gct2022: School and Conference on Geometric Complexity Theory

Arithmetic circuit reconstruction: Part 2

Chandan Saha
Indian Institute of Science

Recap: The reconstruction problem

- Let $f(x)$ be a n-variate degree-d polynomial computed by a circuit of size s from a class C.
- Reconstruction problem for C. Given black-box access to f, output a small circuit computing f .

Black-box access to f
(membership query access to f)

Recap: The reconstruction problem

- Let $f(x)$ be a n-variate degree-d polynomial computed by a circuit of size s from a class C.
- Reconstruction problem for C. Given black-box access to f, output a small circuit computing f .
- Size of the output circuit. Ideally, poly(s).
- Proper learning. Output circuit belongs to C.
- Efficiency. Ideally, poly(d,s).

Recap: Part I summary

- Hardness of worst-case reconstruction.
- A survey of known results on worst-case reconstruction.
- Depth-2 circuit reconstruction.
- $\sum \wedge \sum$ circuit reconstruction
> Improper: ROABP reconstruction
$>$ Proper: Waring decomposition for $\sum \wedge \Sigma(\mathrm{k})$ circuits.

Recap: Part I summary

- Hardness of worst-case reconstruction.
- A survey of known results on worst-case reconstruction.
- Depth-2 circuit reconstruction.
- $\sum \wedge \sum$ circuit reconstruction
> Improper: ROABP reconstruction
$>$ Proper: Waring decomposition for $\sum \wedge \Sigma(\mathrm{k})$ circuits.
- This talk: We will discuss average-case reconstruction.
a.k.a. learning in the non-degenerate case

Recap: Depth-3 powering circuits

- A depth-3 powering circuit (a.k.a $\sum \wedge \sum$ circuit) computes a sum of powers of linear polynomials, i.e.,

$$
f=\ell_{1}^{d_{1}}+\ldots+\ell_{s}^{d_{s}}
$$

where ℓ_{i} has degree I.

- The reconstruction problem. Given black-box access to a $\sum \wedge \sum$ circuit computing f, output a small circuit for f.
- Proper learning seems hard in the worst-case as computing Waring rank is NP-hard [Shitov'I6].

Recap: Depth-3 powering circuits

- A depth-3 powering circuit (a.k.a $\sum \wedge \sum$ circuit) computes a sum of powers of linear polynomials, i.e.,

$$
f=\ell_{1}^{d_{1}}+\ldots+\ell_{s}^{d_{s}}
$$

where ℓ_{i} has degree I.

- The reconstruction problem. Given black-box access to a $\sum \wedge \sum$ circuit computing f, output a small circuit for f.
-What if the coefficients of $\ell_{1}, \ldots, \ell_{s}$ are chosen randomly?

Learning random $\sum \wedge \sum$ circuits

- A random $\sum \wedge \sum$ circuit computes

$$
\mathrm{f}=\ell_{1}^{\mathrm{d}_{1}}+\ldots+\ell_{\mathrm{s}}^{\mathrm{d}_{\mathrm{s}}},
$$

where the coefficients of $\ell_{1}, \ldots, \ell_{s}$ are chosen uniformly and independently at random from a sufficiently large finite subset of \mathbb{F}.

- The average-case learning problem. Given black-box access to a random $\sum \wedge \sum$ circuit computing f, output a small $\sum \wedge \sum$ circuit for f .

Learning random $\sum \wedge \sum$ circuits

- A random $\sum \wedge \sum$ circuit computes

$$
\mathrm{f}=\ell_{1}^{\mathrm{d}_{1}}+\ldots+e_{\mathrm{s}}^{\mathrm{d}_{\mathrm{s}}}
$$

where the coefficients of $\ell_{1}, \ldots, \ell_{s}$ are chosen uniformly and independently at random from a sufficiently large finite subset of \mathbb{F}.

- The average-case learning problem. Given black-box access to a random $\sum \wedge \sum$ circuit computing f, output a small $\sum \wedge \sum$ circuit for f .
- For simplicity, assume that $\ell_{1}, \ldots, \ell_{s}$ are linear forms and $d_{1}=\ldots=d_{s}=d$.

Learning random $\sum \wedge \sum$ circuits

- A random $\sum \wedge \sum$ circuit computes

$$
\mathrm{f}=\ell_{1}^{\mathrm{d}}+\ldots+\ell_{\mathrm{s}}^{\mathrm{d}}
$$

where the coefficients of $\ell_{1}, \ldots, \ell_{s}$ are chosen uniformly and independently at random from a sufficiently large finite subset of \mathbb{F}.

- The average-case learning problem. Given black-box access to a random $\sum \wedge \sum$ circuit computing f, output a small $\sum \wedge \sum$ circuit for f .
- What is the complexity of the above problem?

Learning random $\sum \wedge \sum$ circuits

- A random $\sum \wedge \sum$ circuit computes

$$
\mathrm{f}=\ell_{1}^{\mathrm{d}}+\ldots+\ell_{\mathrm{s}}^{\mathrm{d}}
$$

where the coefficients of $\ell_{1}, \ldots, \ell_{s}$ are chosen uniformly and independently at random from a sufficiently large finite subset of \mathbb{F}.

- An easier case. Suppose $s \leq n$. Then, $\ell_{1}, \ldots, \ell_{s}$ are \mathbb{F} linearly independent w.h.p.
- In other words, f is equivalent to the d-th power symmetric polynomial PSym in s variables w.h.p.

Learning random $\sum \wedge \sum$ circuits

- A random $\sum \wedge \sum$ circuit computes

$$
\mathrm{f}=\ell_{1}^{\mathrm{d}}+\ldots+\ell_{\mathrm{s}}^{\mathrm{d}}
$$

where the coefficients of $\ell_{1}, \ldots, \ell_{s}$ are chosen uniformly and independently at random from a sufficiently large finite subset of \mathbb{F}.

- An easier case. Suppose $s \leq n$. Then, $\ell_{1}, \ldots, \ell_{s}$ are \mathbb{F} linearly independent w.h.p.
- In other words, f is equivalent to the d-th power symmetric polynomial PSym in s variables w.h.p.

Let's take a detour into the polynomial equivalence problem...

The polynomial equivalence problem

Polynomial equivalence problem

- Orbit. The orbit of an n-variate polynomial g over \mathbb{F} is the set $\operatorname{orb}(g):=\{g(A x): A \in G L(n, \mathbb{F})\}$.
- Equivalent polynomials. Two n-variate polynomials $f, g \in$ $\mathbb{F}[x]$ are equivalent, denoted as $f \sim g$, if there's a $A \in$ $G L(n, \mathbb{F})$ s.t. $f=g(A x)$ (i.e., $f \in \operatorname{orb}(g))$.
- For example, $\mathrm{f}=\ell_{1}{ }^{\mathrm{d}}+\ldots+\ell_{\mathrm{n}}{ }^{\mathrm{d}}$, where $\ell_{1}, \ldots, \ell_{\mathrm{n}}$ are $\mathbb{F}-$ linearly independent, is equivalent to the power symmetric polynomial PSym ${ }_{n, \mathrm{~d}}=x_{1}{ }^{d}+\ldots+x_{n}{ }^{d}$.

Polynomial equivalence problem

- Orbit. The orbit of an n-variate polynomial g over \mathbb{F} is the set $\operatorname{orb}(g):=\{g(A x): A \in G L(n, \mathbb{F})\}$.
- Equivalent polynomials. Two n-variate polynomials $f, g \in$ $\mathbb{F}[x]$ are equivalent, denoted as $f \sim g$, if there's a $A \in$ $G L(n, \mathbb{F})$ s.t. $f=g(A x)$ (i.e., $f \in \operatorname{orb}(g))$.
- The equivalence problem. Given f and g as lists of coefficients, check if $f \sim g$. If equivalent, then find a certificate $A \in G L(n, \mathbb{F})$.
- Polynomial equivalence (PE) has been studied intensely.

PE: Known results

- Thierauf (1998); Saxena (2006): PE is in NP \cap coAM over \mathbb{F}_{q}. Hence, unlikely to be NP-complete.
- Not known to be decidable over \mathbb{Q}.
- Over arbitrary fields, the best known complexity is the same as that of polynomial solvability.

PE: Known results

- Thierauf (1998); Saxena (2006): PE is in NP \cap coAM over \mathbb{F}_{q}. Hence, unlikely to be NP-complete.
- Not known to be decidable over \mathbb{Q}.
- Over arbitrary fields, the best known complexity is the same as that of polynomial solvability.
- What if f and g belong to restricted classes/families of polynomials?

PE: Known results

- Minkowski (I885); Hasse (I92I); Serre (I973); Witt (I998); Wallenborn (2013): Quadratic form equivalence can be solved in randomized polynomial time over $\mathbb{F}_{\mathrm{q}}, \mathbb{C}$, \mathbb{R}, and over \mathbb{Q} (with access to Integer Factoring oracle).
- Uses well-known classification results for quadratic forms over $\mathbb{F}_{\mathrm{q}}, \mathbb{C}, \mathbb{R}$, and \mathbb{Q}.
- For e.g., a quadratic form over \mathbb{C} having n essential variables is equivalent to $x_{1}{ }^{2}+\ldots+x_{n}{ }^{2}$.

PE: Known results

- Minkowski (I885); Hasse (I92I); Serre (I973); Witt (I998); Wallenborn (2013): Quadratic form equivalence can be solved in randomized polynomial time over $\mathbb{F}_{\mathrm{q}}, \mathbb{C}$, \mathbb{R}, and over \mathbb{Q} (with access to Integer Factoring oracle).
- Agrawal \& Saxena (2005): Cubic form equivalence is graph isomorphism hard.
- Grochow \& Qiao (20|9): Tensor isomorphism, matrix space isometry \& conjugacy, algebra isomorphism and cubic form equivalence are poly-time equivalent.

PE: Known results

- Kayal (201I): Initiated the study of a natural variant of PE for well-known polynomial families.
- Let $G=\left\{g_{m}: m \in \mathbb{N}\right\}$ be a polynomial family, say Det .
- PE for G. Given b.b.a to f, check if $f \in \operatorname{orb}\left(g_{m}\right)$ for some $m \in \mathbb{N}$. If yes, then find a certificate $A \in G L(n, \mathbb{F})$.

PE: Known results

- Kayal (201I): Initiated the study of a natural variant of PE for well-known polynomial families.
- Let $G=\left\{g_{m}: m \in \mathbb{N}\right\}$ be a polynomial family, say Det .
- PE for G. Given b.b.a to f, check if $f \in \operatorname{orb}\left(g_{m}\right)$ for some $m \in \mathbb{N}$. If yes, then find a certificate $A \in G L(n, \mathbb{F})$.
-Why is this version of PE interesting?

