Algebraic Complexity: Upper bounds

Tavenas

October 5th, 2021

Why to look at upper bounds?

- Main point of algorithmic!

Why to look at upper bounds?

- Main point of algorithmic!
- The theme of this school is to analyze why some polynomials are "hard".

Why to look at upper bounds?

- Main point of algorithmic!
- The theme of this school is to analyze why some polynomials are "hard".
- Interesting to undestand why some polynomials are "easy".

Overview

(1) Upper bounds

- First algorithms
- Multiplications
(2) Reductions
- Classes VBP, VP, VF
- Counting problems
(3) An efficient algorithm calls for many others
- Homogeneous Components / Derivatives
- Closures

First "counterintuitive" algorithms

- Recalls Elementary symmetric polynomials (Srikanth's talk)
- E_{n}^{d} projection of $\mathrm{IMM}_{d, n}$ (Dynamic programming)
- E_{n}^{d} has small formulas (Interpolation).

First "counterintuitive" algorithms

- Recalls Elementary symmetric polynomials (Srikanth's talk)
- E_{n}^{d} projection of $\mathrm{IMM}_{d, n}$ (Dynamic programming)
- E_{n}^{d} has small formulas (Interpolation).
- Computing any univariate $P \in \mathbb{C}[X]$ of degree d :

First "counterintuitive" algorithms

- Recalls Elementary symmetric polynomials (Srikanth's talk)
- E_{n}^{d} projection of $\mathrm{IMM}_{d, n}$ (Dynamic programming)
- E_{n}^{d} has small formulas (Interpolation).
- Computing any univariate $P \in \mathbb{C}[X]$ of degree d : $P=\sum^{d} a_{i} X^{i}=\left(\cdots\left(\left(a_{d} X+a_{d-1}\right) X+a_{d-2}\right) \cdots\right) X+a_{0}$

First "counterintuitive" algorithms

- Recalls Elementary symmetric polynomials (Srikanth's talk)
- E_{n}^{d} projection of $\mathrm{IMM}_{d, n}$ (Dynamic programming)
- E_{n}^{d} has small formulas (Interpolation).
- Computing any univariate $P \in \mathbb{C}[X]$ of degree d : $P=\sum^{d} a_{i} X^{i}=\left(\cdots\left(\left(a_{d} X+a_{d-1}\right) X+a_{d-2}\right) \cdots\right) X+a_{0}$ Horner's rule: d multiplications and d additions. Best?

First "counterintuitive" algorithms

- Recalls Elementary symmetric polynomials (Srikanth's talk)
- E_{n}^{d} projection of $\mathrm{IMM}_{d, n}$ (Dynamic programming)
- E_{n}^{d} has small formulas (Interpolation).
- Computing any univariate $P \in \mathbb{C}[X]$ of degree d :

$$
P=\sum^{d} a_{i} X^{i}=\left(\cdots\left(\left(a_{d} X+a_{d-1}\right) X+a_{d-2}\right) \cdots\right) X+a_{0}
$$

Horner's rule: d multiplications and d additions. Best?
Possible with $d+1$ additions and $1+d / 2$ multiplications!
[Knuth ,Eve]

$$
\mid P(X)=\left(X^{2}-u^{2}\right) \underbrace{Q_{u}(X)}_{\operatorname{deg}=d-2}+\underbrace{R_{u}(X)}_{\operatorname{deg}} \leqslant 1
$$

We want $\operatorname{deg}\left(R_{u}\right)=0$

$$
\begin{aligned}
& \Leftrightarrow P(u)=P(-u) \Leftrightarrow u r_{0 o t} \text { of } \sum_{i 11=1[2]} a_{i} x^{i} \\
& \Rightarrow P_{d}(x)=\left(x^{2}-v\right) P_{d-2}(x)+w
\end{aligned}
$$

Multiplication of polynomials

Let $P_{a}=\sum^{d} a_{i} X^{i}, P_{b}=\sum^{d} b_{i} X^{i} \in \mathbb{C}[X]$
Goal: compute $P_{c}(X)=\sum^{2 d} c_{i} X^{i}=P_{a}(X) \cdot P_{b}(X)$.

