black-box access to
a ∑∧∑ circuit computing f, output a small circuit for f.

 Proper learning seems hard in the worst-case as
computing Waring rank is NP-hard [Shitov’16].

d1 ds

Recap: Depth-3 powering circuits

 A depth-3 powering circuit (a.k.a ∑∧∑ circuit)
computes a sum of powers of linear polynomials, i.e.,

 f = 𝓁1 + … + 𝓁s ,

 where 𝓁i has degree 1.

 The reconstruction problem. Given black-box access to
a ∑∧∑ circuit computing f, output a small circuit for f.

 What if the coefficients of 𝓁1, …, 𝓁s are chosen randomly?

d1 ds

Learning random ∑∧∑ circuits
 A random ∑∧∑ circuit computes

 f = 𝓁1 + … + 𝓁s ,

where the coefficients of 𝓁1, …, 𝓁s are chosen uniformly
and independently at random from a sufficiently large
finite subset of 𝔽.

 The average-case learning problem. Given black-box
access to a random ∑∧∑ circuit computing f, output a
small ∑∧∑ circuit for f.

d1 ds

Learning random ∑∧∑ circuits
 A random ∑∧∑ circuit computes

 f = 𝓁1 + … + 𝓁s ,

where the coefficients of 𝓁1, …, 𝓁s are chosen uniformly
and independently at random from a sufficiently large
finite subset of 𝔽.

 The average-case learning problem. Given black-box
access to a random ∑∧∑ circuit computing f, output a
small ∑∧∑ circuit for f.

 For simplicity, assume that 𝓁1, …, 𝓁s are linear forms and
d1= … = ds = d.

d1 ds

Learning random ∑∧∑ circuits
 A random ∑∧∑ circuit computes

 f = 𝓁1 + … + 𝓁s ,

where the coefficients of 𝓁1, …, 𝓁s are chosen uniformly
and independently at random from a sufficiently large
finite subset of 𝔽.

 The average-case learning problem. Given black-box
access to a random ∑∧∑ circuit computing f, output a
small ∑∧∑ circuit for f.

 What is the complexity of the above problem?

d d

Learning random ∑∧∑ circuits
 A random ∑∧∑ circuit computes

 f = 𝓁1 + … + 𝓁s ,

where the coefficients of 𝓁1, …, 𝓁s are chosen uniformly
and independently at random from a sufficiently large
finite subset of 𝔽.

 An easier case. Suppose s ≤ n. Then, 𝓁1, …, 𝓁s are 𝔽-
linearly independent w.h.p.

 In other words, f is equivalent to the d-th power
symmetric polynomial PSym in s variables w.h.p.

d d

Learning random ∑∧∑ circuits
 A random ∑∧∑ circuit computes

 f = 𝓁1 + … + 𝓁s ,

where the coefficients of 𝓁1, …, 𝓁s are chosen uniformly
and independently at random from a sufficiently large
finite subset of 𝔽.

 An easier case. Suppose s ≤ n. Then, 𝓁1, …, 𝓁s are 𝔽-
linearly independent w.h.p.

 In other words, f is equivalent to the d-th power
symmetric polynomial PSym in s variables w.h.p.

d d

Let’s take a detour into the polynomial equivalence problem…

The polynomial equivalence problem

Polynomial equivalence problem

 Orbit. The orbit of an n-variate polynomial g over 𝔽 is
the set orb(g) := {g(Ax) : A ∈ GL(n, 𝔽)}.

 Equivalent polynomials. Two n-variate polynomials f, g ∈ 𝔽[x] are equivalent, denoted as f ~ g, if there’s a A ∈
GL(n, 𝔽) s.t. f = g(Ax) (i.e., f ∈ orb(g)).

 For example, f = 𝓁1
d + … + 𝓁n

d , where 𝓁1, …,𝓁n are 𝔽–
linearly independent, is equivalent to the power
symmetric polynomial PSymn,d = x1

d + … + xn
d .

Polynomial equivalence problem

 Orbit. The orbit of an n-variate polynomial g over 𝔽 is
the set orb(g) := {g(Ax) : A ∈ GL(n, 𝔽)}.

 Equivalent polynomials. Two n-variate polynomials f, g ∈ 𝔽[x] are equivalent, denoted as f ~ g, if there’s a A ∈
GL(n, 𝔽) s.t. f = g(Ax) (i.e., f ∈ orb(g)).

 The equivalence problem. Given f and g as lists of
coefficients, check if f ~ g. If equivalent, then find a
certificate A ∈ GL(n, 𝔽).

 Polynomial equivalence (PE) has been studied intensely.

PE: Known results

 Thierauf (1998); Saxena (2006): PE is in NP ∩ coAM
over 𝔽q. Hence, unlikely to be NP-complete.

 Not known to be decidable over ℚ.

 Over arbitrary fields, the best known complexity is the
same as that of polynomial solvability.

PE: Known results

 Thierauf (1998); Saxena (2006): PE is in NP ∩ coAM
over 𝔽q. Hence, unlikely to be NP-complete.

 Not known to be decidable over ℚ.

 Over arbitrary fields, the best known complexity is the
same as that of polynomial solvability.

 What if f and g belong to restricted classes/families of
polynomials?

PE: Known results

 Minkowski (1885); Hasse (1921); Serre (1973); Witt
(1998); Wallenborn (2013): Quadratic form equivalence
can be solved in randomized polynomial time over 𝔽q, ℂ, ℝ, and over ℚ (with access to Integer Factoring oracle).

 Uses well-known classification results for quadratic
forms over 𝔽q, ℂ, ℝ, and ℚ .

 For e.g., a quadratic form over ℂ having n essential
variables is equivalent to x1

2 +…+ xn
2 .

PE: Known results

 Minkowski (1885); Hasse (1921); Serre (1973); Witt
(1998); Wallenborn (2013): Quadratic form equivalence
can be solved in randomized polynomial time over 𝔽q, ℂ, ℝ, and over ℚ (with access to Integer Factoring oracle).

 Agrawal & Saxena (2005): Cubic form equivalence is
graph isomorphism hard.

 Grochow & Qiao (2019): Tensor isomorphism, matrix
space isometry & conjugacy, algebra isomorphism and
cubic form equivalence are poly-time equivalent.

PE: Known results

 Kayal (2011): Initiated the study of a natural variant of
PE for well-known polynomial families.

 Let G = {gm : m ∈ ℕ} be a polynomial family, say Det .

 PE for G. Given b.b.a to f, check if f ∈ orb(gm) for some
m ∈ ℕ. If yes, then find a certificate A ∈ GL(n, 𝔽).

PE: Known results

 Kayal (2011): Initiated the study of a natural variant of
PE for well-known polynomial families.

 Let G = {gm : m ∈ ℕ} be a polynomial family, say Det .

 PE for G. Given b.b.a to f, check if f ∈ orb(gm) for some
m ∈ ℕ. If yes, then find a certificate A ∈ GL(n, 𝔽).

 Why is this version of PE interesting?

PE: Known results

 Kayal (2011): Initiated the study of a natural variant of
PE for well-known polynomial families.

 Let G = {gm : m ∈ ℕ} be a polynomial family, say Det .

