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Why to look at upper bounds?

Main point of algorithmic!

The theme of this school is to analyze why some polynomials are
“hard”.

Interesting to undestand why some polynomials are “easy”.
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Overview

1 Upper bounds
First algorithms
Multiplications

2 Reductions
Classes VBP, VP, VF
Counting problems

3 An e�cient algorithm calls for many others
Homogeneous Components / Derivatives
Closures
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First “counterintuitive” algorithms

Recalls Elementary symmetric polynomials (Srikanth’s talk)
I Ed

n projection of IMMd,n (Dynamic programming)
I Ed

n has small formulas (Interpolation).

Computing any univariate P 2 C[X ] of degree d :
P =

P
d aiX i = (· · · ((adX + ad�1)X + ad�2) · · · )X + a0

Horner’s rule: d multiplications and d additions. Best?
Possible with d + 1 additions and 1 + d/2 multiplications!
[Knuth,Eve]

P(X ) = (X 2 � u2)Qu(X ) + Ru(X ).
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Multiplication of polynomials

Let Pa =
P

d aiX i ,Pb =
P

d biX i 2 C[X ]
Goal: compute Pc(X ) =

P
2d ciX i = Pa(X ) ·Pb(X ).

So compute (ci )i2d .

Developing everything: (d + 1)2 mult. & d2 add.

Karatsuba’s algorithm: 3d log2 3 mult.

Fast Fourier Transform: O(d log d)

[Schönage, Strassen] Over Z,Q: O(d(log d)(log log d)).

Conclusion: multiplication of u, v integers (with u < v) in
O((log v)(log log v)(log log log v)).
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Multiplication of matrices

0

B@
X1,1 · · · X1,n
...

. . .
...

Xn,1 · · · Xn,n

1

CA =

0

B@
Y1,1 · · · Y1,n
...

. . .
...

Yn,1 · · · Yn,n

1

CA ·

0

B@
Z1,1 · · · Z1,n
...

. . .
...

Zn,1 · · · Zn,n

1

CA

Xi ,j =
nX

k=1

Yi ,kZk,j (1  i , j  n)

Full decomposition O(n3)

Strassen’s algorithm O(nlog2 7) = O(n2.81)

[Schönhage,Coppersmith-Winograd,Williams,Le Gall] O(n2.3728596)
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Strassen’s algorithm

✓
A B
C D

◆
·
✓
E F
G H

◆

=

✓
�M2 +M4 +M5 +M6 M1 +M2

M3 +M4 M1 �M3 +M5 �M7

◆

M1 = A⇥ (F � H)

M2 = (A+ B)⇥ H

M3 = (C + D)⇥ E

M4 = D ⇥ (G � E )

M5 = (A+ D)⇥ (E + H)

M6 = (B � D)⇥ (G � H)

M7 = (A� C )⇥ (E + F )
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IMM to Determinant

Recall: IMM can be seen as an Algebraic Branching Program (ABP).
[Damm, Vinay, Toda]
Idea seen in Avi’s talk.
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Determinant to IMM

[Berkowitz]
Here, we follow [MV97].
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From Circuits to Formulas

If P 2 Fd [X1, . . . ,Xn] is computed by a sized-s circuit, then it is computed
by a formula of size sO(log d).

Consequence of [VSBR]. We will see it in the next talk.
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Counting problems

Counting the number of:

cliques,

Hamiltonian circuits,

matchings in a bipartite graph,

[Valiant] Perm is VNP-complete (char(F) 6= 2).
It means that if Perm is easy, all are easy.

Some counting problems are easy:

[Kasteleyn] number of matchings in a planar graph,

[Kirchho↵] number of trees, ...
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✗ij=Xji

☐

0 ②

1 ¥ O

O F

E IT ✗
ijClique?n =

A e[n] fi,j)EA2
icjCliquen*(x¥, ✗☐

1-
,

- - - ) C- GET][t]

[1-15] cliqueÉ ⇒ cliques of size p



Counting problems

Counting the number of:

cliques,

Hamiltonian circuits,

matchings in a bipartite graph,

[Valiant] Perm is VNP-complete (char(F) 6= 2).
It means that if Perm is easy, all are easy.