Multiplication of polynomials

Let $P_{a}=\sum^{d} a_{i} X^{i}, P_{b}=\sum^{d} b_{i} X^{i} \in \mathbb{C}[X]$
Goal: compute $P_{c}(X)=\sum^{2 d} c_{i} X^{i}=P_{a}(X) \cdot P_{b}(X)$. So compute $\left(c_{i}\right)_{i \leq 2 d}$.

- Developing everything:

$$
\begin{aligned}
& c_{i}=\sum_{j=0}^{i} a_{j} b_{i-j} \rightarrow \text { sums : }(d+1)^{2} \text { mull } . \\
& d^{2} \text { additions } .
\end{aligned}
$$

Multiplication of polynomials

Let $P_{a}=\sum^{d} a_{i} X^{i}, P_{b}=\sum^{d} b_{i} X^{i} \in \mathbb{C}[X]$
Goal: compute $P_{c}(X)=\sum^{2 d} c_{i} X^{i}=P_{a}(X) \cdot P_{b}(X)$. So compute $\left(c_{i}\right)_{i \leq 2 d}$.

- Developing everything: $(d+1)^{2}$ mult. \& d^{2} add.

Multiplication of polynomials

Let $P_{a}=\sum^{d} a_{i} X^{i}, P_{b}=\sum^{d} b_{i} X^{i} \in \mathbb{C}[X]$
Goal: compute $P_{c}(X)=\sum^{2 d} c_{i} X^{i}=P_{\mathrm{a}}(X) \cdot P_{b}(X)$. So compute $\left(c_{i}\right)_{i \leq 2 d}$.

- Developing everything: $(d+1)^{2}$ mull. \& d^{2} add.
- Karatsuba's algorithm:

$$
\begin{aligned}
& \left.T_{a} B_{e} H=x^{d / 2}\right] \\
& P=P_{1} H+P_{2} \\
& Q=Q_{1} H+Q_{2} \\
& N_{d} \leqslant 3 N_{d / 2} \\
& \Rightarrow N_{d}=O\left(n^{\log _{2} 3}\right)
\end{aligned}
$$

$$
P Q=(\underbrace{\left(P_{1} Q_{1}\right)}_{1} H^{2}+\left(P_{1} Q_{2}+P_{2} Q_{1}\right) H+\underbrace{P Q_{2}}_{1}
$$

$$
=\left(P_{1}+\frac{\left.P_{2}\right)\left(Q_{1}+Q_{2}\right)}{1}-P_{1} Q_{1}-P_{2} Q_{2}\right.
$$

(N_{k} : \# multiplications for computed
the prod of 2 poly of deg Q)

Multiplication of polynomials

Let $P_{a}=\sum^{d} a_{i} X^{i}, P_{b}=\sum^{d} b_{i} X^{i} \in \mathbb{C}[X]$
Goal: compute $P_{c}(X)=\sum^{2 d} c_{i} X^{i}=P_{a}(X) \cdot P_{b}(X)$. So compute $\left(c_{i}\right)_{i \leq 2 d}$.

- Developing everything: $(d+1)^{2}$ mull. \& d^{2} add.
- Karatsuba's algorithm: $3 d^{\log _{2} 3}$ mull.
- Fast Fourier Transform:

Idea: $N>2 d$ sufficient to solve the product in $\left.\mathbb{C}[x] / N_{1}-1\right)$ \rightarrow Choose $N=2^{P}$, ω a $N^{\text {th }}$ primitive root.

$$
\begin{aligned}
& D_{N} \mathbb{C}[x]\left(x^{N-1}\right) \longrightarrow \mathbb{C}^{N} \\
& P \quad\left(P\left(\omega^{0}\right), \ldots, P\left(\omega^{N-1}\right)\right) \text { ism of algebras }
\end{aligned}
$$

$$
P_{c}=D_{N}^{-1}\left(D_{N}\left(P_{a}\right) \cdot D_{N}\left(P_{b}\right)\right)
$$

Multiplication of polynomials

Let $P_{a}=\sum^{d} a_{i} X^{i}, P_{b}=\sum^{d} b_{i} X^{i} \in \mathbb{C}[X]$
Goal: compute $P_{c}(X)=\sum^{2 d} c_{i} X^{i}=P_{a}(X) \cdot P_{b}(X)$. So compute $\left(c_{i}\right)_{i \leq 2 d}$.