 Affine projections. The set of affine projections of a n-
variate g is aproj(g) := {g(Ax + b) : A∈𝔽n x n, b∈𝔽n}.

PE: Known results

 Kayal (2011): Initiated the study of a natural variant of
PE for well-known polynomial families.

 Let G = {gm : m ∈ ℕ} be a polynomial family, say Det .

 Affine projections. The set of affine projections of a n-
variate g is aproj(g) := {g(Ax + b) : A∈𝔽n x n, b∈𝔽n}.

 Affine projections of a “simple” G can be very powerful.

 aproj(PSym) captures ∑∧∑ circuits,

 aproj(SumProd) captures ∑∏∑ circuits, (SumProd has a depth-2 ROF)

 aproj(ANF) captures formulas, (ANF has a ROF)

 aproj(Det) & aproj(IMM) capture ABPs.

PE: Known results

 Kayal (2011): Initiated the study of a natural variant of
PE for well-known polynomial families.

 Let G = {gm : m ∈ ℕ} be a polynomial family, say Det .

 Orbit closure. The orbit closure of g over 𝔽, denoted as
orb(g), is the Zariski closure of orb(g).

 Fact. orb(g) ⊆ aproj(g) ⊆ orb(g). (char(𝔽) = 0)

PE: Known results

 Kayal (2011): Initiated the study of a natural variant of
PE for well-known polynomial families.

 Let G = {gm : m ∈ ℕ} be a polynomial family, say Det .

 Orbit closure. The orbit closure of g over 𝔽, denoted as
orb(g), is the Zariski closure of orb(g).

 Fact. orb(g) ⊆ aproj(g) ⊆ orb(g). (char(𝔽) = 0)

 Natural to study the learning problem for orbits of well-
known polynomial families.

PE: Known results

 Kayal (2011): Initiated the study of a natural variant of
PE for well-known polynomial families.

 Let G = {gm : m ∈ ℕ} be a polynomial family, say Det .

 PE for G. Given b.b.a to f, check if f ∈ orb(gm) for some
m ∈ ℕ. If yes, then find a certificate A ∈ GL(n, 𝔽).

 Kayal (2011, 2012); Kayal, Nair, S., Tavenas (2017); Garg,
Gupta, Kayal, S. (2019); Murthy, Nair, S. (2020):
Randomized poly-time PE are known for Det, Perm,
IMM, tr-IMM, ESym, PSym, SumProduct etc.

PE for Power Symmetric Polynomials

 Let PSym = x1
d + … + xs

d . Assume d ≥ 3, char(𝔽) = 0.

 Let f = 𝓁1
d + … + 𝓁s

d , where 𝓁1, …, 𝓁s are 𝔽-l.i.

 Recall, a quadratic form over ℂ having n essential
variables is equivalent to x1

2 +…+ xn
2 .

PE for Power Symmetric Polynomials

 Let PSym = x1
d + … + xs

d . Assume d ≥ 3, char(𝔽) = 0.

 Let f = 𝓁1
d + … + 𝓁s

d , where 𝓁1, …, 𝓁s are 𝔽-l.i.

 Given b.b.a. to f, can we recover 𝓁1, …, 𝓁s? (up to dth roots of 1)

PE for Power Symmetric Polynomials

 Let PSym = x1
d + … + xs

d . Assume d ≥ 3, char(𝔽) = 0.

 Let f = 𝓁1
d + … + 𝓁s

d , where 𝓁1, …, 𝓁s are 𝔽-l.i.

 Given b.b.a. to f, can we recover 𝓁1, …, 𝓁s? (up to dth roots of 1)

 Obs. The number of essential variables of f is s.

 Apply the Carlini-Kayal algorithm to remove redundant
variables. So, we can assume w.l.o.g that s = n.

PE for Power Symmetric Polynomials

 Let PSym = x1
d + … + xn

d . Assume d ≥ 3, char(𝔽) = 0.

 Input: Black-box access to f ∈ orb(PSym).

 Output: A matrix A ∈ GL(n, 𝔽) s.t. f = PSym(Ax).

 Algorithm: Uses the Hessian matrix associated with f.

The Hessian of a polynomial

 Let f be an n-variate polynomial and ∂i,jf the derivative of
f w.r.t. xi and xj.

 The Hessian of f. It is the matrix Hesf (x) := (∂i,jf)i,j∈[n] .

 The Hessian matrix appears naturally in the Taylor
expansion of a polynomial and has important
applications in optimization, second derivative tests, etc.

The Hessian of a polynomial

 Let f be an n-variate polynomial and ∂i,jf the derivative of
f w.r.t. xi and xj.

 The Hessian of f. It is the matrix Hesf (x) := (∂i,jf)i,j∈[n] .

 Obs. If f = g(Ax) for some A ∈ 𝔽n x n , then

 Hesf (x) = AT ∙ Hesg (Ax) ∙ A .

The Hessian of a polynomial

 Let f be an n-variate polynomial and ∂i,jf the derivative of
f w.r.t. xi and xj.

 The Hessian of f. It is the matrix Hesf (x) := (∂i,jf)i,j∈[n] .

 Obs. If f = g(Ax) for some A ∈ 𝔽n x n , then

 Hesf (x) = AT ∙ Hesg (Ax) ∙ A .

 Proof~. Uses chain rule. Let ∇f := (∂1f, ∂2f, … ∂nf)
T. Then,

 ∇f = AT ∙ [∇g](Ax) .

The Hessian of a polynomial

 Let f be an n-variate polynomial and ∂i,jf the derivative of
f w.r.t. xi and xj.

 The Hessian of f. It is the matrix Hesf (x) := (∂i,jf)i,j∈[n] .

 Obs. If f = g(Ax) for some A ∈ 𝔽n x n , then

 Hesf (x) = AT ∙ Hesg (Ax) ∙ A .

 Cor. det(Hesf) = c ∙ det(Hesg)(Ax), where c ∈ 𝔽.

PE for Power Symmetric Polynomials

 Let PSym = x1
d + … + xn

d . Assume d ≥ 3, char(𝔽) = 0.

 Input: Black-box access to f ∈ orb(PSym).

 Output: A matrix A ∈ GL(n, 𝔽) s.t. f = PSym(Ax).

 Algorithm: (high-level)

 Step 1. Compute b.b.a to H := det(Hesf).

Obs. B.b.a. to ∂i,jf can be computed efficiently from

 b.b.a. to f.

Hesf (x) = AT ∙ HesPSym (Ax) ∙ A

PE for Power Symmetric Polynomials

 Let PSym = x1
d + … + xn

d . Assume d ≥ 3, char(𝔽) = 0.

 Input: Black-box access to f ∈ orb(PSym).

 Output: A matrix A ∈ GL(n, 𝔽) s.t. f = PSym(Ax).

 Algorithm: (high-level)

 Step 1. Compute b.b.a to H := det(Hesf).

 Step 2. Compute b.b.a to the factors of H.

 (using b.b. polynomial factorization)

Hesf (x) = AT ∙ HesPSym (Ax) ∙ A

PE for Power Symmetric Polynomials

 Let PSym = x1
d + … + xn

d . Assume d ≥ 3, char(𝔽) = 0.

 Input: Black-box access to f ∈ orb(PSym).

