gct2022: School and Conference on Geometric Complexity Theory

- Conference -
2022-Jan-21


# Implementing geometric complexity theory: <br> On the separation of orbit closures via symmetries 

Christian Ikenmeyer
joint work with Umangathan Kandasamy
$\frac{\text { UNIVERSITY OF }}{\text { LIVERPOOL }}$
(1) Multiplicity obstructions
(2) Fundamental invariant: the connection between orbit and its closure
(3) Proof idea: Highest weight vectors via Young tableaux
(1) Multiplicity obstructions

Fundamental invariant: the connection between orbit and its closure

Proof idea: Highest weight vectors via Young tableaux

Obstructions (Mulmuley and Sohoni $(2001,2008)$ )
In GCT we try to prove "variety noninclusions": $Y_{m} \nsubseteq Z_{m}$
(1) Classically: $\overline{\mathrm{GL}_{p(m)^{2}} \cdot\left(x_{0}^{p(m)-m} \operatorname{per}_{m}\right)} \nsubseteq \overline{\mathrm{GL}_{p(m)^{2}} \cdot \operatorname{det}_{p(m)}}$
(2) Without padding: $\overline{\mathrm{GL}_{m p(m)^{2}} \cdot \mathrm{per}_{m}} \notin \mathrm{GL}_{m p(m)^{2}} \cdot \mathrm{imp}_{m p(m)^{2}}^{(m)}$
(3) This talk: $\overline{\mathrm{GL}_{m} \cdot\left(x_{1}^{m}+x_{2}^{m}+\cdots+x_{m}^{m}\right)} \nsubseteq \overline{\mathrm{GL}_{m} \cdot\left(x_{1} x_{2} \cdots x_{m}\right)}$
$\leftarrow$ much simpler, polystable
Let $G:=\mathrm{GL}_{m}$.

$$
\text { If } \overline{G p} \subseteq \overline{G q} \text {, then }
$$



Schur's lemma: $\forall \lambda$ we have $z_{\lambda} \geq y_{\lambda}$.
If $z_{\lambda}<y_{\lambda}$, then $\lambda$ is a multiplicity obstruction. If also $z_{\lambda}=0$, then $\lambda$ is an occurrence obstruction.

## Theorem (with Bürgisser and Panova, 2016)

Occurrence obstructions cannot prove superpolynomial lower bounds for (1).
Hope (Mulmuley and Sohoni): For orbit closures of points that are characterized by their symmetries: obstructions should be obtainable from the symmetries.

## Hope for multiplicities

## Definition (characterized by stabilizer)

A point $p$ is characterized by its stabilizer $H$, if for every point $q$ with $H \leq \operatorname{stab}_{G}(q)$ we have $q \in \mathbb{C} p$.
Many points are characterized by their stabilizer: $x_{1} \cdots x_{m}, x_{1}^{m}+\cdots+x_{m}^{m}, \operatorname{det}_{D}, \operatorname{per}_{D}, \operatorname{imp}_{D}^{(m)}, \ldots$

## Proposition

If a point that is characterized by its stabilizer, each of the following pieces of information is sufficient to determine the others:
(1) The orbit $G p$
(2) The orbit closure $\overline{G p}$
(3) The stabilizer of $p$ up to conjugation

## Proposition

For a polystable point, under technical assumptions ( $G$ must be be a compact Lie group and the stabilizer $H$ must be connected and $\mathbb{C}^{m}$ must be an irreducible $H$-representation) we can enlarge this list [Yu 2016], based on [Larsen, Pink 1990]:
(4) The multiplicities in the coordinate ring of $G p$
(5) The multiplicities in the coordinate ring of $\overline{G p}$

- $\mathrm{GL}_{m} p$ is an algebraic variety, $\mathrm{GL}_{m} p \subseteq \overline{\mathrm{GL}_{m} p}$ open in its closure.
- $\mathbb{C}\left[\mathrm{GL}_{m} p\right]$ : ring of regular functions on the orbit $\mathrm{GL}_{m} p$. For example $a^{4} /\left(b^{2}-4 a c\right) \in \mathbb{C}\left[\mathrm{GL}_{2}\left(x_{1}\right)^{2}\right]_{2}$
- $\mathbb{C}\left[\overline{\mathrm{GL}_{m} p}\right] \subseteq \mathbb{C}\left[\mathrm{GL}_{m} p\right]$ subring. Therefore mult ${ }_{\lambda} \mathbb{C}\left[\overline{\mathrm{GL}_{m} p}\right] \leq$ mult $_{\lambda} \mathbb{C}\left[\mathrm{GL}_{m} p\right]$

Let $H \leq \mathrm{GL}_{m}$ be the stabilizer of $p$.

- For $p=x_{1}^{D}+\cdots+x_{m}^{D}$ we have $H=C_{D}$ 乙 $\mathfrak{S}_{m}$
- For $p=x_{1} \cdots x_{m}$ we have $H=\mathrm{ST}_{m} \rtimes \mathfrak{S}_{m}$
- For $p=\operatorname{det}_{D}, m=D^{2}$, we have $H=\left(\left(\mathrm{GL}_{D} \times \mathrm{GL}_{D}\right) / \mathbb{C}^{\times}\right) \rtimes \mathfrak{S}_{2}$ (Frobenius 1896).