- Developing everything: $(d+1)^{2}$ mull. \& d^{2} add.
- Karatsuba's algorithm: $3 d^{\log _{2} 3}$ mull.
- Fast Fourier Transform:

$$
\begin{aligned}
& D_{N}\left(\sum a_{i} x^{i}\right)=\underbrace{\left(\begin{array}{cccc}
\omega^{0} & 0 & \\
\omega^{0} & 0^{\prime} & & \\
& & \omega^{i j}
\end{array}\right)}\left(\begin{array}{c}
a_{0} \\
\vdots \\
a_{d}
\end{array}\right) \\
& \forall i: \sum_{j} a_{j} c^{i j}=\left(\sum_{j<N / 2} a_{2 j}\left(\omega^{j} j^{j d}\right)+\omega^{D}\left(\sum_{j<N / 2} a_{2 d+1}\left(c^{j j^{i}}\right) F^{-1}=\frac{1}{N}\left(\quad\left(\omega^{-1}\right)^{i j}\right)\right.\right. \\
& \left.D F T_{N} \cdot a=\left(\begin{array}{cc}
D F T_{N / 2} & A\left(D F F_{m / 2}\right. \\
D F T_{N / 2} & -\Delta D F W_{/ 2}
\end{array}\right) \cdot\binom{e v(a)}{0 d_{(a)}} \right\rvert\, \begin{array}{l}
\left.T_{N}=2 T_{N / 2}+O N\right) \\
\Rightarrow T_{N}=O\left(N P_{g} N\right)
\end{array}
\end{aligned}
$$

Multiplication of polynomials

Let $P_{a}=\sum^{d} a_{i} X^{i}, P_{b}=\sum^{d} b_{i} X^{i} \in \mathbb{C}[X]$
Goal: compute $P_{c}(X)=\sum^{2 d} c_{i} X^{i}=P_{a}(X) \cdot P_{b}(X)$. So compute $\left(c_{i}\right)_{i \leq 2 d}$.

- Developing everything: $(d+1)^{2}$ mult. \& d^{2} add.
- Karatsuba's algorithm:
- Fast Fourier Transform:
- [Schönage, Strassen] Over $\mathbb{Z}, \mathbb{Q}: \quad O(d(\log d)(\log \log d))$.

Multiplication of polynomials

Let $P_{a}=\sum^{d} a_{i} X^{i}, P_{b}=\sum^{d} b_{i} X^{i} \in \mathbb{C}[X]$
Goal: compute $P_{c}(X)=\sum^{2 d} c_{i} X^{i}=P_{a}(X) \cdot P_{b}(X)$. So compute $\left(c_{i}\right)_{i \leq 2 d}$.

- Developing everything: $(d+1)^{2}$ mult. \& d^{2} add.
- Karatsuba's algorithm:
- Fast Fourier Transform:
- [Schönage, Strassen] Over $\mathbb{Z}, \mathbb{Q}: \quad O(d(\log d)(\log \log d))$.

Conclusion: multiplication of u, v integers (with $u<v$) in $O((\log v)(\log \log v)(\log \log \log v))$.