 Output: A matrix A ∈ GL(n, 𝔽) s.t. f = PSym(Ax).

 Algorithm: (high-level)

 Step 1. Compute b.b.a to H := det(Hesf).

 Step 2. Compute b.b.a to the factors of H.

 Step 3. Recover A from the linear factors of H.

Hesf (x) = AT ∙ HesPSym (Ax) ∙ A

PE for Power Symmetric Polynomials

 Let PSym = x1
d + … + xn

d . Assume d ≥ 3, char(𝔽) = 0.

 Input: Black-box access to f ∈ orb(PSym).

 Output: A matrix A ∈ GL(n, 𝔽) s.t. f = PSym(Ax).

 Algorithm: (correctness)

 Step 3. Recover A from the linear factors of H.

Proof~. HesPSym(x) = diag (d’x1
d-2, …, d’xn

d-2), where

 d’ = d(d-1).

Hesf (x) = AT ∙ HesPSym (Ax) ∙ A

PE for Power Symmetric Polynomials

 Let PSym = x1
d + … + xn

d . Assume d ≥ 3, char(𝔽) = 0.

 Input: Black-box access to f ∈ orb(PSym).

 Output: A matrix A ∈ GL(n, 𝔽) s.t. f = PSym(Ax).

 Algorithm: (correctness)

 Step 3. Recover A from the linear factors of H.

Proof~. HesPSym(x) = diag (d’x1
d-2, …, d’xn

d-2)

 HesPSym(Ax) = diag (d’𝓁1
d-2, …, d’𝓁n

d-2), where

 Ax = (𝓁1, …, 𝓁n)
T

Hesf (x) = AT ∙ HesPSym (Ax) ∙ A

PE for Power Symmetric Polynomials

 Let PSym = x1
d + … + xn

d . Assume d ≥ 3, char(𝔽) = 0.

 Input: Black-box access to f ∈ orb(PSym).

 Output: A matrix A ∈ GL(n, 𝔽) s.t. f = PSym(Ax).

 Algorithm: (correctness)

 Step 3. Recover A from the linear factors of H.

Proof~. HesPSym(x) = diag (d’x1
d-2, …, d’xn

d-2)

 HesPSym(Ax) = diag (d’𝓁1
d-2, …, d’𝓁n

d-2)

 H = c ∙ 𝓁1
d-2 ∙ … ∙ 𝓁n

d-2, c ∈ 𝔽 .

Hesf (x) = AT ∙ HesPSym (Ax) ∙ A

PE for Power Symmetric Polynomials

 Let PSym = x1
d + … + xn

d . Assume d ≥ 3, char(𝔽) = 0.

 Input: Black-box access to f ∈ orb(PSym).

 Output: A matrix A ∈ GL(n, 𝔽) s.t. f = PSym(Ax).

 Algorithm: (correctness)

 Step 3. Recover A from the linear factors of H.

Proof~. HesPSym(x) = diag (d’x1
d-2, …, d’xn

d-2)

 HesPSym(Ax) = diag (d’𝓁1
d-2, …, d’𝓁n

d-2)

 H = c ∙ 𝓁1
d-2 ∙ … ∙ 𝓁n

d-2, c ∈ 𝔽 .

Recover 𝓁1 ,…, 𝓁n (up to 𝔽-multiples)

Hesf (x) = AT ∙ HesPSym (Ax) ∙ A

PE for Power Symmetric Polynomials

 Let PSym = x1
d + … + xn

d . Assume d ≥ 3, char(𝔽) = 0.

 Input: Black-box access to f ∈ orb(PSym).

 Output: A matrix A ∈ GL(n, 𝔽) s.t. f = PSym(Ax).

 Algorithm: (correctness)

 Step 3. Recover A from the linear factors of H.

Proof~. HesPSym(x) = diag (d’x1
d-2, …, d’xn

d-2)

 HesPSym(Ax) = diag (d’𝓁1
d-2, …, d’𝓁n

d-2)

 H = c ∙ 𝓁1
d-2 ∙ … ∙ 𝓁n

d-2, c ∈ 𝔽 .

Recover 𝓁’1 ,…, 𝓁’n

Hesf (x) = AT ∙ HesPSym (Ax) ∙ A

PE for Power Symmetric Polynomials

 Let PSym = x1
d + … + xn

d . Assume d ≥ 3, char(𝔽) = 0.

 Input: Black-box access to f ∈ orb(PSym).

 Output: A matrix A ∈ GL(n, 𝔽) s.t. f = PSym(Ax).

 Algorithm: (correctness)

 Step 3. Recover A from the linear factors of H.

Proof~. Observe, f = z1 ∙ 𝓁’1d + … + zn ∙ 𝓁’nd for some
unknown z1, …, zn. Set up a linear system in z1, …, zn by
evaluating f and 𝓁’1, …, 𝓁’n at n random points. Solve for
z1, …, zn and take d-th roots.

PE for Sum-Product polynomials

 Let SumProd = x11x12∙∙∙ x1d + … + xs1xs2∙∙∙ xsd .

 Observe, aproj(SumProd) captures ∑∏∑ circuits.

 A quadratic form over ℂ having n essential variables
(where n is even) is equivalent to x1x2 + … + xn-1xn .

PE for Sum-Product polynomials

 Let SumProd = x11x12∙∙∙ x1d + … + xs1xs2∙∙∙ xsd .

 Observe, aproj(SumProd) captures ∑∏∑ circuits.

 Input: Black-box access to f ∈ orb(SumProd).

 Output: A matrix A ∈ GL(n, 𝔽) s.t. f = SumProd(Ax).

 Here, n = sd.

PE for Sum-Product polynomials

 Let SumProd = x11x12∙∙∙ x1d + … + xs1xs2∙∙∙ xsd .

 Observe, aproj(SumProd) captures ∑∏∑ circuits.

 Input: Black-box access to f ∈ orb(SumProd).

 Output: A matrix A ∈ GL(n, 𝔽) s.t. f = SumProd(Ax).

 Algorithm: (high-level)

 Step 1. Compute b.b.a to H := det(Hesf).

 Step 2. Compute b.b.a to the factors of H.

 Step 3. Recover A from the linear factors of H.

Hesf (x) = AT ∙ HesSumProd (Ax) ∙ A

PE for Sum-Product polynomials

 Let SumProd = x11x12∙∙∙ x1d + … + xs1xs2∙∙∙ xsd .

 Observe, aproj(SumProd) captures ∑∏∑ circuits.

 Input: Black-box access to f ∈ orb(SumProd).

 Output: A matrix A ∈ GL(n, 𝔽) s.t. f = SumProd(Ax).

 Algorithm: (correctness)

 Step 3. Recover A from the linear factors of H.

Proof~. HesSumProd(x) = blocdiag (Hes (x) ,…, Hes (x)),
where hi = xi1xi2∙∙∙ xid is a monomial.

h1 hs

Hesf (x) = AT ∙ HesSumProd (Ax) ∙ A

PE for Sum-Product polynomials

 Let SumProd = x11x12∙∙∙ x1d + … + xs1xs2∙∙∙ xsd .

 Observe, aproj(SumProd) captures ∑∏∑ circuits.

 Input: Black-box access to f ∈ orb(SumProd).