PE: Known results

- Kayal (201I): Initiated the study of a natural variant of PE for well-known polynomial families.
- Let $G=\left\{g_{m}: m \in \mathbb{N}\right\}$ be a polynomial family, say Det .
- Affine projections. The set of affine projections of a nvariate g is aproj $(g):=\left\{g(A x+b): A \in \mathbb{F}^{n \times n}, b \in \mathbb{F}^{n}\right\}$.

PE: Known results

- Kayal (201I): Initiated the study of a natural variant of PE for well-known polynomial families.
- Let $G=\left\{g_{m}: m \in \mathbb{N}\right\}$ be a polynomial family, say Det .
- Affine projections. The set of affine projections of a nvariate g is aproj $(g):=\left\{g(A x+b): A \in \mathbb{F}^{n \times n}, b \in \mathbb{F}^{n}\right\}$.
- Affine projections of a "simple" G can be very powerful.
$>$ aproj(PSym) captures $\sum \wedge \Sigma$ circuits,
$>$ aproj(SumProd) captures $\Sigma \Pi \Sigma$ circuits, (SumProd has a depth-2 ROF)
$>$ aproj(ANF) captures formulas,
(ANF has a ROF)
$>$ aproj(Det) \& aproj(IMM) capture ABPs.

PE: Known results

- Kayal (201I): Initiated the study of a natural variant of PE for well-known polynomial families.
- Let $G=\left\{g_{m}: m \in \mathbb{N}\right\}$ be a polynomial family, say Det .
- Orbit closure. The orbit closure of g over \mathbb{F}, denoted as $\overline{\operatorname{Orb}(\mathrm{g})}$, is the Zariski closure of orb(g).
- Fact. $\operatorname{orb}(\mathrm{g}) \subseteq \operatorname{aproj}(\mathrm{g}) \subseteq \overline{\operatorname{orb}(\mathrm{g})} . \quad(\operatorname{char}(\mathbb{F})=0)$

PE: Known results

- Kayal (201I): Initiated the study of a natural variant of PE for well-known polynomial families.
- Let $G=\left\{g_{m}: m \in \mathbb{N}\right\}$ be a polynomial family, say Det .
- Orbit closure. The orbit closure of g over \mathbb{F}, denoted as $\overline{\operatorname{Orb}(\mathrm{g})}$, is the Zariski closure of orb(g).
- Fact. $\operatorname{orb}(\mathrm{g}) \subseteq \operatorname{aproj}(\mathrm{g}) \subseteq \overline{\operatorname{orb}(\mathrm{g})} . \quad(\operatorname{char}(\mathbb{F})=0)$
- Natural to study the learning problem for orbits of wellknown polynomial families.

PE: Known results

- Kayal (201I): Initiated the study of a natural variant of PE for well-known polynomial families.
- Let $G=\left\{g_{m}: m \in \mathbb{N}\right\}$ be a polynomial family, say Det .
- PE for G. Given b.b.a to f, check if $f \in \operatorname{orb}\left(g_{m}\right)$ for some $m \in \mathbb{N}$. If yes, then find a certificate $A \in G L(n, \mathbb{F})$.
- Kayal (20II, 20I2); Kayal, Nair, S., Tavenas (20I7); Garg, Gupta, Kayal, S. (2019); Murthy, Nair, S. (2020): Randomized poly-time PE are known for Det, Perm, IMM, tr-IMM, ESym, PSym, SumProduct etc.

PE for Power Symmetric Polynomials

- Let PSym $=x_{1}{ }^{d}+\ldots+x_{s}{ }^{d}$. Assume $d \geq 3, \operatorname{char}(\mathbb{F})=0$.
- Let $\mathrm{f}=\ell_{1}{ }^{\mathrm{d}}+\ldots+\ell_{\mathrm{s}}{ }^{\mathrm{d}}$, where $\ell_{1}, \ldots, \ell_{\mathrm{s}}$ are \mathbb{F}-I.i.
- Recall, a quadratic form over \mathbb{C} having n essential variables is equivalent to $x_{1}{ }^{2}+\ldots+x_{n}{ }^{2}$.

PE for Power Symmetric Polynomials

- Let PSym $=x_{1}{ }^{d}+\ldots+x_{s}{ }^{d}$. Assume $d \geq 3, \operatorname{char}(\mathbb{F})=0$.
- Let $\mathrm{f}=\ell_{1}{ }^{\mathrm{d}}+\ldots+\ell_{\mathrm{s}}{ }^{\mathrm{d}}$, where $\ell_{1}, \ldots, \ell_{\mathrm{s}}$ are \mathbb{F}-I.i.
- Given b.b.a. to f , can we recover $\ell_{1}, \ldots, \ell_{s}$? (up to dh roots of I)

PE for Power Symmetric Polynomials

- Let PSym $=x_{1}{ }^{d}+\ldots+x_{s}{ }^{d}$. Assume $d \geq 3, \operatorname{char}(\mathbb{F})=0$.
- Let $\mathrm{f}=\ell_{1}{ }^{\mathrm{d}}+\ldots+\ell_{\mathrm{s}}{ }^{\mathrm{d}}$, where $\ell_{1}, \ldots, \ell_{\mathrm{s}}$ are \mathbb{F}-I.i.
- Given b.b.a. to f , can we recover $\ell_{1}, \ldots, \ell_{s}$? (up to dh roots of I)
- Obs. The number of essential variables of f is s.
- Apply the Carlini-Kayal algorithm to remove redundant variables. So, we can assume w.l.o.g that $\mathrm{s}=\mathrm{n}$.

PE for Power Symmetric Polynomials

- Let PSym $=x_{1}{ }^{d}+\ldots+x_{n}{ }^{d}$. Assume $d \geq 3, \operatorname{char}(\mathbb{F})=0$.
- Input: Black-box access to $f \in$ orb(PSym).

Output: A matrix $A \in G L(n, \mathbb{F})$ s.t. $f=\operatorname{PSym}(A x)$.

- Algorithm: Uses the Hessian matrix associated with f.

The Hessian of a polynomial

- Let f be an n -variate polynomial and $\partial_{\mathrm{i}, \mathrm{f}} \mathrm{f}$ the derivative of f w.r.t. x_{i} and x_{j}.
- The Hessian of f . It is the matrix $\operatorname{Hes}_{\mathrm{f}}(\mathbf{x}):=\left(\partial_{\mathrm{i}, \mathrm{f}} \mathrm{f}\right)_{\mathrm{i}, \mathrm{j} \in[\mathrm{n}]}$.
- The Hessian matrix appears naturally in the Taylor expansion of a polynomial and has important applications in optimization, second derivative tests, etc.

The Hessian of a polynomial

- Let f be an n-variate polynomial and $\partial_{\mathrm{i}, \mathrm{f}} \mathrm{f}$ the derivative of f w.r.t. x_{i} and x_{j}.
- The Hessian of f . It is the matrix $\operatorname{Hes}_{\mathrm{f}}(\mathbf{x}):=\left(\partial_{\mathrm{i}, \mathrm{f}} \mathrm{f}\right)_{\mathrm{i}, \mathrm{j} \in[\mathrm{n}]}$.
- Obs. If $f=g(A x)$ for some $A \in \mathbb{F}^{n \times n}$, then

$$
\operatorname{Hes}_{f}(\mathbf{x})=A^{\top} \cdot \operatorname{Hes}_{g}(A \mathbf{x}) \cdot A .
$$

The Hessian of a polynomial

- Let f be an n-variate polynomial and $\partial_{\mathrm{i}, \mathrm{f}} \mathrm{f}$ the derivative of f w.r.t. x_{i} and x_{j}.
- The Hessian of f . It is the matrix $\operatorname{Hes}_{\mathrm{f}}(\mathbf{x}):=\left(\partial_{\mathrm{i}, \mathrm{f}} \mathrm{f}\right)_{\mathrm{i}, \mathrm{j} \in[\mathrm{n}]}$.
- Obs. If $f=g(A x)$ for some $A \in \mathbb{F}^{n \times n}$, then

$$
\operatorname{Hes}_{f}(\mathbf{x})=A^{\top} \cdot \operatorname{Hes}_{g}(A \mathbf{x}) \cdot A .
$$

- Proof~. Uses chain rule. Let $\nabla f:=\left(\partial_{1} f, \partial_{2} f, \ldots \partial_{n} f\right)^{\top}$.Then,

$$
\nabla f=A^{\top} \cdot[\nabla g](A x) .
$$

The Hessian of a polynomial

- Let f be an n-variate polynomial and $\partial_{\mathrm{i}, \mathrm{f}} \mathrm{f}$ the derivative of f w.r.t. x_{i} and x_{j}.
- The Hessian of f . It is the matrix $\operatorname{Hes}_{\mathrm{f}}(\mathbf{x}):=\left(\partial_{\mathrm{i}, \mathrm{f}} \mathrm{f}\right)_{\mathrm{i}, \mathrm{j} \in[\mathrm{n}]}$.
- Obs. If $f=g(A x)$ for some $A \in \mathbb{F}^{n \times n}$, then

$$
\operatorname{Hes}_{f}(\mathbf{x})=A^{\top} \cdot \operatorname{Hes}_{g}(A \mathbf{x}) \cdot A .
$$

- Cor. $\operatorname{det}\left(\mathrm{Hes}_{\mathrm{f}}\right)=\mathrm{c} \cdot \operatorname{det}\left(\mathrm{Hes}_{\mathrm{g}}\right)(\mathrm{Ax})$, where $\mathrm{c} \in \mathbb{F}$.

PE for Power Symmetric Polynomials

- Let PSym $=x_{1}{ }^{d}+\ldots+x_{n}{ }^{d}$. Assume $d \geq 3, \operatorname{char}(\mathbb{F})=0$.
- Input: Black-box access to $f \in$ orb(PSym).

Output: A matrix $A \in G L(n, \mathbb{F})$ s.t. $f=\operatorname{PSym}(A x)$.

- Algorithm: (high-level) $\operatorname{Hes}_{f}(\mathbf{x})=A^{\top} \cdot \operatorname{Hes}_{\text {PSym }}(A x) \cdot A$
$>$ Step I. Compute b.b.a to $\mathrm{H}:=\operatorname{det}\left(\mathrm{Hes}_{\mathrm{f}}\right)$.
Obs. B.b.a. to $\partial_{\mathrm{i}, \mathrm{f}}$ f can be computed efficiently from b.b.a. to f.

PE for Power Symmetric Polynomials

- Let PSym $=x_{1}{ }^{d}+\ldots+x_{n}{ }^{d}$. Assume $d \geq 3, \operatorname{char}(\mathbb{F})=0$.
- Input: Black-box access to $f \in$ orb(PSym).

Output: A matrix $A \in G L(n, \mathbb{F})$ s.t. $f=\operatorname{PSym}(A x)$.

