2. Ver Neurann algebra.

$$W \subseteq B(H)$$

 $\gamma \in Hillert spre
(dised for
 $W_{0}(C) \rightarrow M_{1}(C) \rightarrow \cdots$
 $A \mapsto (A \circ) \mapsto \cdots$
 $A \mapsto (A \circ) \mapsto \cdots$
 $A \mapsto (A \circ) \mapsto \cdots$
 $fix A \subseteq Cl \Rightarrow eutred profs.$
 $prof roruelistion \Rightarrow finitional equation.$
 $H_{eaten} (06?) Graved the solution to the equation
 $A \subseteq V + equation = uodel of computation
 $A \subseteq V + equation = uodel of computation
Changing $A \subseteq W \Rightarrow$ change in the expressivity of
the logic
 $\Rightarrow change in the complexity close
if equation:
 $A_{1} \subseteq W_{1}$ if they choosterize the same complexity.$$$$$

3. Group action
Group measure space construction (rhorrow, ver Norman)

$$G^{no}(X,\mu)$$
 measure preserving maps.
 $L^{oo}(X,\mu) = \frac{1}{2} \{: X \rightarrow C \mid \|\|\|\|_{\infty} < \infty^{2}$
 $L^{oo}(X,\mu) = \frac{1}{2} \{: X \rightarrow C \mid \|\|\|\|_{\infty} < \infty^{2}$
 $L^{oo}(X,\mu)$ abelian $uNa \subseteq B[L^{2}(X,\mu)]$.
 $G^{na}L^{oo}(X,\mu) \longrightarrow crossed product $L^{oo}(X,\mu)XG = u$
 $L^{oo}(X,\mu)' X = \frac{1}{2} L^{oo}(X,\mu)' X X = \frac{1}{2} L^{oo}(X$$

$$f s.t. G(f) = 2(x, f(x)) = 2(x, m(x)) | meti-xex$$

orbit equivalue : invariants known
$$(l^2 - Betti nubus (grops))$$
 (gaborian)
 $A \subseteq M_n(CC)$ $\dots o UN(A)'' = M_n(C)$
mox. al.
 $sub-alg$.
 $A \subseteq W \longrightarrow \begin{pmatrix} N(A)'' = W (Gaingle) \\ UN(A)'' = A (Gaingle) \end{pmatrix}$
 $T \sim T'$ if $\exists M$ unitary $\in U$
 $M(M)' = T$

$$\begin{split} \mathcal{N} &\subseteq \mathcal{B}(\mathcal{H}) \\ &\stackrel{\pi}{\swarrow} \qquad \stackrel{\pi}{\underset{proj \ o \ so - din \ space}} \\ &\stackrel{\pi}{\swarrow} \qquad \stackrel{\pi}{\underset{proj \ o \ so - din \ space}} \\ &\stackrel{\pi}{\underset{proj \ o \ so - din \ space}} \\ &\stackrel{\pi}{\underset{proj \ o \ so - din \ space}} \\ &\stackrel{\pi}{\underset{fr'/din \ T \ (din \ fr'/din \ fr$$