 Output: A matrix A ∈ GL(n, 𝔽) s.t. f = SumProd(Ax).

 Algorithm: (correctness)

 Step 3. Recover A from the linear factors of H.

Proof~.

 Clm. det(Hes (x)) = (-1)d-1(d-1) ∙ xi1
d-2 ∙∙∙ xid

d-2.

hi

Hessian determinant of a monomial is a monomial.

Hesf (x) = AT ∙ HesSumProd (Ax) ∙ A

PE for Sum-Product polynomials

 Let SumProd = x11x12∙∙∙ x1d + … + xs1xs2∙∙∙ xsd .

 Observe, aproj(SumProd) captures ∑∏∑ circuits.

 Input: Black-box access to f ∈ orb(SumProd).

 Output: A matrix A ∈ GL(n, 𝔽) s.t. f = SumProd(Ax).

 Algorithm: (correctness)

 Step 3. Recover A from the linear factors of H.

Proof~. Hence, H = c ∙ 𝓁11
d-2 ∙ … ∙ 𝓁sd

d-2, c ∈ 𝔽 ,
where Ax = (𝓁11, …, 𝓁sd)

T .

Hesf (x) = AT ∙ HesSumProd (Ax) ∙ A

PE for Sum-Product polynomials

 Let SumProd = x11x12∙∙∙ x1d + … + xs1xs2∙∙∙ xsd .

 Observe, aproj(SumProd) captures ∑∏∑ circuits.

 Input: Black-box access to f ∈ orb(SumProd).

 Output: A matrix A ∈ GL(n, 𝔽) s.t. f = SumProd(Ax).

 Algorithm: (correctness)

 Step 3. Recover A from the linear factors of H.

Proof~. Hence, H = c ∙ 𝓁11
d-2 ∙ … ∙ 𝓁sd

d-2, c ∈ 𝔽 ,
where Ax = (𝓁11, …, 𝓁sd)

T . The rest of the argument is
similar to PE for PSym.

Hesf (x) = AT ∙ HesSumProd (Ax) ∙ A

PE for Read-once formulas

 Let SumProd = x11x12∙∙∙ x1d + … + xs1xs2∙∙∙ xsd .

 Observe, SumProd is a ROF. Recall, affine projections of
ROFs capture formulas.

 Can PE for ROFs be solved efficiently?

PE for Read-once formulas

 Let SumProd = x11x12∙∙∙ x1d + … + xs1xs2∙∙∙ xsd .

 Observe, SumProd is a ROF. Recall, affine projections of
ROFs capture formulas.

 Can PE for ROFs be solved efficiently?

 Gupta, S., Thankey (ongoing). Given b.b.a. to f, g in the
orbits of ROFs*, the problem of checking if f ~ g and
finding a witness A can be solved in randomized poly-time.

 Analyzes the Hessian of a general ROF.

*mild conditions apply

PE for Read-once formulas

 Let SumProd = x11x12∙∙∙ x1d + … + xs1xs2∙∙∙ xsd .

 Observe, SumProd is a ROF. Recall, affine projections of
ROFs capture formulas.

 Can PE for ROFs be solved efficiently?

 Gupta, S., Thankey (ongoing). Given b.b.a. to f, g in the
orbits of ROFs*, the problem of checking if f ~ g and
finding a witness A can be solved in randomized poly-time.

 A generalization of quadratic form equivalence:

 A quadratic form over ℂ is equivalent to x1x2+…+xn-1xn (n even).

PE for PSym w/o poly factoring

 Koiran & Saha (2021); Koiran & Skomra (2020). Solves the
decision version of PE for PSym over ℂ in randomized
poly-time without appealing to polynomial factorization.

 Involves only arithmetic operations and equality tests.

 If f has rational coefficients, then the algorithm requires
polynomial number of bit operations.

Back to learning random ∑∧∑ circuits

 A random ∑∧∑ circuit computes

 f = 𝓁1 + … + 𝓁s ,

where the coefficients of 𝓁1, …, 𝓁s are chosen uniformly
and independently at random from a sufficiently large
subset of 𝔽.

 The average-case learning problem. Given black-box
access to a random ∑∧∑ circuit computing f, output a
small ∑∧∑ circuit for f.

 Can we handle s > n? Does Hessian help?

d d

Back to learning random ∑∧∑ circuits

 Garcia-Marco, Koiran, Pecatte (2018). Random ∑∧∑
circuits can be reconstructed in randomized poly-time
provided s ≈ n2/2 and d ≥ 5.

 Uses 4-th order Hessian and shows that the determinant is
nonzero (w.h.p) and factorizes into linear factors.

Back to learning random ∑∧∑ circuits

 Garcia-Marco, Koiran, Pecatte (2018). Random ∑∧∑
circuits can be reconstructed in randomized poly-time
provided s ≈ n2/2 and d ≥ 5.

 Uses 4-th order Hessian and shows that the determinant is
nonzero (w.h.p) and factorizes into linear factors.

 Unclear if the strategy scales to higher s. More
importantly, it is not clear how effective Hessian is in
learning other − more powerful − models.

 It seems we need a different strategy…

Learning from lower bounds:
A paradigm

Learning from lower bounds?

 Fortnow & Klivans (2009): A randomized poly-time
reconstruction algorithm for C implies super-polynomial
lower bound for C. (Learning −> lower bound)

 Does lower bound imply worst-case reconstruction?
Unlikely. Reconstruction appears to be inherently hard.

Learning from lower bounds?

 Fortnow & Klivans (2009): A randomized poly-time
reconstruction algorithm for C implies super-polynomial
lower bound for C. (Learning −> lower bound)

 Does lower bound imply worst-case reconstruction?
Unlikely. Reconstruction appears to be inherently hard.

 Does lower bound imply average-case reconstruction?

A typical lower bound proof

 Suppose that a circuit from C computes a polynomial

 f = T1 + … + Ts ,

where each term Ti is “simple” is some sense.

 For example, Ti is a power of a linear polynomial for
∑∧∑ circuits.

A typical lower bound proof

 Suppose that a circuit from C computes a polynomial

 f = T1 + … + Ts ,

where each term Ti is “simple” is some sense.

 A typical lower bound proof for C proceeds by defining
a complexity measure (map) 𝛍 : 𝔽[x] −> ℕ s.t.

 𝛍(f + g) ≤ 𝛍(f) + 𝛍(g) (subadditivity)

 𝛍(Ti) ≤ L, where L is a “small” quantity,

 𝛍(f) ≥ H, where H is a “large” quantity.

A typical lower bound proof

 Suppose that a circuit from C computes a polynomial

 f = T1 + … + Ts ,

where each term Ti is “simple” is some sense.

 A typical lower bound proof for C proceeds by defining
a complexity measure (map) 𝛍 : 𝔽[x] −> ℕ s.t.

 𝛍(f + g) ≤ 𝛍(f) + 𝛍(g) (subadditivity)

 𝛍(Ti) ≤ L, where L is a “small” quantity,

 𝛍(f) ≥ H, where H is a “large” quantity.

 Any C-circuit computing f must have s ≥ H/L terms.

A typical lower bound proof

 Suppose that a circuit from C computes a polynomial

 f = T1 + … + Ts ,

where each term Ti is “simple” is some sense.