- Algorithm: (high-level) $\operatorname{Hes}_{f}(\mathbf{x})=A^{\top} \cdot \operatorname{Hes}_{\text {PSym }}(A x) \cdot A$
$>$ Step I. Compute b.b.a to $\mathrm{H}:=\operatorname{det}\left(\mathrm{Hes}_{\mathrm{f}}\right)$.
$>$ Step 2. Compute b.b.a to the factors of H . (using b.b. polynomial factorization)

PE for Power Symmetric Polynomials

- Let PSym $=x_{1}{ }^{d}+\ldots+x_{n}{ }^{d}$. Assume $d \geq 3, \operatorname{char}(\mathbb{F})=0$.
- Input: Black-box access to $f \in$ orb(PSym).

Output: A matrix $A \in G L(n, \mathbb{F})$ s.t. $f=\operatorname{PSym}(A x)$.

- Algorithm: (high-level) $\operatorname{Hes}_{f}(\mathbf{x})=A^{\top} \cdot \operatorname{Hes}_{\text {PSym }}(A x) \cdot A$
$>$ Step I. Compute b.b.a to $\mathrm{H}:=\operatorname{det}\left(\mathrm{Hes}_{\mathrm{f}}\right)$.
$>$ Step 2. Compute b.b.a to the factors of H .
$>$ Step 3. Recover A from the linear factors of H .

PE for Power Symmetric Polynomials

- Let PSym $=x_{1}{ }^{d}+\ldots+x_{n}{ }^{d}$. Assume $d \geq 3, \operatorname{char}(\mathbb{F})=0$.
- Input: Black-box access to $f \in$ orb(PSym).

Output: A matrix $A \in G L(n, \mathbb{F})$ s.t. $f=\operatorname{PSym}(A x)$.

- Algorithm: (correctness) $\operatorname{Hes}_{f}(\mathbf{x})=A^{\top} \cdot \operatorname{Hes}_{\text {PSym }}(A x) \cdot A$
$>$ Step 3. Recover A from the linear factors of H .
Proof $\sim \operatorname{Hes}_{\text {PSym }}(\mathbf{x})=\operatorname{diag}\left(d^{\prime} x_{1}{ }^{d-2}, \ldots, d^{\prime} x_{n}^{d-2}\right)$, where $d^{\prime}=d(d-I)$.

PE for Power Symmetric Polynomials

- Let PSym $=x_{1}{ }^{d}+\ldots+x_{n}{ }^{d}$. Assume $d \geq 3, \operatorname{char}(\mathbb{F})=0$.
- Input: Black-box access to $f \in$ orb(PSym).

Output: A matrix $A \in G L(n, \mathbb{F})$ s.t. $f=\operatorname{PSym}(A x)$.

- Algorithm: (correctness) $\operatorname{Hes}_{f}(\mathbf{x})=A^{\top} \cdot \operatorname{Hes}_{\text {Sym }}(A x) \cdot A$
$>$ Step 3. Recover A from the linear factors of H .
Proof. $\operatorname{Hes}_{\text {Sym }}(\mathbf{x})=\operatorname{diag}\left(d^{\prime} x_{1}{ }^{d-2}, \ldots, d^{\prime} x_{n}{ }^{d-2}\right)$
$\operatorname{Hes}_{\text {Sym }}(A x)=\operatorname{diag}\left(d^{\prime} \ell_{1}{ }^{d-2}, \ldots, d^{\prime} \ell_{n}{ }^{d-2}\right)$, where $A \mathbf{x}=\left(\ell_{1}, \ldots, \ell_{n}\right)^{\top}$

PE for Power Symmetric Polynomials

- Let PSym $=x_{1}{ }^{d}+\ldots+x_{n}{ }^{d}$. Assume $d \geq 3, \operatorname{char}(\mathbb{F})=0$.
- Input: Black-box access to $f \in$ orb(PSym).

Output: A matrix $A \in G L(n, \mathbb{F})$ s.t. $f=\operatorname{PSym}(A x)$.

- Algorithm: (correctness) $\operatorname{Hes}_{f}(\mathbf{x})=A^{\top} \cdot \operatorname{Hes}_{\text {PSym }}(A x) \cdot A$
$>$ Step 3. Recover A from the linear factors of H .
Proof~. $\operatorname{Hes}_{\text {PSym }}(\mathbf{x})=\operatorname{diag}\left(d^{\prime} x_{1}{ }^{d-2}, \ldots, d^{\prime} x_{n}{ }^{d-2}\right)$

$$
\begin{aligned}
\operatorname{Hes}_{\text {PSym }}(A x) & =\operatorname{diag}\left(d^{\prime} \ell_{1}{ }^{d-2}, \ldots, d^{\prime} \ell_{n}^{d-2}\right) \\
H & =c \cdot \ell_{1}^{d-2} \cdot \ldots \cdot \ell_{n}^{d-2}, \quad c \in \mathbb{F} .
\end{aligned}
$$

PE for Power Symmetric Polynomials

- Let PSym $=x_{1}{ }^{d}+\ldots+x_{n}{ }^{d}$. Assume $d \geq 3, \operatorname{char}(\mathbb{F})=0$.
- Input: Black-box access to $f \in$ orb(PSym).

Output: A matrix $A \in G L(n, \mathbb{F})$ s.t. $f=\operatorname{PSym}(A x)$.

- Algorithm: (correctness) $\operatorname{Hes}_{f}(\mathbf{x})=A^{\top} \cdot \operatorname{Hes}_{\text {PSym }}(A x) \cdot A$
$>$ Step 3. Recover A from the linear factors of H .
Proof~. $\operatorname{Hes}_{\text {PSym }}(\mathbf{x})=\operatorname{diag}\left(d^{\prime} x_{1}{ }^{d-2}, \ldots, d^{\prime} x_{n}{ }^{d-2}\right)$

$$
\operatorname{Hes}_{\text {PSym }}(\mathrm{Ax})=\operatorname{diag}\left(\mathrm{d}^{\prime} \ell_{1}{ }^{\mathrm{d}-2}, \ldots, \mathrm{~d}^{\prime} \ell_{\mathrm{n}}{ }^{\mathrm{d}-2}\right)
$$

$$
\mathrm{H}=\mathrm{c} \cdot \underbrace{\ell_{1}^{\mathrm{d}-2} \ldots \ldots \cdot \ell_{n}^{d-2},}_{\text {Recover } \ell_{1}, \ldots, \ell_{n} \text { (up to } \mathbb{F} \text {-multiples) }} \mathrm{c} \in \mathbb{F} .
$$

PE for Power Symmetric Polynomials

- Let PSym $=x_{1}{ }^{d}+\ldots+x_{n}{ }^{d}$. Assume $d \geq 3, \operatorname{char}(\mathbb{F})=0$.
- Input: Black-box access to $f \in$ orb(PSym).

Output: A matrix $A \in G L(n, \mathbb{F})$ s.t. $f=\operatorname{PSym}(A x)$.

- Algorithm: (correctness) $\operatorname{Hes}_{f}(\mathbf{x})=\mathrm{A}^{\top} \cdot \operatorname{Hes}_{\mathrm{PSym}}(\mathrm{Ax}) \cdot \mathrm{A}$
$>$ Step 3. Recover A from the linear factors of H .
Proof~. $\operatorname{Hes}_{\text {PSym }}(\mathbf{x})=\operatorname{diag}\left(d^{\prime} x_{1}{ }^{d-2}, \ldots, d^{\prime} x_{n}{ }^{d-2}\right)$

$$
\operatorname{Hes}_{\text {PSym }}(\mathrm{Ax})=\operatorname{diag}\left(\mathrm{d}^{\prime} \ell_{1}{ }^{\mathrm{d}-2}, \ldots, \mathrm{~d}^{\prime} \ell_{\mathrm{n}}{ }^{\mathrm{d}-2}\right)
$$

PE for Power Symmetric Polynomials

- Let PSym $=x_{1}{ }^{d}+\ldots+x_{n}{ }^{d}$. Assume $d \geq 3, \operatorname{char}(\mathbb{F})=0$.
- Input: Black-box access to $f \in$ orb(PSym).

Output: A matrix $A \in G L(n, \mathbb{F})$ s.t. $f=\operatorname{PSym}(A x)$.

- Algorithm: (correctness)
$>$ Step 3. Recover A from the linear factors of H.
Proof~. Observe, $f=z_{1} \cdot \ell^{\prime}{ }_{1}{ }^{d}+\ldots+z_{n} \cdot \ell_{n}{ }^{d}$ for some unknown z_{1}, \ldots, z_{n}. Set up a linear system in z_{1}, \ldots, z_{n} by evaluating f and $\ell_{1}^{\prime}, \ldots, \ell_{n}^{\prime}$ at n random points. Solve for z_{1}, \ldots, z_{n} and take d-th roots.

PE for Sum-Product polynomials

- Let SumProd $=x_{1 \mid} x_{12} \cdots x_{1 d}+\ldots+x_{s \mid} x_{s 2} \cdots x_{s d}$.
- Observe, aproj(SumProd) captures $\sum \prod \sum$ circuits.
- A quadratic form over \mathbb{C} having n essential variables (where n is even) is equivalent to $x_{1} x_{2}+\ldots+x_{n-1} x_{n}$.

PE for Sum-Product polynomials

- Let SumProd $=x_{1 \mid} x_{12} \cdots x_{1 d}+\ldots+x_{s \mid} x_{s 2} \cdots x_{s d}$.
- Observe, aproj(SumProd) captures $\Sigma \Pi \Sigma$ circuits.
- Input: Black-box access to $f \in$ orb(SumProd).

Output: A matrix $A \in G L(n, F)$ s.t. $f=\operatorname{SumProd}(A x)$.

- Here, $\mathrm{n}=\mathrm{sd}$.

PE for Sum-Product polynomials

- Let SumProd $=x_{1 \mid} x_{12} \cdots x_{1 d}+\ldots+x_{s \mid} x_{s 2} \cdots x_{\text {sd }}$.
- Observe, aproj(SumProd) captures $\Sigma \Pi \Sigma$ circuits.
- Input: Black-box access to $f \in$ orb(SumProd).

Output: A matrix $A \in G L(n, \mathbb{F})$ s.t. $f=\operatorname{SumProd}(A x)$.

- Algorithm: (high-level) $\operatorname{Hes}_{f}(\mathbf{x})=A^{\top} \cdot \operatorname{Hes}_{\text {sumProd }}(A \mathbf{x}) \cdot A$
$>$ Step I. Compute b.b.a to $\mathrm{H}:=\operatorname{det}\left(\mathrm{Hes}_{\mathrm{f}}\right)$.
$>$ Step 2. Compute b.b.a to the factors of H .
$>$ Step 3. Recover A from the linear factors of H .

PE for Sum-Product polynomials

- Let SumProd $=x_{1 \mid} x_{12} \cdots x_{1 d}+\ldots+x_{s \mid} x_{s 2} \cdots x_{\text {sd }}$.
- Observe, aproj(SumProd) captures $\Sigma \Pi \Sigma$ circuits.
- Input: Black-box access to $f \in$ orb(SumProd).

Output: A matrix $A \in G L(n, \mathbb{F})$ s.t. $f=\operatorname{SumProd}(A x)$.