Multiplication of matrices

$$
\begin{gathered}
\left(\begin{array}{ccc}
X_{1,1} & \cdots & X_{1, n} \\
\vdots & \ddots & \vdots \\
X_{n, 1} & \cdots & X_{n, n}
\end{array}\right)=\left(\begin{array}{ccc}
Y_{1,1} & \cdots & Y_{1, n} \\
\vdots & \ddots & \vdots \\
Y_{n, 1} & \cdots & Y_{n, n}
\end{array}\right) \cdot\left(\begin{array}{ccc}
Z_{1,1} & \cdots & Z_{1, n} \\
\vdots & \ddots & \vdots \\
Z_{n, 1} & \cdots & Z_{n, n}
\end{array}\right) \\
X_{i, j}=\sum_{k=1}^{n} Y_{i, k} Z_{k, j} \quad(1 \leq i, j \leq n)
\end{gathered}
$$

Multiplication of matrices

$$
\begin{gathered}
\left(\begin{array}{ccc}
X_{1,1} & \cdots & X_{1, n} \\
\vdots & \ddots & \vdots \\
X_{n, 1} & \cdots & X_{n, n}
\end{array}\right)=\left(\begin{array}{ccc}
Y_{1,1} & \cdots & Y_{1, n} \\
\vdots & \ddots & \vdots \\
Y_{n, 1} & \cdots & Y_{n, n}
\end{array}\right) \cdot\left(\begin{array}{ccc}
Z_{1,1} & \cdots & Z_{1, n} \\
\vdots & \ddots & \vdots \\
Z_{n, 1} & \cdots & Z_{n, n}
\end{array}\right) \\
X_{i, j}=\sum_{k=1}^{n} Y_{i, k} Z_{k, j} \quad(1 \leq i, j \leq n)
\end{gathered}
$$

- Full decomposition

Multiplication of matrices

$$
\begin{gathered}
\left(\begin{array}{ccc}
X_{1,1} & \cdots & X_{1, n} \\
\vdots & \ddots & \vdots \\
X_{n, 1} & \cdots & X_{n, n}
\end{array}\right)=\left(\begin{array}{ccc}
Y_{1,1} & \cdots & Y_{1, n} \\
\vdots & \ddots & \vdots \\
Y_{n, 1} & \cdots & Y_{n, n}
\end{array}\right) \cdot\left(\begin{array}{ccc}
Z_{1,1} & \cdots & Z_{1, n} \\
\vdots & \ddots & \vdots \\
Z_{n, 1} & \cdots & Z_{n, n}
\end{array}\right) \\
\\
X_{i, j}
\end{gathered}=\sum_{k=1}^{n} Y_{i, k} Z_{k, j} \quad(1 \leq i, j \leq n) \quad .
$$

- Full decomposition

$$
O\left(n^{3}\right)
$$

Multiplication of matrices

$$
\begin{gathered}
\left(\begin{array}{ccc}
X_{1,1} & \cdots & X_{1, n} \\
\vdots & \ddots & \vdots \\
X_{n, 1} & \cdots & X_{n, n}
\end{array}\right)=\left(\begin{array}{ccc}
Y_{1,1} & \cdots & Y_{1, n} \\
\vdots & \ddots & \vdots \\
Y_{n, 1} & \cdots & Y_{n, n}
\end{array}\right) \cdot\left(\begin{array}{ccc}
Z_{1,1} & \cdots & Z_{1, n} \\
\vdots & \ddots & \vdots \\
Z_{n, 1} & \cdots & Z_{n, n}
\end{array}\right) \\
X_{i, j}=\sum_{k=1}^{n} Y_{i, k} Z_{k, j} \quad(1 \leq i, j \leq n)
\end{gathered}
$$

- Full decomposition

$$
O\left(n^{3}\right)
$$

- Strassen's algorithm

Strassen's algorithm

$$
\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right) \cdot\left(\begin{array}{ll}
E & F \\
G & H
\end{array}\right)=\left(\begin{array}{ll}
A E+B G & A F+B H \\
C E+D G & C F+D H
\end{array}\right)
$$