 A typical lower bound proof for C proceeds by defining
a complexity measure (map) 𝛍 : 𝔽[x] −> ℕ s.t.

 𝛍(f + g) ≤ 𝛍(f) + 𝛍(g) (subadditivity)

 𝛍(Ti) ≤ L, where L is a “small” quantity,

 𝛍(f) ≥ H, where H is a “large” quantity.

 Any C-circuit computing f must have s ≥ H/L terms.

Typically, 𝛍(f) is the dimension of a vector space U associated with f.

Lower bound for ∑∧∑ circuits
 A ∑∧∑ circuit computes

 f = 𝓁1
d + … + 𝓁s

d ,

where a term Ti = 𝓁i
d .

 Let ∂k
 f be the set of k-th order partials of f, U := ⟨∂k

 f⟩
and Ui := ⟨∂k

 Ti⟩. Define 𝛍(f) := dim U, 𝛍(Ti) := dim Ui .

Lower bound for ∑∧∑ circuits
 A ∑∧∑ circuit computes

 f = 𝓁1
d + … + 𝓁s

d ,

where a term Ti = 𝓁i
d .

 Let ∂k
 f be the set of k-th order partials of f, U := ⟨∂k

 f⟩
and Ui := ⟨∂k

 Ti⟩. Define 𝛍(f) := dim U, 𝛍(Ti) := dim Ui .

 As ∂k is a set of linear operators on 𝔽[x],

 U ⊆ U1 +…+ Us , and so,

 𝛍(f) ≤ 𝛍(T1) +…+ 𝛍(Ts) (subadditivity).

Lower bound for ∑∧∑ circuits
 A ∑∧∑ circuit computes

 f = 𝓁1
d + … + 𝓁s

d ,

where a term Ti = 𝓁i
d .

 Let ∂k
 f be the set of k-th order partials of f, U := ⟨∂k

 f⟩
and Ui := ⟨∂k

 Ti⟩. Define 𝛍(f) := dim U, 𝛍(Ti) := dim Ui .

 Obs. 𝛍(Ti) = 1 whereas 𝛍(x1x2 ∙∙∙ xn) = ().

 Choose k = n/2. This gives a s = 𝝮(2n) lower bound for
∑∧∑ circuits computing x1x2 ∙∙∙ xn .

n
k

~

A typical lower bound proof

 A C-circuit computes a polynomial

 f = T1 + … + Ts ,

where each term Ti is “simple” is some sense.

 A typical lower bound proof for C involves a set of

linear operators 𝓛 on 𝔽[x] s.t. dim ⟨𝓛 ∘Ti⟩ is “small”.

 In the lower bound proof for ∑∧∑ circuits, 𝓛 = ∂k
 .

A typical lower bound proof

 A C-circuit computes a polynomial

 f = T1 + … + Ts ,

where each term Ti is “simple” is some sense.

 As 𝓛 is linear, ⟨𝓛 ∘ f⟩ ⊆ ⟨𝓛 ∘T1⟩ +…+ ⟨𝓛 ∘Ts⟩.

Learning from LB: A framework

 A C-circuit computes a polynomial

 f = T1 + … + Ts ,

where each term Ti is “simple” is some sense.

 As 𝓛 is linear, ⟨𝓛 ∘ f⟩ ⊆ ⟨𝓛 ∘T1⟩ +…+ ⟨𝓛 ∘Ts⟩.
 If T1, …, Ts are random, we do expect

1. ⟨𝓛 ∘T1⟩ +…+ ⟨𝓛 ∘Ts⟩ = ⟨𝓛 ∘T1⟩ ⊕…⊕ ⟨𝓛 ∘Ts⟩
2. ⟨𝓛 ∘ f⟩ = ⟨𝓛 ∘T1⟩ +…+ ⟨𝓛 ∘Ts⟩ , implying

 ⟨𝓛 ∘ f⟩ = ⟨𝓛 ∘T1⟩ ⊕…⊕ ⟨𝓛 ∘Ts⟩
(as dim⟨𝓛∘Ti⟩ is “small”)

Learning from LB: A framework

 f = T1 + … + Ts .

 A (crude) approach to learn the terms.

 Compute a basis of ⟨𝓛 ∘ f⟩ from f.

 Decompose ⟨𝓛 ∘ f⟩ = ⟨𝓛 ∘T1⟩ ⊕…⊕ ⟨𝓛 ∘Ts⟩.
 Obtain Ti from a basis of ⟨𝓛 ∘Ti⟩ .

Learning from LB: A framework

 f = T1 + … + Ts .

 A (crude) approach to learn the terms.

 Compute a basis of ⟨𝓛 ∘ f⟩ from f.

 Decompose ⟨𝓛 ∘ f⟩ = ⟨𝓛 ∘T1⟩ ⊕…⊕ ⟨𝓛 ∘Ts⟩.
 Obtain Ti from a basis of ⟨𝓛 ∘Ti⟩ .

 What makes ⟨𝓛 ∘T1⟩, …, ⟨𝓛 ∘Ts⟩ special subspaces of

 ⟨𝓛 ∘ f⟩ ?
How?

Learning from LB: A framework

 f = T1 + … + Ts .

 Turns out in a typical l.b. proof 𝓛 can be expressed as 𝓛
= 𝓛2 ∘ 𝓛1 , where 𝓛1, 𝓛2 are sets of linear operators.

 For example, ∂k+1 = ∂ ∘ ∂k .

Learning from LB: A framework

 f = T1 + … + Ts .

 Turns out in a typical l.b. proof 𝓛 can be expressed as 𝓛
= 𝓛2 ∘ 𝓛1 , where 𝓛1, 𝓛2 are sets of linear operators.

 If T1, …, Ts are random, then we do expect

1. ⟨𝓛1 ∘ f⟩ = ⟨𝓛1 ∘T1⟩ ⊕…⊕ ⟨𝓛1 ∘Ts⟩
2. ⟨𝓛 ∘ f⟩ = ⟨𝓛 ∘T1⟩ ⊕…⊕ ⟨𝓛 ∘Ts⟩ 𝓛2

Learning from LB: A framework

 f = T1 + … + Ts .

 Turns out in a typical l.b. proof 𝓛 can be expressed as 𝓛
= 𝓛2 ∘ 𝓛1 , where 𝓛1, 𝓛2 are sets of linear operators.

 If T1, …, Ts are random, then we do expect

1. ⟨𝓛1 ∘ f⟩ = ⟨𝓛1 ∘T1⟩ ⊕…⊕ ⟨𝓛1 ∘Ts⟩
2. ⟨𝓛 ∘ f⟩ = ⟨𝓛 ∘T1⟩ ⊕…⊕ ⟨𝓛 ∘Ts⟩

 Let U := ⟨𝓛1∘f⟩, Ui := ⟨𝓛1∘Ti⟩, V := ⟨𝓛∘f⟩, Vi := ⟨𝓛∘Ti⟩.

𝓛2

Learning from LB: A framework

 f = T1 + … + Ts .

 Turns out in a typical l.b. proof 𝓛 can be expressed as 𝓛
= 𝓛2 ∘ 𝓛1 , where 𝓛1, 𝓛2 are sets of linear operators.