Some counting problems are easy:

[Kasteleyn] number of matchings in a planar graph,

[Kirchho↵] number of trees, ...

Algebraic Complexity: Upper bounds October 5th, 2021 11 / 17



Counting problems

Counting the number of:

cliques,

Hamiltonian circuits,

matchings in a bipartite graph,

[Valiant] Perm is VNP-complete (char(F) 6= 2).
It means that if Perm is easy, all are easy.

Some counting problems are easy:

[Kasteleyn] number of matchings in a planar graph,

[Kirchho↵] number of trees, ...

Algebraic Complexity: Upper bounds October 5th, 2021 11 / 17

perfect
✓ →We obtain Perm



Counting problems

Counting the number of:

cliques,

Hamiltonian circuits,

matchings in a bipartite graph,

[Valiant] Perm is VNP-complete (char(F) 6= 2).

It means that if Perm is easy, all are easy.

Some counting problems are easy:

[Kasteleyn] number of matchings in a planar graph,

[Kirchho↵] number of trees, ...

Algebraic Complexity: Upper bounds October 5th, 2021 11 / 17



Counting problems

Counting the number of:

cliques,

Hamiltonian circuits,

matchings in a bipartite graph,

[Valiant] Perm is VNP-complete (char(F) 6= 2).
It means that if Perm is easy, all are easy.

Some counting problems are easy:

[Kasteleyn] number of matchings in a planar graph,

[Kirchho↵] number of trees, ...

Algebraic Complexity: Upper bounds October 5th, 2021 11 / 17



Counting problems

Counting the number of:

cliques,

Hamiltonian circuits,

matchings in a bipartite graph,

[Valiant] Perm is VNP-complete (char(F) 6= 2).
It means that if Perm is easy, all are easy.

Some counting problems are easy:

[Kasteleyn] number of matchings in a planar graph,

[Kirchho↵] number of trees, ...

Algebraic Complexity: Upper bounds October 5th, 2021 11 / 17

✗=(¥¥ii)
Pf (X ) =
""

¥
,

#iii.rain

✗ → Pff =Feta



Homogeneous components

Circuits and ABPs are closed by Homogeneization.

If P 2 Fd [X1, . . . ,Xn], is computed by a circuit (resp. an ABP)
of size s,
we can compute (P0,P1, . . . ,Pd), the homogeneous compo-
nents, by a circuit (resp. ABP) of size

s(d
2

2
+ 4d) (resp. s(d + 1))

(see in the next talk).

Not known for formulas.
(Ex: Does Ed

n have small homogeneous formulas?)
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Derivatives in Linear time

f 2 F[X1, . . . ,Xn] computed by a sized-s circuit C
(where multiplications have fan-in 2)

[Baur-Strassen] (f , @f
@X1

, . . . , @f
@Xn

) can be computed in O(s)!

Ex: A circuit for
P

n

i=1
X k+1

i
gives one of same size for (X k

1
, . . . ,X k

n ).
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First closures

The classes VNP, VP, VBP, VF are closed by:

‘small’ additions, ‘small’ multiplications

composition,

p-projections.
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Closure by taking coe�cients?

Univariate case:

O(sd) for all classes!
This is just by interpolation.
Notice: it contains the case f 2 F[X1, . . . ,Xn][Y ].

Multivariate case: Does not seem true for VP, VBP, VF:

[t1t2 · · · tn]

0

@
nY

i=1

nX

j=1

Xi ,j ti

1

A = Perm(Xi ,j).

True for VNP.
Via the univariate case, possibility to extract some extremals
coe�cients.
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Closure by taking factors

Let f = gh where f 2 Cd [X1, . . . ,Xn] computed by a sized-s circuit.

Then g is computed by a sized-poly(s) circuit. [Kaltofen]

[Sinhababu-Thierauf] VBP also closed by taking factors.
But not known for formulas.

Idea of the proof from [Chou-Kumar-Solomon]
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Thank you.
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