- Algorithm: (correctness) $\operatorname{Hes}_{f}(\mathbf{x})=A^{\top} \cdot \operatorname{Hes}_{\text {sumprod }}(A x) \cdot A$
$>$ Step 3. Recover A from the linear factors of H.
Proof~. $\operatorname{Hes}_{\text {SumProd }}(\mathbf{x})=\operatorname{blocdiag}\left(\operatorname{Hes}_{h_{1}}(\mathbf{x}), \ldots, \operatorname{Hes}_{h_{s}}(\mathbf{x})\right)$, where $h_{i}=x_{i 1} x_{i 2} \cdots x_{i d}$ is a monomial.

PE for Sum-Product polynomials

- Let SumProd $=x_{1 \mid} x_{12} \cdots x_{1 d}+\ldots+x_{s \mid} x_{s 2} \cdots x_{\text {sd }}$.
- Observe, aproj(SumProd) captures $\Sigma \Pi \Sigma$ circuits.
- Input: Black-box access to $f \in$ orb(SumProd).

Output: A matrix $A \in G L(n, F)$ s.t. $f=\operatorname{SumProd}(A x)$.

- Algorithm: (correctness) $\operatorname{Hes}_{f}(\mathbf{x})=A^{\top} \cdot \operatorname{Hes}_{\text {sumprod }}(A x) \cdot A$
$>$ Step 3. Recover A from the linear factors of H.
Proof~.
Clm. $\operatorname{det}\left(\operatorname{Hes}_{h_{i}}(\mathbf{x})\right)=(-I)^{d-1}(d-I) \cdot x_{i l}{ }^{d-2} \cdots x_{i d}{ }^{d-2}$.
Hessian determinant of a monomial is a monomial.

PE for Sum-Product polynomials

- Let SumProd $=x_{1 \mid} x_{12} \cdots x_{1 d}+\ldots+x_{s \mid} x_{s 2} \cdots x_{s d}$.
- Observe, aproj(SumProd) captures $\Sigma \Pi \Sigma$ circuits.
- Input: Black-box access to $f \in$ orb(SumProd).

Output: A matrix $A \in G L(n, \mathbb{F})$ s.t. $f=\operatorname{SumProd}(A x)$.

- Algorithm: (correctness) $\operatorname{Hes}_{f}(\mathbf{x})=A^{\top} \cdot \operatorname{Hes}_{\text {sumprod }}(A x) \cdot A$
$>$ Step 3. Recover A from the linear factors of H.
Proof~. Hence, $H=c \cdot \ell_{11}^{d-2} \cdot \ldots \cdot \ell_{s d}^{d-2}, c \in \mathbb{F}$, where $A x=\left(\ell_{11}, \ldots, \ell_{s d}\right)^{\top}$.

PE for Sum-Product polynomials

- Let SumProd $=x_{1 \mid} x_{12} \cdots x_{1 d}+\ldots+x_{s \mid} x_{s 2} \cdots x_{\text {sd }}$.
- Observe, aproj(SumProd) captures $\Sigma \Pi \Sigma$ circuits.
- Input: Black-box access to $f \in$ orb(SumProd).

Output: A matrix $A \in G L(n, F)$ s.t. $f=\operatorname{SumProd}(A x)$.

- Algorithm: (correctness) $\operatorname{Hes}_{f}(\mathbf{x})=A^{\top} \cdot \operatorname{Hes}_{\text {sumprod }}(A x) \cdot A$ $>$ Step 3. Recover A from the linear factors of H.
Proof~. Hence, $\mathrm{H}=\mathrm{c} \cdot \ell_{1 \mid}{ }^{\mathrm{d}-2} \cdot \ldots \cdot \ell_{\mathrm{sd}}{ }^{\mathrm{d}-2}, \mathrm{c} \in \mathbb{F}$, where $A \mathbf{x}=\left(\ell_{11}, \ldots, \ell_{s d}\right)^{\top}$. The rest of the argument is similar to PE for PSym.

PE for Read-once formulas

- Let SumProd $=x_{11} x_{12} \cdots x_{1 d}+\ldots+x_{s \mid} x_{s 2} \cdots x_{s d}$.
- Observe, SumProd is a ROF. Recall, affine projections of ROFs capture formulas.
- Can PE for ROFs be solved efficiently?

PE for Read-once formulas

- Let SumProd $=x_{11} x_{12} \cdots x_{1 d}+\ldots+x_{s \mid} x_{s 2} \cdots x_{s d}$.
- Observe, SumProd is a ROF. Recall, affine projections of ROFs capture formulas.
- Can PE for ROFs be solved efficiently?
- Gupta, S., Thankey (ongoing). Given b.b.a. to f, g in the orbits of ROFs*, the problem of checking if $f \sim g$ and finding a witness A can be solved in randomized poly-time.
- Analyzes the Hessian of a general ROF.
*mild conditions apply

PE for Read-once formulas

- Let SumProd $=x_{11} x_{12} \cdots x_{1 d}+\ldots+x_{s \mid} x_{s 2} \cdots x_{s d}$.
- Observe, SumProd is a ROF. Recall, affine projections of ROFs capture formulas.
- Can PE for ROFs be solved efficiently?
- Gupta, S., Thankey (ongoing). Given b.b.a. to f, g in the orbits of ROFs*, the problem of checking if $f \sim g$ and finding a witness A can be solved in randomized poly-time.
- A generalization of quadratic form equivalence:

A quadratic form over \mathbb{C} is equivalent to $x_{1} x_{2}+\ldots+x_{n-1} x_{n}(n$ even).

PE for PSym w/o poly factoring

- Koiran \& Saha (202I); Koiran \& Skomra (2020). Solves the decision version of PE for PSym over \mathbb{C} in randomized poly-time without appealing to polynomial factorization.
- Involves only arithmetic operations and equality tests.
- If f has rational coefficients, then the algorithm requires polynomial number of bit operations.

Back to learning random $\sum \wedge \sum$ circuits

- A random $\sum \wedge \sum$ circuit computes

$$
\mathrm{f}=\ell_{1}^{\mathrm{d}}+\ldots+\ell_{\mathrm{s}}^{\mathrm{d}}
$$

where the coefficients of $\ell_{1}, \ldots, \ell_{s}$ are chosen uniformly and independently at random from a sufficiently large subset of \mathbb{F}.

- The average-case learning problem. Given black-box access to a random $\sum \wedge \sum$ circuit computing f, output a small $\sum \wedge \sum$ circuit for f .
- Can we handle s > n? Does Hessian help?

Back to learning random $\sum \wedge \sum$ circuits

- Garcia-Marco, Koiran, Pecatte (2018). Random $\sum \wedge \sum$ circuits can be reconstructed in randomized poly-time provided $s \approx n^{2} / 2$ and $d \geq 5$.
- Uses 4-th order Hessian and shows that the determinant is nonzero (w.h.p) and factorizes into linear factors.

Back to learning random $\sum \wedge \sum$ circuits

- Garcia-Marco, Koiran, Pecatte (20|8). Random $\Sigma \wedge \Sigma$ circuits can be reconstructed in randomized poly-time provided $\mathrm{s} \approx \mathrm{n}^{2} / 2$ and $\mathrm{d} \geq 5$.
- Uses 4-th order Hessian and shows that the determinant is nonzero (w.h.p) and factorizes into linear factors.
- Unclear if the strategy scales to higher s. More importantly, it is not clear how effective Hessian is in learning other - more powerful - models.
- It seems we need a different strategy...

Learning from lower bounds: A paradigm

Learning from lower bounds?

- Fortnow \& Klivans (2009): A randomized poly-time reconstruction algorithm for C implies super-polynomial lower bound for C. (Learning $->$ lower bound)
- Does lower bound imply worst-case reconstruction? Unlikely. Reconstruction appears to be inherently hard.

Learning from lower bounds?

- Fortnow \& Klivans (2009): A randomized poly-time reconstruction algorithm for C implies super-polynomial lower bound for C. (Learning $\rightarrow>$ lower bound)
- Does lower bound imply worst-case reconstruction? Unlikely. Reconstruction appears to be inherently hard.
- Does lower bound imply average-case reconstruction?

A typical lower bound proof

- Suppose that a circuit from C computes a polynomial

$$
f=T_{1}+\ldots+T_{s},
$$

where each term T_{i} is "simple" is some sense.

- For example, T_{i} is a power of a linear polynomial for $\sum \wedge \sum$ circuits.

A typical lower bound proof

- Suppose that a circuit from C computes a polynomial

$$
f=T_{1}+\ldots+T_{s},
$$

where each term T_{i} is "simple" is some sense.

- A typical lower bound proof for C proceeds by defining a complexity measure (map) $\mu: \mathbb{F}[x]->\mathbb{N}$ s.t.
$>\mu(\mathrm{f}+\mathrm{g}) \leq \mu(\mathrm{f})+\mu(\mathrm{g}) \quad$ (subadditivity)
$>\mu\left(T_{i}\right) \leq L$, where L is a "small" quantity,
$>\mu(f) \geq H$, where H is a "large" quantity.

A typical lower bound proof

- Suppose that a circuit from C computes a polynomial

$$
f=T_{1}+\ldots+T_{s},
$$

where each term T_{i} is "simple" is some sense.

- A typical lower bound proof for C proceeds by defining a complexity measure (map) $\mu: \mathbb{F}[x]->\mathbb{N}$ s.t.
$>\mu(\mathrm{f}+\mathrm{g}) \leq \mu(\mathrm{f})+\mu(\mathrm{g}) \quad$ (subadditivity)
$>\mu\left(T_{i}\right) \leq L$, where L is a "small" quantity,
$>\mu(\mathrm{f}) \geq \mathrm{H}$, where H is a "large" quantity.
- Any C-circuit computing f must have $s \geq \mathrm{H} / \mathrm{L}$ terms.

A typical lower bound proof

- Suppose that a circuit from C computes a polynomial

$$
f=T_{1}+\ldots+T_{s},
$$

where each term T_{i} is "simple" is some sense.
Typically, $\mu(f)$ is the dimension of a vector space U associated with f.

- A typical lower bound proof for C proceeds by defining a complexity measure (map) $\mu: \mathbb{F}[x] \rightarrow \mathbb{N}$ s.t.
$>\mu(\mathrm{f}+\mathrm{g}) \leq \mu(\mathrm{f})+\mu(\mathrm{g}) \quad$ (subadditivity)
$>\mu\left(T_{i}\right) \leq L$, where L is a "small" quantity,
$>\mu(\mathrm{f}) \geq \mathrm{H}$, where H is a "large" quantity.
- Any C-circuit computing f must have $s \geq \mathrm{H} / \mathrm{L}$ terms.

Lower bound for $\sum \wedge \sum$ circuits

- A $\sum \wedge \sum$ circuit computes

$$
f=\ell_{1}^{d}+\ldots+\ell_{s}^{d},
$$

where a term $T_{i}=\ell_{i}{ }^{d}$.