 If T1, …, Ts are random, then we do expect

1. U = U1 ⊕…⊕ Us

2. V = V1 ⊕…⊕ Vs

 Let U := ⟨𝓛1∘f⟩, Ui := ⟨𝓛1∘Ti⟩, V := ⟨𝓛∘f⟩, Vi := ⟨𝓛∘Ti⟩.

𝓛2

Learning from LB: A framework

 f = T1 + … + Ts .

 Turns out in a typical l.b. proof 𝓛 can be expressed as 𝓛
= 𝓛2 ∘ 𝓛1 , where 𝓛1, 𝓛2 are sets of linear operators.

 If T1, …, Ts are random, then we do expect

1. U = U1 ⊕…⊕ Us

2. V = V1 ⊕…⊕ Vs

 Observe, V = ⟨𝓛2 ∘ U⟩, Vi = ⟨𝓛2 ∘ Ui⟩.

𝓛2

Learning from LB: A framework

 f = T1 + … + Ts .

 Turns out in a typical l.b. proof 𝓛 can be expressed as 𝓛
= 𝓛2 ∘ 𝓛1 , where 𝓛1, 𝓛2 are sets of linear operators.

 If T1, …, Ts are random, then we do expect

1. U = U1 ⊕…⊕ Us

2. V = V1 ⊕…⊕ Vs

3. The above decomposition is the unique
decomposition of U and V into indecomposable

subspaces s.t. Vi = ⟨𝓛2 ∘ Ui⟩.

𝓛2

Learning from LB: A framework

 f = T1 + … + Ts .

 Turns out in a typical l.b. proof 𝓛 can be expressed as 𝓛
= 𝓛2 ∘ 𝓛1 , where 𝓛1, 𝓛2 are sets of linear operators.

 If T1, …, Ts are random, then we do expect

1. U = U1 ⊕…⊕ Us

2. V = V1 ⊕…⊕ Vs

3. The above decomposition is the unique
decomposition of U and V under the action of 𝓛2 .

𝓛2

Learning from LB: A framework

 f = T1 + … + Ts .

 A meta-algorithm to learn the terms.

 Compute bases of U = ⟨𝓛1 ∘ f⟩ and V = ⟨𝓛 ∘ f⟩.
 Decompose U and V under the action of 𝓛2 .

 Obtain Ti from a basis of Ui.

𝓛 = 𝓛2 ∘ 𝓛1

Learning from LB: A framework

 f = T1 + … + Ts .

 A meta-algorithm to learn the terms.

 Compute bases of U = ⟨𝓛1 ∘ f⟩ and V = ⟨𝓛 ∘ f⟩.
 Decompose U and V under the action of 𝓛2 .

 Obtain Ti from a basis of Ui.

 Learning the terms −> vector space decomposition

𝓛 = 𝓛2 ∘ 𝓛1

Learning from LB: A framework

 f = T1 + … + Ts .

 A meta-algorithm to learn the terms.

 Compute bases of U = ⟨𝓛1 ∘ f⟩ and V = ⟨𝓛 ∘ f⟩.
 Decompose U and V under the action of 𝓛2 .

 Obtain Ti from a basis of Ui.

 Although easy-to-state, one needs to overcome a few
technical challenges to make the meta-algorithm work.

𝓛 = 𝓛2 ∘ 𝓛1

Technical challenges

 f = T1 + … + Ts .

 Task 1 (Direct Sum). Show that U = U1 ⊕…⊕ Us and V
= V1 ⊕…⊕ Vs w.h.p. if T1, …, Ts are random.

Technical challenges

 f = T1 + … + Ts .

 Task 1 (Direct Sum). Show that U = U1 ⊕…⊕ Us and V
= V1 ⊕…⊕ Vs w.h.p. if T1, …, Ts are random.

 Task 2 (Uniqueness). Show that the above decomposition
of U and V under the action of 𝓛2 is unique.

Technical challenges

 f = T1 + … + Ts .

 Task 1 (Direct Sum). Show that U = U1 ⊕…⊕ Us and V
= V1 ⊕…⊕ Vs w.h.p. if T1, …, Ts are random.

 Task 2 (Uniqueness). Show that the above decomposition
of U and V under the action of 𝓛2 is unique.

 A C-circuit satisfying the direct sum and the uniqueness
criteria is called a non-degenerate C-circuit.

 Task 1 & 2 ≡ Show that a random C-circuit is non-
degenerate w.h.p.

Technical challenges

 f = T1 + … + Ts .

 Task 1 (Direct Sum). Show that U = U1 ⊕…⊕ Us and V
= V1 ⊕…⊕ Vs w.h.p. if T1, …, Ts are random.

 Task 2 (Uniqueness). Show that the above decomposition
of U and V under the action of 𝓛2 is unique.

 Task 3 (Vector space decomposition). Carry out the
decomposition of U and V under the action of 𝓛2 .

Technical challenges

 f = T1 + … + Ts .

 Task 1 (Direct Sum). Show that U = U1 ⊕…⊕ Us and V
= V1 ⊕…⊕ Vs w.h.p. if T1, …, Ts are random.

 Task 2 (Uniqueness). Show that the above decomposition
of U and V under the action of 𝓛2 is unique.

 Task 3 (Vector space decomposition). Carry out the
decomposition of U and V under the action of 𝓛2 .

 Task 4 (Terms from subspaces). Recover Ti from Ui .

Known results

Known results that implement the framework:

 Kayal & S. (2019). Proper learns ∑∧∑ ckts, tensors, and
homogeneous ∑∏∑ ckts in the non-degenerate case.

 Introduced the framework in a rudimentary form.

Proper learns random ∑∧∑ circuits for s ≤ ().

n + d/3
n

Known results

Known results that implement the framework:

 Kayal & S. (2019). Proper learns ∑∧∑ ckts, tensors, and
homogeneous ∑∏∑ ckts in the non-degenerate case.

 Garg, Kayal & S. (2020). Proper learns ∑∧∑∏[t] circuits
in the non-degenerate case.

 Laid down the framework completely.

The t = 2 case has a potential application in learning
mixtures of Gaussians.

Known results

Known results that implement the framework:

 Kayal & S. (2019). Proper learns ∑∧∑ ckts, tensors, and
homogeneous ∑∏∑ ckts in the non-degenerate case.

 Garg, Kayal & S. (2020). Proper learns ∑∧∑∏[t] circuits
in the non-degenerate case.

 Bhargava, Garg, Kayal & S. (2021). Proper learns
generalized ∑∏∑ circuits in the non-degenerate case.

 g1(𝓁11∙∙∙𝓁1d) + … + gs(𝓁s1∙∙∙𝓁sd); gi = mono., Det, IMM, etc.

Gives a reasonably general way to accomplish Task 1.

Elaboration on the technical challenges

 f = T1 + … + Ts .

 Task 1 (Direct Sum). Show that U = U1 ⊕…⊕ Us and V
= V1 ⊕…⊕ Vs w.h.p. if T1, …, Ts are random.

 As 𝓛1 and 𝓛2 are linear operators, this task essentially
boils down to showing that certain matrices (whose
entries are polynomials in the “coefficients” of the
terms) have the maximum possible rank.