Strassen's algorithm

$$
\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right) \cdot\left(\begin{array}{ll}
E & F \\
G & H
\end{array}\right)
$$

$$
\begin{aligned}
& M_{1}=A \times(F-H) \\
& M_{2}=(A+B) \times H \\
& M_{3}=(C+D) \times E \\
& M_{4}=D \times(G-E) \\
& M_{5}=(A+D) \times(E+H) \\
& M_{6}=(B-D) \times(G-H) \\
& M_{7}=(A-C) \times(E+F)
\end{aligned}
$$

Strassen's algorithm

$$
\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right) \cdot\left(\begin{array}{ll}
E & F \\
G & H
\end{array}\right)=\left(\begin{array}{cc}
-M_{2}+M_{4}+M_{5}+M_{6} & M_{1}+M_{2} \\
M_{3}+M_{4} & M_{1}-M_{3}+M_{5}-M_{7}
\end{array}\right)
$$

$$
\begin{aligned}
& M_{1}=A \times(F-H) \\
& M_{2}=(A+B) \times H \\
& M_{3}=(C+D) \times E \\
& M_{4}=D \times(G-E) \\
& M_{5}=(A+D) \times(E+H) \\
& M_{6}=(B-D) \times(G-H) \\
& M_{7}=(A-C) \times(E+F)
\end{aligned}
$$

Multiplication of matrices

$$
\begin{gathered}
\left(\begin{array}{ccc}
X_{1,1} & \cdots & X_{1, n} \\
\vdots & \ddots & \vdots \\
X_{n, 1} & \cdots & X_{n, n}
\end{array}\right)=\left(\begin{array}{ccc}
Y_{1,1} & \cdots & Y_{1, n} \\
\vdots & \ddots & \vdots \\
Y_{n, 1} & \cdots & Y_{n, n}
\end{array}\right) \cdot\left(\begin{array}{ccc}
Z_{1,1} & \cdots & Z_{1, n} \\
\vdots & \ddots & \vdots \\
Z_{n, 1} & \cdots & Z_{n, n}
\end{array}\right) \\
X_{i, j}=\sum_{k=1}^{n} Y_{i, k} Z_{k, j} \quad(1 \leq i, j \leq n)
\end{gathered}
$$

- Full decomposition
- Strassen's algorithm

$$
\begin{aligned}
& O\left(n^{3}\right) \\
& O\left(n^{\log _{2} 7}\right)=O\left(n^{2.81}\right)
\end{aligned}
$$

Multiplication of matrices

$$
\begin{gathered}
\left(\begin{array}{ccc}
X_{1,1} & \cdots & X_{1, n} \\
\vdots & \ddots & \vdots \\
X_{n, 1} & \cdots & X_{n, n}
\end{array}\right)=\left(\begin{array}{ccc}
Y_{1,1} & \cdots & Y_{1, n} \\
\vdots & \ddots & \vdots \\
Y_{n, 1} & \cdots & Y_{n, n}
\end{array}\right) \cdot\left(\begin{array}{ccc}
Z_{1,1} & \cdots & Z_{1, n} \\
\vdots & \ddots & \vdots \\
Z_{n, 1} & \cdots & Z_{n, n}
\end{array}\right) \\
X_{i, j}=\sum_{k=1}^{n} Y_{i, k} Z_{k, j} \quad(1 \leq i, j \leq n)
\end{gathered}
$$

- Full decomposition

$$
\begin{aligned}
& O\left(n^{3}\right) \\
& O\left(n^{\log _{2} 7}\right)=O\left(n^{2.81}\right)
\end{aligned}
$$

- Strassen's algorithm
- [Schönhage,Coppersmith-Winograd,Williams,Le Gall] $O\left(n^{2.3728596}\right)$

IMM to Determinant

Recall: IMM can be seen as an Algebraic Branching Program (ABP).
[Dem, Vinay, Coda]

$$
(-1)^{n_{i-1}}(-1)^{\left(n_{i}\right)+d_{-1}}
$$

Determinant to IMM
[Berkowitz]
Here, we follow [MV97].