- Let $\partial^{k} f$ be the set of k-th order partials of $f, U:=\left\langle\partial^{k} f\right\rangle$ and $U_{i}:=\left\langle\partial^{k} T_{i}\right\rangle$. Define $\mu(f):=\operatorname{dim} U, \mu\left(T_{i}\right):=\operatorname{dim} U_{i}$.

Lower bound for $\sum \wedge \sum$ circuits

- A $\sum \wedge \sum$ circuit computes

$$
f=\ell_{1}^{d}+\ldots+\ell_{s}^{d},
$$

where a term $T_{i}=\ell_{i}{ }^{d}$.

- Let $\partial^{k} \mathrm{f}$ be the set of k -th order partials of $\mathrm{f}, \mathrm{U}:=\left\langle\partial^{\mathrm{k}} \mathrm{f}\right\rangle$ and $U_{i}:=\left\langle\partial^{k} T_{i}\right\rangle$. Define $\mu(f):=\operatorname{dim} U, \mu\left(T_{i}\right):=\operatorname{dim} U_{i}$.
- As ∂^{k} is a set of linear operators on $\mathbb{F}[x]$,

$$
\begin{aligned}
U & \subseteq U_{1}+\ldots+U_{s}, & & \text { and so, } \\
\mu(f) & \leq \mu\left(T_{1}\right)+\ldots+\mu\left(T_{s}\right) & & \text { (subadditivity). }
\end{aligned}
$$

Lower bound for $\sum \wedge \sum$ circuits

- A $\sum \wedge \Sigma$ circuit computes

$$
f=\ell_{1}{ }^{d}+\ldots+\ell_{s}^{d}
$$

where a term $T_{i}=\ell_{i}{ }^{d}$.

- Let $\partial^{k} f$ be the set of k-th order partials of $f, U:=\left\langle\partial^{k} f\right\rangle$ and $U_{i}:=\left\langle\partial^{k} T_{i}\right\rangle$. Define $\mu(f):=\operatorname{dim} U, \mu\left(T_{i}\right):=\operatorname{dim} U_{i}$.
- Obs. $\mu\left(T_{i}\right)=I$ whereas $\mu\left(x_{1} x_{2} \cdots x_{n}\right)=\binom{n}{k}$.
- Choose $k=n / 2$. This gives a $s=\tilde{\Omega}\left(2^{n}\right)$ lower bound for $\sum \wedge \sum$ circuits computing $x_{1} x_{2} \cdots x_{n}$.

A typical lower bound proof

- A C-circuit computes a polynomial

$$
f=T_{1}+\ldots+T_{s},
$$

where each term T_{i} is "simple" is some sense.

- A typical lower bound proof for C involves a set of linear operators \mathcal{L} on $\mathbb{F}[x]$ s.t. $\operatorname{dim}\left\langle\mathcal{L} \circ T_{i}\right\rangle$ is "small".
- In the lower bound proof for $\sum \wedge \sum$ circuits, $\mathcal{L}=\partial^{k}$.

A typical lower bound proof

- A C-circuit computes a polynomial

$$
f=T_{1}+\ldots+T_{s},
$$

where each term T_{i} is "simple" is some sense.

- As \mathcal{L} is linear, $\langle\mathcal{L} \circ f\rangle \subseteq\left\langle\mathcal{L} \circ \mathrm{T}_{1}\right\rangle+\ldots+\left\langle\mathcal{L} \circ \mathrm{T}_{\mathrm{s}}\right\rangle$.

Learning from LB: A framework

- A C-circuit computes a polynomial

$$
f=T_{1}+\ldots+T_{s},
$$

where each term T_{i} is "simple" is some sense.

- As \mathcal{L} is linear, $\langle\mathcal{L} \circ f\rangle \subseteq\left\langle\mathcal{L} \circ T_{1}\right\rangle+\ldots+\left\langle\mathcal{L} \circ T_{s}\right\rangle$.
- If T_{1}, \ldots, T_{s} are random, we do expect (as $\operatorname{dim}\left\langle\mathcal{L} \circ T_{i}\right\rangle$ is "small")

$$
\begin{aligned}
& \text { 1. }\left\langle\mathcal{L} \circ \mathrm{T}_{1}\right\rangle+\ldots+\left\langle\mathcal{L} \circ \mathrm{T}_{\mathrm{s}}\right\rangle=\left\langle\mathcal{L} \circ \mathrm{T}_{1}\right\rangle \oplus \ldots \oplus\left\langle\mathcal{L} \circ \mathrm{T}_{\mathrm{s}}\right\rangle \\
& \text { 2. }\langle\mathcal{L} \circ \mathrm{f}\rangle=\left\langle\mathcal{L} \circ \mathrm{T}_{1}\right\rangle+\ldots+\left\langle\mathcal{L} \circ \mathrm{T}_{\mathrm{s}}\right\rangle \text {, implying } \\
& \langle\mathcal{L} \circ f\rangle=\left\langle\mathcal{L} \circ \mathrm{T}_{1}\right\rangle \oplus \ldots \oplus\left\langle\mathcal{L} \circ \mathrm{T}_{\mathrm{s}}\right\rangle
\end{aligned}
$$

Learning from LB: A framework

$$
f=T_{1}+\ldots+T_{s} .
$$

- A (crude) approach to learn the terms.
$>$ Compute a basis of $\langle\mathcal{L} \circ f\rangle$ from f.
$>$ Decompose $\langle\mathcal{L} \circ f\rangle=\left\langle\mathcal{L} \circ \mathrm{T}_{1}\right\rangle \oplus \ldots \oplus\left\langle\mathcal{L} \circ \mathrm{T}_{\mathrm{s}}\right\rangle$.
$>$ Obtain T_{i} from a basis of $\left\langle\mathcal{L} \circ T_{i}\right\rangle$.

Learning from LB: A framework

$$
f=T_{1}+\ldots+T_{s} .
$$

- A (crude) approach to learn the terms.
$>$ Compute a basis of $\langle\mathcal{L} \circ f\rangle$ from f.
$>$ Decompose $\langle\mathcal{L} \circ \mathrm{f}\rangle=\left\langle\mathcal{L} \circ \mathrm{T}_{\mathrm{l}}\right\rangle \oplus \ldots \oplus\left\langle\mathcal{L} \circ \mathrm{T}_{\mathrm{s}}\right\rangle$.
\Rightarrow Obtain T_{i} from a basis of $\left\langle\mathcal{L} \circ \mathrm{T}_{\mathrm{i}}\right\rangle$.
- What makes $\left\langle\mathcal{L} \circ \mathrm{T}_{1}\right\rangle, \ldots,\left\langle\mathcal{L} \circ \mathrm{T}_{s}\right\rangle$ special subspaces of $\langle\mathcal{L} \circ f\rangle$?

Learning from LB: A framework

$$
f=T_{1}+\ldots+T_{s}
$$

- Turns out in a typical l.b. proof \mathcal{L} can be expressed as \mathcal{L} $=\mathcal{L}_{2} \circ \mathcal{L}_{1}$, where $\mathcal{L}_{1}, \mathcal{L}_{2}$ are sets of linear operators.
- For example, $\partial^{k+1}=\partial \circ \partial^{k}$.

Learning from LB: A framework

$$
f=T_{1}+\ldots+T_{s} .
$$

- Turns out in a typical lib. proof \mathcal{L} can be expressed as \mathcal{L} $=\mathcal{L}_{2} \circ \mathcal{L}_{1}$, where $\mathcal{L}_{1}, \mathcal{L}_{2}$ are sets of linear operators.
- If T_{1}, \ldots, T_{s} are random, then we do expect

$$
\begin{aligned}
& \text { 1. }\left\langle\mathcal{L}_{1} \circ \mathrm{f}\right\rangle=\left\langle\mathcal{L}_{1} \circ \mathrm{~T}_{1}\right\rangle \oplus \ldots \oplus\left\langle\mathcal{L}_{1} \circ \mathrm{~T}_{s}\right\rangle \\
& \text { 2. } \quad\langle\mathcal{L} \circ \mathrm{f}\rangle=\left\langle\mathcal{L} \circ \mathrm{T}_{1}\right\rangle \oplus \ldots \oplus\left\langle\mathcal{L} \circ \mathrm{T}_{\mathrm{s}}\right\rangle
\end{aligned}
$$

Learning from LB: A framework

$$
f=T_{1}+\ldots+T_{s}
$$

- Turns out in a typical l.b. proof \mathcal{L} can be expressed as \mathcal{L} $=\mathcal{L}_{2} \circ \mathcal{L}_{1}$, where $\mathcal{L}_{1}, \mathcal{L}_{2}$ are sets of linear operators.
- If T_{1}, \ldots, T_{s} are random, then we do expect

$$
\begin{aligned}
& \text { 1. }\left\langle\mathcal{L}_{1} \circ \mathrm{f}\right\rangle=\left\langle\mathcal{L}_{1} \circ \mathrm{~T}_{1}\right\rangle \oplus \ldots \oplus\left\langle\mathcal{L}_{1} \circ \mathrm{~T}_{\mathrm{s}}\right\rangle \\
& \text { 2. }\langle\mathcal{L} \circ \mathrm{f}\rangle=\left\langle\mathcal{L} \circ \mathrm{T}_{1}\right\rangle \oplus \ldots \oplus\left\langle\mathcal{L} \circ \mathrm{T}_{\mathrm{s}}\right\rangle
\end{aligned}
$$

- Let $U:=\langle\mathcal{L}, \circ f\rangle, U_{i}:=\left\langle\mathcal{L}_{1} \circ T_{i}\right\rangle, V:=\langle\mathcal{L} \circ f\rangle, V_{i}:=\left\langle\mathcal{L} \circ T_{i}\right\rangle$.

Learning from LB: A framework

$$
f=T_{1}+\ldots+T_{s}
$$

- Turns out in a typical l.b. proof \mathcal{L} can be expressed as \mathcal{L} $=\mathcal{L}_{2} \circ \mathcal{L}_{1}$, where $\mathcal{L}_{1}, \mathcal{L}_{2}$ are sets of linear operators.
- If T_{1}, \ldots, T_{s} are random, then we do expect

$$
\begin{array}{ll}
\text { 1. } & U=U_{1} \oplus \ldots \oplus U_{s} \\
\text { 2. } & V=\mathrm{V}_{1} \oplus \ldots \oplus \mathrm{~V}_{\mathrm{s}}
\end{array}
$$

- Let $U:=\langle\mathcal{L}, \circ f\rangle, U_{i}:=\left\langle\mathcal{L}, \circ T_{i}\right\rangle, V:=\langle\mathcal{L} \circ f\rangle, V_{i}:=\left\langle\mathcal{L} \circ T_{i}\right\rangle$.