 The “bad” coefficients lie in an algebraic variety. So,
random coefficients are “good”.

Elaboration on the technical challenges

 f = T1 + … + Ts .

 Task 1 (Direct Sum). Show that U = U1 ⊕…⊕ Us and V
= V1 ⊕…⊕ Vs w.h.p. if T1, …, Ts are random.

 For a ∑∧∑ circuit, it is fairly easy to show that ⟨∂k
 f⟩ = ⟨𝓁1

d-k⟩ ⊕…⊕ ⟨𝓁s
d-k⟩ for random 𝓁1, …, 𝓁s .

 Note. Although easy for ∑∧∑ and homogeneous ∑∏∑
circuits, this task is nontrivial for ∑∧∑∏[t] circuits and
generalized ∑∏∑ circuits.

Elaboration on the technical challenges

 f = T1 + … + Ts .

 Task 2 (Uniqueness). Show that the decomposition of U
and V under the action of 𝓛2 is unique.

 Need to understand all possible valid decompositions of
U and V under the action of 𝓛2 .

 This understanding is provided by the adjoint algebra.

The adjoint algebra

 Definition. Let 𝛗: U −> U and 𝛙: V −> V be linear
maps. The adjoint algebra associated with (U,V, 𝓛2) is

 adj(U,V, 𝓛2) := {(𝛗, 𝛙) : 𝛌∘𝛗 = 𝛙∘𝛌, ∀𝛌 ∈ 𝓛2} .

The adjoint algebra

 Definition. Let 𝛗: U −> U and 𝛙: V −> V be linear
maps. The adjoint algebra associated with (U,V, 𝓛2) is

 adj(U,V, 𝓛2) := {(𝛗, 𝛙) : 𝛌∘𝛗 = 𝛙∘𝛌, ∀𝛌 ∈ 𝓛2} .

 Obs. adj(U,V, 𝓛2) is a vector space over 𝔽.

 Obs. We can compute a basis of adj(U,V, 𝓛2) in
polynomial time from bases of U and V, and the
operators in 𝓛2, by solving a linear system.

The adjoint algebra

 Definition. Let 𝛗: U −> U and 𝛙: V −> V be linear
maps. The adjoint algebra associated with (U,V, 𝓛2) is

 adj(U,V, 𝓛2) := {(𝛗, 𝛙) : 𝛌∘𝛗 = 𝛙∘𝛌, ∀𝛌 ∈ 𝓛2} .

 Obs. If (𝛗, 𝛙) ∈ adj(U,V, 𝓛2) and 𝛗, 𝛙 are invertible, then
U = 𝛗(U1) ⊕…⊕ 𝛗(Us) and V = 𝛙(V1) ⊕…⊕ 𝛙(Vs),

and 𝛙(Vi) = ⟨𝓛2 ∘ 𝛗(Ui)⟩.

The adjoint algebra

 Definition. Let 𝛗: U −> U and 𝛙: V −> V be linear
maps. The adjoint algebra associated with (U,V, 𝓛2) is

 adj(U,V, 𝓛2) := {(𝛗, 𝛙) : 𝛌∘𝛗 = 𝛙∘𝛌, ∀𝛌 ∈ 𝓛2} .

 Obs. If (𝛗, 𝛙) ∈ adj(U,V, 𝓛2) and 𝛗, 𝛙 are invertible, then
U = 𝛗(U1) ⊕…⊕ 𝛗(Us) and V = 𝛙(V1) ⊕…⊕ 𝛙(Vs),

and 𝛙(Vi) = ⟨𝓛2 ∘ 𝛗(Ui)⟩.
 Proof~. Direct sum follows from the fact that 𝛗, 𝛙 are

invertible. For 𝛌 ∈ 𝓛2, 𝛌∘𝛗(Ui) = 𝛙∘𝛌(Ui) ⊆ 𝛙(Vi) .

Equality follows from V = ⟨𝓛2 ∘ U⟩.

The adjoint algebra

 Definition. Let 𝛗: U −> U and 𝛙: V −> V be linear
maps. The adjoint algebra associated with (U,V, 𝓛2) is

 adj(U,V, 𝓛2) := {(𝛗, 𝛙) : 𝛌∘𝛗 = 𝛙∘𝛌, ∀𝛌 ∈ 𝓛2} .

 Obs. If (𝛗, 𝛙) ∈ adj(U,V, 𝓛2) and 𝛗, 𝛙 are invertible, then
U = 𝛗(U1) ⊕…⊕ 𝛗(Us) and V = 𝛙(V1) ⊕…⊕ 𝛙(Vs),

and 𝛙(Vi) = ⟨𝓛2 ∘ 𝛗(Ui)⟩.

 Krull-Schmidt theorem. These are the only
decompositions of U and V under the action of 𝓛2 .

The adjoint algebra

 Definition. Let 𝛗: U −> U and 𝛙: V −> V be linear
maps. The adjoint algebra associated with (U,V, 𝓛2) is

 adj(U,V, 𝓛2) := {(𝛗, 𝛙) : 𝛌∘𝛗 = 𝛙∘𝛌, ∀𝛌 ∈ 𝓛2} .

 Obs. If (𝛗, 𝛙) ∈ adj(U,V, 𝓛2) and 𝛗, 𝛙 are invertible, then
U = 𝛗(U1) ⊕…⊕ 𝛗(Us) and V = 𝛙(V1) ⊕…⊕ 𝛙(Vs),

and 𝛙(Vi) = ⟨𝓛2 ∘ 𝛗(Ui)⟩.

 We need to understand adj(U,V, 𝓛2) to show uniqueness
of decomposition. When is the decomposition unique?

The adjoint algebra

 Definition. Let 𝛗: U −> U and 𝛙: V −> V be linear
maps. The adjoint algebra associated with (U,V, 𝓛2) is

 adj(U,V, 𝓛2) := {(𝛗, 𝛙) : 𝛌∘𝛗 = 𝛙∘𝛌, ∀𝛌 ∈ 𝓛2} .

 Let 𝛗i be the projection map from U to Ui, and 𝛙i the
projection map from V to Vi .

 Obs. (𝛗i, 𝛙i) ∈ adj(U,V, 𝓛2) for all i ∈ [s].

The adjoint algebra

 Definition. Let 𝛗: U −> U and 𝛙: V −> V be linear
maps. The adjoint algebra associated with (U,V, 𝓛2) is

 adj(U,V, 𝓛2) := {(𝛗, 𝛙) : 𝛌∘𝛗 = 𝛙∘𝛌, ∀𝛌 ∈ 𝓛2} .

 Let 𝛗i be the projection map from U to Ui, and 𝛙i the
projection map from V to Vi .

 Obs. (𝛗i, 𝛙i) ∈ adj(U,V, 𝓛2) for all i ∈ [s].

 Proof~. Let u = u1 + … + us for u ∈ U and ui ∈ Ui.
Then, 𝛌∘𝛗i(u) = 𝛌(ui) ∈ Vi .

 Also, 𝛙i∘𝛌(u) = 𝛙i∘𝛌(u1 + … + us) = 𝛌(ui) .