$$
\operatorname{Det}(A) \rightarrow
$$

$$
\begin{aligned}
\operatorname{Det}(A) & =\sum_{\sigma \in S_{n}}(-1)^{\varepsilon(\sigma)} \prod_{i=1}^{n} x_{i} \nabla_{i} \\
& =(-1)^{(-1)} \sum_{\substack{v_{c y c} \\
\text { cover sing }}}(-1)^{\neq c c c e s_{n}} \prod_{i=1} x_{i, c_{i}}
\end{aligned}
$$

$$
\Rightarrow O\left(n^{3}\right)
$$

Claws: closed walk in the graph (i_{1}, \ldots, i_{p}) $-i_{1}=i_{p} \& v_{j} i_{j}>i_{1}$ Claws sea: $\left(c_{1}, \ldots, c_{q}\right)$ st $h_{\text {cad }}\left(c_{j}\right)<R_{\text {end }}\left(c_{j}\right)$ asa $i i_{j}$.

Determinant to IMM
[Berkowitz]
Here, we follow [MV97].

From Circuits to Formulas

$V F \subseteq V B P \subseteq V P$

If $P \in \mathbb{F}_{d}\left[X_{1}, \ldots, X_{n}\right]$ is computed by a sized-s circuit, then it is computed by a formula of size $s^{O(\log d)}$.

From Circuits to Formulas

If $P \in \mathbb{F}_{d}\left[X_{1}, \ldots, X_{n}\right]$ is computed by a sized-s circuit, then it is computed by a formula of size $s^{O(\log d)}$.
Consequence of [VSBR]. We will see it in the next talk.

Counting problems

$$
x_{i j}=x_{j i}
$$

Counting the number of:

- cliques,

$$
\begin{aligned}
& C l_{\text {que }}^{n}=\sum_{A \leq[n]} \prod_{\substack{(i, j) \in A^{2} \\
i<j}} x_{i j} \\
& C l_{\text {ique }}^{*}\left(x_{2}\left(, x_{13} l, \ldots\right) \in \mathbb{C}[\bar{x}][t]\right. \\
& {\left[t^{(\rho)}\right] \text { Clique } e_{n}^{*} \leftrightarrow \text { cliques of size } p}
\end{aligned}
$$

Counting problems

Counting the number of:

- cliques,
- Hamiltonian circuits,

Counting problems

Counting the number of:

- cliques,
- Hamiltonian circuits,

Perfect

Counting problems

Counting the number of:

- cliques,
- Hamiltonian circuits,
- matchings in a bipartite graph,
[Valiant] Perm is VNP-complete $(\operatorname{char}(\mathbb{F}) \neq 2)$.

Counting problems

Counting the number of:

- cliques,
- Hamiltonian circuits,
- matchings in a bipartite graph,
[Valiant] Perm is VNP-complete $(\operatorname{char}(\mathbb{F}) \neq 2)$.
It means that if Perm is easy, all are easy.

Counting problems

Counting the number of:

- cliques,

- Hamiltonian circuits,
- matchings in a bipartite graph,
[Valiant] Perm is VNP-complete $(\operatorname{char}(\mathbb{F}) \neq 2) . \sigma \in S_{2 n}$

$$
\begin{aligned}
& P f(x)= \\
& \sum_{\sigma \in S_{2 n}}(-1)=\prod_{i=1}^{(T)} *_{\nabla(2 i), \sigma(i, 1)}
\end{aligned}
$$

It means that if Perm is easy, all are easy.

Some counting problems are easy:

- [Kasteleyn] number of matchings in a planar graph,
- [Kirchhoff] number of trees, ...

Homogeneous components

- Circuits and ABPs are closed by Homogeneization.

If $P \in \mathbb{F}_{d}\left[X_{1}, \ldots, X_{n}\right]$, is computed by a circuit (resp. an ABP) of size s, we can compute $\left(P_{0}, P_{1}, \ldots, P_{d}\right)$, the homogeneous components, by a circuit (resp. ABP) of size

$$
s\left(\frac{d^{2}}{2}+4 d\right)(\text { resp. } s(d+1))
$$

Homogeneous components

- Circuits and ABPs are closed by Homogeneization.