Learning from LB: A framework

$$
f=T_{1}+\ldots+T_{s}
$$

- Turns out in a typical l.b. proof \mathcal{L} can be expressed as \mathcal{L} $=\mathcal{L}_{2} \circ \mathcal{L}_{1}$, where $\mathcal{L}_{1}, \mathcal{L}_{2}$ are sets of linear operators.
- If T_{1}, \ldots, T_{s} are random, then we do expect

$$
\begin{array}{ll}
\text { 1. } & U=U_{1} \oplus \ldots \oplus U_{s} \\
\text { 2. } & V=\mathrm{V}_{1} \oplus \ldots \oplus \mathrm{~V}_{\mathrm{s}}
\end{array}
$$

- Observe, $V=\left\langle\mathcal{L}_{2} \circ U\right\rangle, V_{i}=\left\langle\mathcal{L}_{2} \circ U_{i}\right\rangle$.

Learning from LB: A framework

$$
f=T_{1}+\ldots+T_{s}
$$

- Turns out in a typical l.b. proof \mathcal{L} can be expressed as \mathcal{L} $=\mathcal{L}_{2} \circ \mathcal{L}_{1}$, where $\mathcal{L}_{1}, \mathcal{L}_{2}$ are sets of linear operators.
- If T_{1}, \ldots, T_{s} are random, then we do expect

1. $\begin{array}{ll}\text { 2. } & \mathrm{V}=\mathrm{V}_{1} \oplus \ldots \oplus \mathrm{~V}_{1} \oplus \ldots \oplus \mathrm{~V}_{\mathrm{s}}\end{array}>\mathcal{L}_{2}$
2. The above decomposition is the unique decomposition of U and V into indecomposable subspaces s.t. $V_{i}=\left\langle\mathcal{L}_{2} \circ U_{i}\right\rangle$.

Learning from LB: A framework

$$
f=T_{1}+\ldots+T_{s}
$$

- Turns out in a typical l.b. proof \mathcal{L} can be expressed as \mathcal{L} $=\mathcal{L}_{2} \circ \mathcal{L}_{1}$, where $\mathcal{L}_{1}, \mathcal{L}_{2}$ are sets of linear operators.
- If T_{1}, \ldots, T_{s} are random, then we do expect

1. $\begin{aligned} & \mathrm{U}=\mathrm{U}_{1} \oplus \ldots \oplus \mathrm{U}_{\mathrm{s}} \\ & \text { 2. } \mathrm{V}=\mathrm{V}_{1} \oplus \ldots \oplus \mathrm{~V}_{\mathrm{s}}\end{aligned}$
2. The above decomposition is the unique decomposition of U and V under the action of \mathcal{L}_{2}.

Learning from LB: A framework

$$
f=T_{1}+\ldots+T_{s} .
$$

- A meta-algorithm to learn the terms. $\quad \mathcal{L}=\mathcal{L}_{2} \circ \mathcal{L}_{1}$
$>$ Compute bases of $U=\left\langle\mathcal{L}_{1} \circ f\right\rangle$ and $V=\langle\mathcal{L} \circ f\rangle$.
$>$ Decompose U and V under the action of \mathcal{L}_{2}.
\Rightarrow Obtain T_{i} from a basis of U_{i}.

Learning from LB: A framework

$$
f=T_{1}+\ldots+T_{s} .
$$

- A meta-algorithm to learn the terms. $\quad \mathcal{L}=\mathcal{L}_{2} \circ \mathcal{L}_{1}$
$>$ Compute bases of $U=\left\langle\mathcal{L}_{1} \circ f\right\rangle$ and $V=\langle\mathcal{L} \circ f\rangle$.
$>$ Decompose U and V under the action of \mathcal{L}_{2}.
$>$ Obtain T_{i} from a basis of U_{i}.
- Learning the terms -> vector space decomposition

Learning from LB: A framework

$$
f=T_{1}+\ldots+T_{s} .
$$

- A meta-algorithm to learn the terms. $\quad \mathcal{L}=\mathcal{L}_{2} \circ \mathcal{L}_{1}$
$>$ Compute bases of $U=\left\langle\mathcal{L}_{1} \circ f\right\rangle$ and $V=\langle\mathcal{L} \circ f\rangle$.
$>$ Decompose U and V under the action of \mathcal{L}_{2}.
$>$ Obtain T_{i} from a basis of U_{i}.
- Although easy-to-state, one needs to overcome a few technical challenges to make the meta-algorithm work.

Technical challenges

$$
f=T_{1}+\ldots+T_{s} .
$$

- Task I (Direct Sum). Show that $\mathrm{U}=\mathrm{U}_{1} \oplus \ldots \oplus \mathrm{U}_{\mathrm{s}}$ and V $=\mathrm{V}_{\mathrm{l}} \oplus \ldots \oplus \mathrm{V}_{\mathrm{s}}$ w.h.p. if $\mathrm{T}_{\mathrm{l}}, \ldots, \mathrm{T}_{\mathrm{s}}$ are random.

Technical challenges

$$
f=T_{1}+\ldots+T_{s}
$$

- Task I (Direct Sum). Show that $U=U_{1} \oplus \ldots \oplus U_{s}$ and V $=\mathrm{V}_{\mathrm{l}} \oplus \ldots \oplus \mathrm{V}_{\mathrm{s}}$ w.h.p. if $\mathrm{T}_{\mathrm{l}}, \ldots, \mathrm{T}_{\mathrm{s}}$ are random.
- Task 2 (Uniqueness). Show that the above decomposition of U and V under the action of \mathcal{L}_{2} is unique.

Technical challenges

$$
f=T_{1}+\ldots+T_{s} .
$$

- Task I (Direct Sum). Show that $U=U_{1} \oplus \ldots \oplus \mathrm{U}_{\mathrm{s}}$ and V $=\mathrm{V}_{\mathrm{l}} \oplus \ldots \oplus \mathrm{V}_{\mathrm{s}}$ w.h.p. if $\mathrm{T}_{\mathrm{l}}, \ldots, \mathrm{T}_{\mathrm{s}}$ are random.
- Task 2 (Uniqueness). Show that the above decomposition of U and V under the action of \mathcal{L}_{2} is unique.
- A C-circuit satisfying the direct sum and the uniqueness criteria is called a non-degenerate C-circuit.
- Task I \& 2 Show that a random C-circuit is nondegenerate w.h.p.

Technical challenges

$$
f=T_{1}+\ldots+T_{s} .
$$

- Task I (Direct Sum). Show that $U=U_{1} \oplus \ldots \oplus \mathrm{U}_{\mathrm{s}}$ and V $=\mathrm{V}_{\mathrm{l}} \oplus \ldots \oplus \mathrm{V}_{\mathrm{s}}$ w.h.p. if $\mathrm{T}_{1}, \ldots, \mathrm{~T}_{\mathrm{s}}$ are random.
- Task 2 (Uniqueness). Show that the above decomposition of U and V under the action of \mathcal{L}_{2} is unique.
- Task 3 (Vector space decomposition). Carry out the decomposition of U and V under the action of \mathcal{L}_{2}.

Technical challenges

$$
f=T_{1}+\ldots+T_{s} .
$$

- Task I (Direct Sum). Show that $U=U_{1} \oplus \ldots \oplus \mathrm{U}_{\mathrm{s}}$ and V $=\mathrm{V}_{\mathrm{l}} \oplus \ldots \oplus \mathrm{V}_{\mathrm{s}}$ w.h.p. if $\mathrm{T}_{\mathrm{l}}, \ldots, \mathrm{T}_{\mathrm{s}}$ are random.
- Task 2 (Uniqueness). Show that the above decomposition of U and V under the action of \mathcal{L}_{2} is unique.
- Task 3 (Vector space decomposition). Carry out the decomposition of U and V under the action of \mathcal{L}_{2}.
- Task 4 (Terms from subspaces). Recover T_{i} from U_{i}.

Known results

Known results that implement the framework:

- Kayal \& S. (20|9). Proper learns $\sum \wedge \Sigma$ ckts, tensors, and homogeneous $\Sigma \Pi \Sigma$ ckts in the non-degenerate case.
$>$ Introduced the framework in a rudimentary form.
$>$ Proper learns random $\sum \wedge \sum$ circuits for $s \leq\binom{ n+d / 3}{n}$.

Known results

Known results that implement the framework:

- Kayal \& S. (20|9). Proper learns $\sum \wedge \Sigma$ ckts, tensors, and homogeneous $\Sigma \Pi \Sigma$ ckts in the non-degenerate case.
- Garg, Kayal \& S. (2020). Proper learns $\sum \wedge \Sigma \Pi^{[t]}$ circuits in the non-degenerate case.
$>$ Laid down the framework completely.
$>$ The $\mathrm{t}=2$ case has a potential application in learning mixtures of Gaussians.

Known results

Known results that implement the framework:

- Kayal \& S. (20|9). Proper learns $\sum \wedge \Sigma$ ckts, tensors, and homogeneous $\Sigma \Pi \Sigma$ ckts in the non-degenerate case.
- Garg, Kayal \& S. (2020). Proper learns $\sum \wedge \Sigma \Pi^{[t]}$ circuits in the non-degenerate case.
- Bhargava, Garg, Kayal \& S. (202I). Proper learns generalized $\Sigma \Pi \sum$ circuits in the non-degenerate case.
$>g_{1}\left(\ell_{1 \mid} \cdots \ell_{\mid d}\right)+\ldots+g_{s}\left(\ell_{s \mid} \cdots \ell_{s d}\right) ; g_{\mathrm{i}}=$ mono., Det, IMM, etc.
$>$ Gives a reasonably general way to accomplish Task I.

Elaboration on the technical challenges

$$
f=T_{1}+\ldots+T_{s} .
$$

- Task I (Direct Sum). Show that $U=U_{1} \oplus \ldots \oplus U_{s}$ and V $=\mathrm{V}_{\mathrm{l}} \oplus \ldots \oplus \mathrm{V}_{\mathrm{s}}$ w.h.p. if $\mathrm{T}_{\mathrm{l}}, \ldots, \mathrm{T}_{\mathrm{s}}$ are random.
- As \mathcal{L}_{1} and \mathcal{L}_{2} are linear operators, this task essentially boils down to showing that certain matrices (whose entries are polynomials in the "coefficients" of the terms) have the maximum possible rank.
- The "bad" coefficients lie in an algebraic variety. So, random coefficients are "good".

Elaboration on the technical challenges

$$
f=T_{1}+\ldots+T_{s}
$$

- Task I (Direct Sum). Show that $U=U_{1} \oplus \ldots \oplus U_{s}$ and V $=\mathrm{V}_{\mathrm{l}} \oplus \ldots \oplus \mathrm{V}_{\mathrm{s}}$ w.h.p. if $\mathrm{T}_{\mathrm{l}}, \ldots, \mathrm{T}_{\mathrm{s}}$ are random.
- For a $\sum \wedge \sum$ circuit, it is fairly easy to show that $\left\langle\partial^{k} \mathrm{f}\right\rangle=$ $\left\langle\ell_{1}^{d-k}\right\rangle \oplus \ldots \oplus\left\langle\ell_{s}^{d-k}\right\rangle$ for random $\ell_{1}, \ldots, \ell_{s}$.
- Note. Although easy for $\sum \wedge \sum$ and homogeneous $\Sigma \Pi \Sigma$ circuits, this task is nontrivial for $\sum \wedge \sum \Pi^{[\mathrm{t}]}$ circuits and generalized $\Sigma \Pi \Sigma$ circuits.