The adjoint algebra

 Definition. Let 𝛗: U −> U and 𝛙: V −> V be linear
maps. The adjoint algebra associated with (U,V, 𝓛2) is

 adj(U,V, 𝓛2) := {(𝛗, 𝛙) : 𝛌∘𝛗 = 𝛙∘𝛌, ∀𝛌 ∈ 𝓛2} .

 Let 𝛗i be the projection map from U to Ui, and 𝛙i the
projection map from V to Vi .

 Obs. (𝛗i, 𝛙i) ∈ adj(U,V, 𝓛2) for all i ∈ [s].

 The adjoint is trivial if it is generated as a vector space
over 𝔽 by (𝛗1, 𝛙1), …, (𝛗s, 𝛙s).

The adjoint algebra

 Definition. Let 𝛗: U −> U and 𝛙: V −> V be linear
maps. The adjoint algebra associated with (U,V, 𝓛2) is

 adj(U,V, 𝓛2) := {(𝛗, 𝛙) : 𝛌∘𝛗 = 𝛙∘𝛌, ∀𝛌 ∈ 𝓛2} .

 Let 𝛗i be the projection map from U to Ui, and 𝛙i the
projection map from V to Vi .

 Obs. (𝛗i, 𝛙i) ∈ adj(U,V, 𝓛2) for all i ∈ [s].

 Clm. If adj(U,V, 𝓛2) is trivial, then U = U1 ⊕…⊕ Us and
V = V1 ⊕…⊕ Vs is the unique decomposition of U and
V under the action of 𝓛2.

The adjoint algebra

 Clm. If adj(U,V, 𝓛2) is trivial, then U = U1 ⊕…⊕ Us and
V = V1 ⊕…⊕ Vs is the unique decomposition of U and
V under the action of 𝓛2.

 Proof~. Let U = 𝛗(U1) ⊕…⊕ 𝛗(Us) and V = 𝛙(V1) ⊕…⊕ 𝛙(Vs) be another decomposition for some (𝛗, 𝛙) ∈ adj(U,V, 𝓛2), where 𝛗, 𝛙 are invertible.

The adjoint algebra

 Clm. If adj(U,V, 𝓛2) is trivial, then U = U1 ⊕…⊕ Us and
V = V1 ⊕…⊕ Vs is the unique decomposition of U and
V under the action of 𝓛2.

 Proof~. Let U = 𝛗(U1) ⊕…⊕ 𝛗(Us) and V = 𝛙(V1) ⊕…⊕ 𝛙(Vs) be another decomposition for some (𝛗, 𝛙) ∈ adj(U,V, 𝓛2), where 𝛗, 𝛙 are invertible.

 As adj(U,V, 𝓛2) is trivial, 𝛗 = a1𝛗1 + … + as𝛗s and 𝛙 =
b1𝛙1 + … + bs𝛙s for some non-zero ai , bi ∈ 𝔽.

The adjoint algebra

 Clm. If adj(U,V, 𝓛2) is trivial, then U = U1 ⊕…⊕ Us and
V = V1 ⊕…⊕ Vs is the unique decomposition of U and
V under the action of 𝓛2.

 Proof~. Let U = 𝛗(U1) ⊕…⊕ 𝛗(Us) and V = 𝛙(V1) ⊕…⊕ 𝛙(Vs) be another decomposition for some (𝛗, 𝛙) ∈ adj(U,V, 𝓛2), where 𝛗, 𝛙 are invertible.

 As adj(U,V, 𝓛2) is trivial, 𝛗 = a1𝛗1 + … + as𝛗s and 𝛙 =
b1𝛙1 + … + bs𝛙s for some non-zero ai , bi ∈ 𝔽.

 Now observe that 𝛗(Ui) = Ui and 𝛙(Vi) = Vi .

Elaboration on the technical challenges

 f = T1 + … + Ts .

 Task 2 (Uniqueness). Show that the decomposition of U
and V under the action of 𝓛2 is unique.

 This task is accomplished in [GKS’20] and [BGKS’21] by
showing that the adjoint algebra adj(U,V, 𝓛2) is trivial if
T1, …, Ts are randomly chosen.

Elaboration on the technical challenges

 f = T1 + … + Ts .

 Task 3 (Vector space decomposition). Carry out the
decomposition of U and V under the action of 𝓛2 .

 Chistov, Ivanyos & Karpinski (1997); Eberly (1991);
Ronyai (1990); Friedl & Ronyai (1985): There are known
efficient vector space decomposition algorithms.

 Work over finite fields, ℂ and ℝ. Over ℚ, the output
decomposition is over an extension field.

Elaboration on the technical challenges

 f = T1 + … + Ts .

 Task 3 (Vector space decomposition). Carry out the
decomposition of U and V under the action of 𝓛2 .

 Turns out, if the adjoint is trivial, then the vector space
decomposition problem can be reduced to diagonalizing
a random element of the adj(U,V, 𝓛2).

 Vector space decomposition −> diagonalizing a matrix.

Elaboration on the technical challenges

 f = T1 + … + Ts .

 Task 3 (Vector space decomposition). Carry out the
decomposition of U and V under the action of 𝓛2 .

 Turns out, if the adjoint is trivial, then the vector space
decomposition problem can be reduced to diagonalizing
a random element of the adj(U,V, 𝓛2).

 The results in [KS’19], [GKS’20] and [BGKS’21] hold
over ℚ.

Elaboration on the technical challenges

 f = T1 + … + Ts .

 Task 4 (Terms from subspaces). Recover Ti from Ui .

 Mostly easy, if 𝓛 is the set of all partial derivatives.

 Example. For a ∑∧∑ circuit, Ui = ⟨𝓁i
d-k⟩. Obtain a 𝔽-

multiple of 𝓁i (say, 𝓁i’) from Ui using b.b. polynomial
factorization. Observe, f = z1 ∙ 𝓁’1d + … + zs ∙ 𝓁’sd for
unknown z1, …, zs. Set up a linear system in z1, …, zs as
before. Solve it and take d-th roots.

Elaboration on the technical challenges

 f = T1 + … + Ts .

 Task 4 (Terms from subspaces). Recover Ti from Ui .

 Mostly easy, if 𝓛 is the set of all partial derivatives.

 But not necessarily trivial, if 𝓛 is more complex (as is
the case in [GKS’20]).

Other average-case learning results

 Gupta, Kayal & Lokam (2011). Proper learns random
fanin-2 multilinear formulas.

 Gupta, Kayal & Qiao. (2013). Proper learns random
fanin-2 regular formulas.

 Kayal, Nair & S. (2019). Proper learns random ABPs of
low width.

Other average-case learning results

 Gupta, Kayal & Lokam (2011). Proper learns random
fanin-2 multilinear formulas.

 Gupta, Kayal & Qiao. (2013). Proper learns random
fanin-2 regular formulas.

 Kayal, Nair & S. (2019). Proper learns random ABPs of
low width.

 These algorithms are implicitly connected to the
corresponding lower bounds known for these models.

Learning other circuit models?

 Can we implement the learning from lower bound
framework for other circuit models?

Summary

 A survey of known results on polynomial equivalence
and average-case reconstruction.

 Polynomial equivalence problem

 Hessian based equivalence tests.

 Average-case learning

 A framework for designing learning algorithms from
lower bounds based on vector space decomposition.

Thanks!