If $P \in \mathbb{F}_{d}\left[X_{1}, \ldots, X_{n}\right]$, is computed by a circuit (resp. an ABP) of size s, we can compute $\left(P_{0}, P_{1}, \ldots, P_{d}\right)$, the homogeneous components, by a circuit (resp. ABP) of size

$$
s\left(\frac{d^{2}}{2}+4 d\right)(\text { resp. } s(d+1))
$$

(see in the next talk).

Homogeneous components

- Circuits and ABPs are closed by Homogeneization.

If $P \in \mathbb{F}_{d}\left[X_{1}, \ldots, X_{n}\right]$, is computed by a circuit (resp. an ABP) of size s, we can compute $\left(P_{0}, P_{1}, \ldots, P_{d}\right)$, the homogeneous components, by a circuit (resp. ABP) of size

$$
s\left(\frac{d^{2}}{2}+4 d\right)(\text { resp. } s(d+1))
$$

(see in the next talk).

- Not known for formulas.

Homogeneous components

- Circuits and ABPs are closed by Homogeneization.

If $P \in \mathbb{F}_{d}\left[X_{1}, \ldots, X_{n}\right]$, is computed by a circuit (resp. an ABP) of size s, we can compute $\left(P_{0}, P_{1}, \ldots, P_{d}\right)$, the homogeneous components, by a circuit (resp. ABP) of size

$$
s\left(\frac{d^{2}}{2}+4 d\right)(\text { resp. } s(d+1))
$$

(see in the next talk).

- Not known for formulas. (Ex: Does E_{n}^{d} have small homogeneous formulas?)

Derivatives in Linear time

$f \in \mathbb{F}\left[X_{1}, \ldots, X_{n}\right]$ computed by a sized-s circuit C (where multiplications have fan-in 2)

Derivatives in Linear time

$f \in \mathbb{F}\left[X_{1}, \ldots, X_{n}\right]$ computed by a sized-s circuit C (where multiplications have fan-in 2)
[Baur-Strassen] $\left(f, \frac{\partial f}{\partial X_{1}}, \ldots, \frac{\partial f}{\partial X_{n}}\right)$ can be computed in $O(s)$!

Derivatives in Linear time
$f \in \mathbb{F}\left[X_{1}, \ldots, X_{n}\right]$ computed by a sized-s circuit C (where multiplications have fan-in 2) [Baur-Strassen] $\left(f, \frac{\partial f}{\partial X_{1}}, \ldots, \frac{\partial f}{\partial X_{n}}\right)$ can be computed in $O(s)$! Ex: A circuit for $\sum_{i=1}^{n} X_{i}^{k+1}$ gives one of same size for $\left(X_{1}^{k}, \ldots, X_{n}^{k}\right)$.

$$
\begin{aligned}
& f_{0} \leqslant^{x_{0}^{(0)}} f_{0}=x_{0}^{(0)} \\
& \frac{\partial f_{1}}{\partial x^{(1)}} \rightarrow \frac{\partial\left(f_{r 1}\right.}{\partial x^{(\gamma+1)}}=\frac{\partial h}{\partial x}
\end{aligned}
$$

st. ${ }^{\text {stupe }} x_{j}^{(i)}=\sum_{k} x_{k}^{(i+1)}$

$$
f_{i+1}=\frac{f_{i} \circ\left(x^{(i)}\left(x^{(i+1)}\right)\right)}{} \frac{\frac{\partial f_{i+1}}{\partial x_{p}^{(i+1)}}=\sum \frac{\partial f_{i}}{\partial x_{j}^{(i)}} \frac{\partial x_{j}^{(i)}}{\partial x_{k}^{(i+1)}}}{\frac{\partial \frac{\partial b_{a}}{\partial x_{i}^{(i)}}}{}}
$$

$$
\overline{2^{\text {nd }} \text { case }} x_{j}^{(i)}=x_{B}^{(i+1)} x_{l}^{(i+1)}
$$

$$
\frac{d f_{1}}{\partial x_{i}^{(i)}}, \frac{\partial f_{i}}{\partial x_{j}^{(i)}} x_{b}^{(i+1)}, \frac{\partial f_{i}}{\partial x_{j}^{(i)}} x_{e}^{\text {(iii) }}
$$