Elaboration on the technical challenges

$$
f=T_{1}+\ldots+T_{s}
$$

- Task 2 (Uniqueness). Show that the decomposition of U and V under the action of \mathcal{L}_{2} is unique.
- Need to understand all possible valid decompositions of U and V under the action of \mathcal{L}_{2}.
- This understanding is provided by the adjoint algebra.

The adjoint algebra

- Definition. Let $\varphi: \cup \rightarrow \cup$ and $\Psi: V \rightarrow V$ be linear maps. The adjoint algebra associated with $\left(\mathrm{U}, \mathrm{V}, \mathcal{L}_{2}\right)$ is

$$
\operatorname{adj}\left(\cup, \vee, \mathcal{L}_{2}\right):=\left\{(\boldsymbol{\varphi}, \Psi): \lambda \circ \varphi=\Psi \circ \lambda, \forall \lambda \in \mathcal{L}_{2}\right\} .
$$

The adjoint algebra

- Definition. Let $\varphi: \cup \rightarrow \cup$ and $\Psi: \vee>V$ be linear maps. The adjoint algebra associated with $\left(\mathrm{U}, \mathrm{V}, \mathcal{L}_{2}\right)$ is

$$
\operatorname{adj}\left(\cup, \vee, \mathcal{L}_{2}\right):=\left\{(\boldsymbol{\varphi}, \Psi): \lambda \circ \varphi=\Psi \circ \lambda, \forall \lambda \in \mathcal{L}_{2}\right\} .
$$

- Obs. adj $\left(\mathrm{U}, \mathrm{V}, \mathcal{L}_{2}\right)$ is a vector space over \mathbb{F}.
- Obs. We can compute a basis of $\operatorname{adj}\left(\mathrm{U}, \mathrm{V}, \mathcal{L}_{2}\right)$ in polynomial time from bases of U and V, and the operators in \mathcal{L}_{2}, by solving a linear system.

The adjoint algebra

- Definition. Let $\varphi: \cup \rightarrow \cup$ and $\Psi: V->V$ be linear maps. The adjoint algebra associated with $\left(\mathrm{U}, \mathrm{V}, \mathcal{L}_{2}\right)$ is

$$
\operatorname{adj}\left(U, \vee, \mathcal{L}_{2}\right):=\left\{(\boldsymbol{\varphi}, \Psi): \lambda \circ \varphi=\Psi \circ \lambda, \forall \lambda \in \mathcal{L}_{2}\right\} .
$$

- Obs. If $(\boldsymbol{\varphi}, \Psi) \in \operatorname{adj}\left(\cup, V, \mathcal{L}_{2}\right)$ and $\boldsymbol{\varphi}, \Psi$ are invertible, then $U=\varphi\left(\mathrm{U}_{\mathrm{I}}\right) \oplus \ldots \oplus \varphi\left(\mathrm{U}_{\mathrm{s}}\right)$ and $\mathrm{V}=\boldsymbol{\psi}\left(\mathrm{V}_{\mathrm{l}}\right) \oplus \ldots \oplus \Psi\left(\mathrm{V}_{\mathrm{s}}\right)$, and $\psi\left(\mathrm{V}_{\mathrm{i}}\right)=\left\langle\mathcal{L}_{2} \circ \varphi\left(\mathrm{U}_{\mathrm{i}}\right)\right\rangle$.

The adjoint algebra

- Definition. Let $\varphi: \cup \rightarrow \cup$ and $\Psi: V->V$ be linear maps. The adjoint algebra associated with $\left(\mathrm{U}, \mathrm{V}, \mathcal{L}_{2}\right)$ is

$$
\operatorname{adj}\left(\cup, \vee, \mathcal{L}_{2}\right):=\left\{(\boldsymbol{\varphi}, \Psi): \lambda \circ \varphi=\Psi \circ \lambda, \forall \lambda \in \mathcal{L}_{2}\right\} .
$$

- Obs. If $(\varphi, \Psi) \in \operatorname{adj}\left(\cup, V, \mathcal{L}_{2}\right)$ and φ, ψ are invertible, then $U=\varphi\left(\mathrm{U}_{\mathrm{I}}\right) \oplus \ldots \oplus \varphi\left(\mathrm{U}_{\mathrm{s}}\right)$ and $\mathrm{V}=\boldsymbol{\psi}\left(\mathrm{V}_{\mathrm{l}}\right) \oplus \ldots \oplus \Psi\left(\mathrm{V}_{\mathrm{s}}\right)$, and $\Psi\left(\mathrm{V}_{\mathrm{i}}\right)=\left\langle\mathcal{L}_{2} \circ \varphi\left(\mathrm{U}_{\mathrm{i}}\right)\right\rangle$.
- Proof~. Direct sum follows from the fact that φ, Ψ are invertible. For $\lambda \in \mathcal{L}_{2}, \quad \lambda \circ \varphi\left(\mathrm{U}_{\mathrm{i}}\right)=\Psi \circ \lambda\left(\mathrm{U}_{\mathrm{i}}\right) \subseteq \psi\left(\mathrm{V}_{\mathrm{i}}\right)$. Equality follows from $V=\left\langle\mathcal{L}_{2} \circ U\right\rangle$.

The adjoint algebra

- Definition. Let $\varphi: \cup \rightarrow \cup$ and $\Psi: V->V$ be linear maps. The adjoint algebra associated with $\left(\mathrm{U}, \mathrm{V}, \mathcal{L}_{2}\right)$ is

$$
\operatorname{adj}\left(U, \vee, \mathcal{L}_{2}\right):=\left\{(\boldsymbol{\varphi}, \Psi): \lambda \circ \varphi=\Psi \circ \lambda, \forall \lambda \in \mathcal{L}_{2}\right\} .
$$

- Obs. If $(\boldsymbol{\varphi}, \Psi) \in \operatorname{adj}\left(\mathrm{U}, \mathrm{V}, \mathcal{L}_{2}\right)$ and $\boldsymbol{\varphi}, \Psi$ are invertible, then $U=\varphi\left(\mathrm{U}_{\mathrm{I}}\right) \oplus \ldots \oplus \varphi\left(\mathrm{U}_{\mathrm{s}}\right)$ and $\mathrm{V}=\boldsymbol{\psi}\left(\mathrm{V}_{\mathrm{l}}\right) \oplus \ldots \oplus \psi\left(\mathrm{V}_{\mathrm{s}}\right)$, and $\Psi\left(\mathrm{V}_{\mathrm{i}}\right)=\left\langle\mathcal{L}_{2} \circ \varphi\left(\mathrm{U}_{\mathrm{i}}\right)\right\rangle$.
- Krull-Schmidt theorem. These are the only decompositions of U and V under the action of \mathcal{L}_{2}.

The adjoint algebra

- Definition. Let $\varphi: \cup \rightarrow \cup$ and $\Psi: V->V$ be linear maps. The adjoint algebra associated with $\left(\mathrm{U}, \mathrm{V}, \mathcal{L}_{2}\right)$ is

$$
\operatorname{adj}\left(U, V, \mathcal{L}_{2}\right):=\left\{(\varphi, \Psi): \lambda \circ \varphi=\Psi \circ \lambda, \forall \lambda \in \mathcal{L}_{2}\right\} .
$$

- Obs. If $(\boldsymbol{\varphi}, \Psi) \in \operatorname{adj}\left(\cup, V, \mathcal{L}_{2}\right)$ and $\boldsymbol{\varphi}, \Psi$ are invertible, then $U=\varphi\left(\mathrm{U}_{\mathrm{I}}\right) \oplus \ldots \oplus \varphi\left(\mathrm{U}_{\mathrm{s}}\right)$ and $\mathrm{V}=\boldsymbol{\psi}\left(\mathrm{V}_{\mathrm{l}}\right) \oplus \ldots \oplus \Psi\left(\mathrm{V}_{\mathrm{s}}\right)$, and $\Psi\left(\mathrm{V}_{\mathrm{i}}\right)=\left\langle\mathcal{L}_{2} \circ \varphi\left(\mathrm{U}_{\mathrm{i}}\right)\right\rangle$.
- We need to understand $\operatorname{adj}\left(\mathrm{U}, \mathrm{V}, \mathcal{L}_{2}\right)$ to show uniqueness of decomposition. When is the decomposition unique?

The adjoint algebra

- Definition. Let $\varphi: \cup \rightarrow \cup$ and $\Psi: \vee>V$ be linear maps. The adjoint algebra associated with $\left(\mathrm{U}, \mathrm{V}, \mathcal{L}_{2}\right)$ is

$$
\operatorname{adj}\left(\cup, \vee, \mathcal{L}_{2}\right):=\left\{(\boldsymbol{\varphi}, \Psi): \lambda \circ \varphi=\Psi \circ \lambda, \forall \lambda \in \mathcal{L}_{2}\right\} .
$$

- Let φ_{i} be the projection map from U to U_{i}, and Ψ_{i} the projection map from V to V_{i}.
- Obs. $\left(\varphi_{i}, \Psi_{i}\right) \in \operatorname{adj}\left(U, V, \mathcal{L}_{2}\right)$ for all $i \in[s]$.

The adjoint algebra

- Definition. Let $\varphi: \cup \rightarrow \cup$ and $\Psi: \vee>V$ be linear maps. The adjoint algebra associated with $\left(\mathrm{U}, \mathrm{V}, \mathcal{L}_{2}\right)$ is

$$
\operatorname{adj}\left(\cup, \vee, \mathcal{L}_{2}\right):=\left\{(\boldsymbol{\varphi}, \Psi): \lambda \circ \varphi=\Psi \circ \lambda, \forall \lambda \in \mathcal{L}_{2}\right\} .
$$

- Let φ_{i} be the projection map from U to U_{i}, and Ψ_{i} the projection map from V to V_{i}.
- Obs. $\left(\varphi_{i}, \Psi_{i}\right) \in \operatorname{adj}\left(U, V, \mathcal{L}_{2}\right)$ for all $i \in[s]$.
- Proof~. Let $\mathbf{u}=\mathbf{u}_{1}+\ldots+\mathbf{u}_{\mathrm{s}}$ for $\mathbf{u} \in U$ and $\mathbf{u}_{\mathrm{i}} \in U_{i}$. Then, $\lambda \circ \varphi_{i}(\mathbf{u})=\lambda\left(\mathbf{u}_{\mathrm{i}}\right) \in \mathrm{V}_{\mathrm{i}}$.
Also, $\Psi_{i} \circ \lambda(\mathbf{u})=\Psi_{i} \circ \lambda\left(\mathbf{u}_{1}+\ldots+\mathbf{u}_{s}\right)=\lambda\left(\mathbf{u}_{\mathrm{i}}\right)$.