First closures

The classes VNP, VP, VBP, VF are closed by:

First closures

The classes VNP, VP, VBP, VF are closed by:

- ‘small' additions, ‘small' multiplications

First closures

The classes VNP, VP, VBP, VF are closed by:

- 'small' additions, 'small' multiplications
- composition,

First closures

The classes VNP, VP, VBP, VF are closed by:

- 'small' additions, 'small' multiplications
- 'composition,'
- p-projections.

Closure by taking coefficients?

- Univariate case:

Closure by taking coefficients?

- Univariate case: $O(s d)$ for all classes!

This is just by interpolation.
Notice: it contains the case $f \in \mathbb{F}\left[X_{1}, \ldots, X_{n}\right][Y]$.

Closure by taking coefficients?

- Univariate case: $O(s d)$ for all classes!

This is just by interpolation.
Notice: it contains the case $f \in \mathbb{F}\left[X_{1}, \ldots, X_{n}\right][Y]$.

- Multivariate case:

Closure by taking coefficients?

- Univariate case: $O(s d)$ for all classes!

This is just by interpolation.
Notice: it contains the case $f \in \mathbb{F}\left[X_{1}, \ldots, X_{n}\right][Y]$.

- Multivariate case: Does not seem true for VP, VBP, VF:

$$
\left[t_{1} t_{2} \cdots t_{n}\right]\left(\prod_{i=1}^{n} \sum_{j=1}^{n} X_{i, j} t_{i}\right)=\operatorname{Perm}\left(X_{i, j}\right)
$$

Closure by taking coefficients?

- Univariate case: $O(s d)$ for all classes!

This is just by interpolation.
Notice: it contains the case $f \in \mathbb{F}\left[X_{1}, \ldots, X_{n}\right][Y]$.

- Multivariate case: Does not seem true for VP, VBP, VF:

$$
\left[t_{1} t_{2} \cdots t_{n}\right]\left(\prod_{i=1}^{n} \sum_{j=1}^{n} X_{i, j} t_{i}\right)=\operatorname{Perm}\left(X_{i, j}\right)
$$

True for VNP.

Closure by taking coefficients?

- Univariate case: $O(s d)$ for all classes!

This is just by interpolation.
Notice: it contains the case $f \in \mathbb{F}\left[X_{1}, \ldots, X_{n}\right][Y]$.

- Multivariate case: Does not seem true for VP, VBP, VF:

$$
\left[t_{1} t_{2} \cdots t_{n}\right]\left(\prod_{i=1}^{n} \sum_{j=1}^{n} X_{i, j} t_{i}\right)=\operatorname{Perm}\left(X_{i, j}\right)
$$

True for VNP.
Via the univariate case, possibility to extract some extremals coefficients.

Closure by taking factors

- Let $f=g h$ where $f \in \mathbb{C}_{d}\left[X_{1}, \ldots, X_{n}\right]$ computed by a sized-s circuit.

Closure by taking factors

- Let $f=g h$ where $f \in \mathbb{C}_{d}\left[X_{1}, \ldots, X_{n}\right]$ computed by a sized-s circuit. Then g is computed by a sized-poly(s) circuit. [Kaltofen]

Closure by taking factors

- Let $f=g h$ where $f \in \mathbb{C}_{d}\left[X_{1}, \ldots, X_{n}\right]$ computed by a sized-s circuit. Then g is computed by a sized-poly(s) circuit. [Kaltofen]
- [Sinhababu-Thierauf] VBP also closed by taking factors. But not known for formulas.
- Idea of the proof from [Chou-Kumar-Solomon]

Thank you.