The adjoint algebra

- Definition. Let $\varphi: \cup \rightarrow \cup$ and $\Psi: \vee>V$ be linear maps. The adjoint algebra associated with $\left(\mathrm{U}, \mathrm{V}, \mathcal{L}_{2}\right)$ is

$$
\operatorname{adj}\left(\cup, \vee, \mathcal{L}_{2}\right):=\left\{(\boldsymbol{\varphi}, \Psi): \lambda \circ \varphi=\Psi \circ \lambda, \forall \lambda \in \mathcal{L}_{2}\right\} .
$$

- Let φ_{i} be the projection map from U to U_{i}, and Ψ_{i} the projection map from V to V_{i}.
- Obs. $\left(\varphi_{i}, \Psi_{i}\right) \in \operatorname{adj}\left(U, V, \mathcal{L}_{2}\right)$ for all $i \in[s]$.
- The adjoint is trivial if it is generated as a vector space over \mathbb{F} by $\left(\boldsymbol{\varphi}_{\mathrm{l}}, \boldsymbol{\psi}_{\mathrm{l}}\right), \ldots,\left(\boldsymbol{\varphi}_{\mathrm{s}}, \boldsymbol{\Psi}_{\mathrm{s}}\right)$.

The adjoint algebra

- Definition. Let $\varphi: \cup \rightarrow \cup$ and $\Psi: V \rightarrow V$ be linear maps. The adjoint algebra associated with $\left(\mathrm{U}, \mathrm{V}, \mathcal{L}_{2}\right)$ is

$$
\operatorname{adj}\left(\cup, \vee, \mathcal{L}_{2}\right):=\left\{(\boldsymbol{\varphi}, \Psi): \lambda \circ \varphi=\Psi \circ \lambda, \forall \lambda \in \mathcal{L}_{2}\right\} .
$$

- Let φ_{i} be the projection map from U to U_{i}, and Ψ_{i} the projection map from V to V_{i}.
- Obs. $\left(\varphi_{i}, \Psi_{i}\right) \in \operatorname{adj}\left(U, V, \mathcal{L}_{2}\right)$ for all $i \in[s]$.
- Clm. If adj $\left(U, V, \mathcal{L}_{2}\right)$ is trivial, then $U=U, \oplus \ldots \oplus U_{s}$ and $V=V_{1} \oplus \ldots \oplus V_{s}$ is the unique decomposition of U and V under the action of \mathcal{L}_{2}.

The adjoint algebra

- Clm. If $\operatorname{adj}\left(U, V, \mathcal{L}_{2}\right)$ is trivial, then $U=U_{1} \oplus \ldots \oplus U_{s}$ and $V=V_{1} \oplus \ldots \oplus V_{s}$ is the unique decomposition of U and \vee under the action of \mathcal{L}_{2}.
- Proof~. Let $U=\varphi\left(\mathrm{U}_{1}\right) \oplus \ldots \oplus \varphi\left(\mathrm{U}_{\mathrm{s}}\right)$ and $\mathrm{V}=\Psi\left(\mathrm{V}_{1}\right)$ $\oplus \ldots \oplus \Psi\left(\mathrm{V}_{\mathrm{s}}\right)$ be another decomposition for some (φ, $\Psi) \in \operatorname{adj}\left(U, V, \mathcal{L}_{2}\right)$, where φ, Ψ are invertible.

The adjoint algebra

- Clm. If $\operatorname{adj}\left(U, V, \mathcal{L}_{2}\right)$ is trivial, then $U=U_{1} \oplus \ldots \oplus U_{s}$ and $V=V_{1} \oplus \ldots \oplus V_{s}$ is the unique decomposition of U and \vee under the action of \mathcal{L}_{2}.
- Proof~. Let $U=\varphi\left(\mathrm{U}_{1}\right) \oplus \ldots \oplus \varphi\left(\mathrm{U}_{\mathrm{s}}\right)$ and $\mathrm{V}=\boldsymbol{\psi}\left(\mathrm{V}_{\mathrm{l}}\right)$ $\oplus \ldots \oplus \Psi\left(V_{s}\right)$ be another decomposition for some (φ, $\Psi) \in \operatorname{adj}\left(U, \vee, \mathcal{L}_{2}\right)$, where φ, Ψ are invertible.
- As adj $\left(\mathrm{U}, \mathrm{V}, \mathcal{L}_{2}\right)$ is trivial, $\boldsymbol{\varphi}=\mathrm{a}_{1} \varphi_{\mathrm{l}}+\ldots+\mathrm{a}_{\mathrm{s}} \varphi_{\mathrm{s}}$ and $\psi=$ $b_{1} \Psi_{I}+\ldots+b_{s} \Psi_{s}$ for some non-zero $a_{i}, b_{i} \in \mathbb{F}$.

The adjoint algebra

- Clm. If $\operatorname{adj}\left(U, V, \mathcal{L}_{2}\right)$ is trivial, then $U=U_{1} \oplus \ldots \oplus U_{s}$ and $V=V_{1} \oplus \ldots \oplus V_{s}$ is the unique decomposition of U and \vee under the action of \mathcal{L}_{2}.
- Proof~. Let $U=\varphi\left(\mathrm{U}_{\mathrm{l}}\right) \oplus \ldots \oplus \varphi\left(\mathrm{U}_{\mathrm{s}}\right)$ and $\mathrm{V}=\boldsymbol{\psi}\left(\mathrm{V}_{\mathrm{l}}\right)$ $\oplus \ldots \oplus \Psi\left(V_{s}\right)$ be another decomposition for some (φ, $\Psi) \in \operatorname{adj}\left(U, \vee, \mathcal{L}_{2}\right)$, where φ, Ψ are invertible.
- As $\operatorname{adj}\left(\mathrm{U}, \mathrm{V}, \mathcal{L}_{2}\right)$ is trivial, $\boldsymbol{\varphi}=\mathrm{a}_{1} \boldsymbol{\varphi}_{\mathrm{l}}+\ldots+\mathrm{a}_{\mathrm{s}} \boldsymbol{\varphi}_{\mathrm{s}}$ and $\Psi=$ $b_{1} \Psi_{I}+\ldots+b_{s} \Psi_{s}$ for some non-zero $a_{i}, b_{i} \in \mathbb{F}$.
- Now observe that $\varphi\left(\mathrm{U}_{\mathrm{i}}\right)=\mathrm{U}_{\mathrm{i}}$ and $\Psi\left(\mathrm{V}_{\mathrm{i}}\right)=\mathrm{V}_{\mathrm{i}}$.

Elaboration on the technical challenges

$$
f=T_{1}+\ldots+T_{s}
$$

- Task 2 (Uniqueness). Show that the decomposition of U and V under the action of \mathcal{L}_{2} is unique.
- This task is accomplished in [GKS'20] and [BGKS'2I] by showing that the adjoint algebra $\operatorname{adj}\left(\mathrm{U}, \mathrm{V}, \mathcal{L}_{2}\right)$ is trivial if T_{1}, \ldots, T_{s} are randomly chosen.

Elaboration on the technical challenges

$$
f=T_{1}+\ldots+T_{s}
$$

- Task 3 (Vector space decomposition). Carry out the decomposition of U and V under the action of \mathcal{L}_{2}.
- Chistov, Ivanyos \& Karpinski (I997); Eberly (I99|); Ronyai (I990); Friedl \& Ronyai (I985): There are known efficient vector space decomposition algorithms.
- Work over finite fields, \mathbb{C} and \mathbb{R}. Over \mathbb{Q}, the output decomposition is over an extension field.

Elaboration on the technical challenges

$$
f=T_{1}+\ldots+T_{s} .
$$

- Task 3 (Vector space decomposition). Carry out the decomposition of U and V under the action of \mathcal{L}_{2}.
- Turns out, if the adjoint is trivial, then the vector space decomposition problem can be reduced to diagonalizing a random element of the $\operatorname{adj}\left(\mathrm{U}, \mathrm{V}, \mathcal{L}_{2}\right)$.
- Vector space decomposition -> diagonalizing a matrix.

Elaboration on the technical challenges

$$
f=T_{1}+\ldots+T_{s}
$$

- Task 3 (Vector space decomposition). Carry out the decomposition of U and V under the action of \mathcal{L}_{2}.
- Turns out, if the adjoint is trivial, then the vector space decomposition problem can be reduced to diagonalizing a random element of the $\operatorname{adj}\left(\mathrm{U}, \mathrm{V}, \mathcal{L}_{2}\right)$.
- The results in [KS'|9], [GKS'20] and [BGKS'2I] hold over \mathbb{Q}.

Elaboration on the technical challenges

$$
f=T_{1}+\ldots+T_{s}
$$

- Task 4 (Terms from subspaces). Recover T_{i} from U_{i}.
- Mostly easy, if \mathcal{L} is the set of all partial derivatives.
- Example. For a $\sum \wedge \sum$ circuit, $U_{i}=\left\langle\ell_{i}^{d-k}\right\rangle$. Obtain a \mathbb{F} multiple of ℓ_{i} (say, ℓ_{i}^{\prime}) from U_{i} using b.b. polynomial factorization. Observe, $f=z_{1} \cdot \ell^{\prime}{ }_{1}{ }^{d}+\ldots+z_{s} \cdot \ell_{s}{ }^{d}$ for unknown z_{1}, \ldots, z_{s}. Set up a linear system in z_{\mid}, \ldots, z_{s} as before. Solve it and take d-th roots.

Elaboration on the technical challenges

$$
f=T_{1}+\ldots+T_{s}
$$

- Task 4 (Terms from subspaces). Recover T_{i} from U_{i}.
- Mostly easy, if \mathcal{L} is the set of all partial derivatives.
- But not necessarily trivial, if \mathcal{L} is more complex (as is the case in [GKS'20]).

Other average-case learning results

- Gupta, Kayal \& Lokam (201I). Proper learns random fanin-2 multilinear formulas.
- Gupta, Kayal \& Qiao. (20|3). Proper learns random fanin-2 regular formulas.
- Kayal, Nair \& S. (20|9). Proper learns random ABPs of low width.

Other average-case learning results

- Gupta, Kayal \& Lokam (201I). Proper learns random fanin-2 multilinear formulas.
- Gupta, Kayal \& Qiao. (20|3). Proper learns random fanin-2 regular formulas.
- Kayal, Nair \& S. (20|9). Proper learns random ABPs of low width.
- These algorithms are implicitly connected to the corresponding lower bounds known for these models.

Learning other circuit models?

- Can we implement the learning from lower bound framework for other circuit models?

Summary

- A survey of known results on polynomial equivalence and average-case reconstruction.
- Polynomial equivalence problem
$>$ Hessian based equivalence tests.
- Average-case learning
$>$ A framework for designing learning algorithms from lower bounds based on vector space decomposition.

Thanks!