## Algebraic Peter-Weyl theorem

$\mathrm{GL}_{m} p=\mathrm{GL}_{m} / H$ via $g p \mapsto g H$. Have a $\mathrm{GL}_{m}$-action on $\mathrm{GL}_{m} / H$ via $g^{\prime}(g H):=\left(g^{\prime} g\right) H$.
$\mathbb{C}\left[\mathrm{GL}_{m} p\right]=\mathbb{C}\left[\mathrm{GL}_{m}\right]^{H} \simeq \bigoplus_{\lambda}\{\lambda\} \otimes\{\lambda\}^{H}$. Hence $\operatorname{mult}_{\lambda} \mathbb{C}\left[\mathrm{GL}_{m} p\right]=\operatorname{dim}(\{\lambda\})^{H}$.
$\operatorname{dim}(\{\lambda\})^{H}$ can be calculated using the stabilizer and representation theoretic branching rules:

- For $p=\operatorname{det}_{D}$ we have $\operatorname{dim}(\{\lambda\})^{H}=s k(\lambda, D \times \delta)$, a symmetric rectangular Kronecker coefficient
- For $p=x_{1} \cdots x_{m}$ we have $\operatorname{dim}(\{\lambda\})^{H}=a_{\lambda}(m, \delta)$, a plethysm coefficient.

Theorem (with Panova), proof via classical representation theoretic branching coefficients
For $p=x_{1}^{D}+\cdots+x_{m}^{D}$ we have $\operatorname{dim}(\{\lambda\})^{H}=\sum_{\varrho \vdash_{m} \delta} b(\lambda, \varrho, D, \delta)$ with

$$
b(\lambda, \varrho, D, \delta):=\sum_{\substack{\mu^{1}, \mu^{2}, \ldots, \mu^{2} \delta \\ \mu^{i} \vdash D i \hat{\varrho}_{i}}} c_{\mu^{1}, \mu^{2}, \ldots, \mu^{\delta}}^{\lambda} \prod_{i=1}^{\delta} a_{\mu^{i}}\left(\varrho_{i}, i D\right) .
$$

and $\hat{\varrho}_{i}=\#\left\{j \mid i=\varrho_{j}\right\}$ (i.e., the frequency notation of $\varrho$ ).


| power sum vs prod of lin forms in few variables | occurrence obstructions | multiplicity obstructions |
| :---: | :---: | :---: |
| via stabilizer upper bound | No: " | Yes: Dörfler-l-Panova 2019 |
| any | No: Dörfler-I-Panova 2019 | Yes: " |


| unit tensor vs MaMu tensor | occurrence obstructions | multiplicity obstructions |
| :---: | :---: | :---: |
| via stabilizer upper bound | Yes: Bürgisser-I 2011, 2013 | Yes: " |
| any | Yes: " | Yes: " |

- All obstructions so far require an evaluation of a function at the "hard problem" (permanent, MaMu, etc).
- This is not intended in the Mulmuley-Sohoni papers.
- [I-Kandasamy 2020] does not require an evaluation. We show a tight connection

$$
\mathbb{C}\left[\mathrm{GL}_{m}\left(x_{1}^{m}+\cdots+x_{m}^{m}\right)\right] \leftrightarrow \mathbb{C}\left[\overline{\mathrm{GL}_{m}\left(x_{1}^{m}+\cdots+x_{m}^{m}\right)}\right] .
$$

## Theorem [I, Kandasamy; STOC 2020]

Let $m \geq 3$. Let $Z_{m}:=\overline{\mathrm{GL}_{m}\left(x_{1} x_{2} \cdots x_{m}\right)}$. Let $Y_{m}:=\overline{\mathrm{GL}_{m}\left(x_{1}^{m}+x_{2}^{m}+\cdots+x_{m}^{m}\right)}$. Let $\lambda:=(4 m, \underbrace{2 m, 2 m, 2 m, \ldots, 2 m}_{m-1 \text { many }})$. Then

$$
a_{\lambda}(m+1, m) \geq 3>\operatorname{mult}_{\lambda}\left(\mathbb{C}\left[Y_{m}\right]\right)=2>1 \geq \operatorname{mult}_{\lambda}\left(\mathbb{C}\left[Z_{m}\right]\right) \stackrel{m=\text { prime } \pm 1}{>} 0
$$

Therefore

- $Y_{m} \nsubseteq Z_{m}$.
and hence $\quad x_{1}^{m}+\cdots+x_{m}^{m}$ is not a product of homogeneous linear polynomials.
Caveat: Just the non-inclusion on its own is only barely nontrivial as a result.

The bounds are derived from the symmetry groups of $x_{1}^{m}+\cdots+x_{m}^{m}$ and $x_{1} \cdots x_{m}$.

## Theorem [I, Kandasamy; STOC 2020]

Let $m \geq 3$. Let $Z_{m}:=\overline{\mathrm{GL}_{m}\left(x_{1} x_{2} \cdots x_{m}\right)}$. Let $Y_{m}:=\overline{\mathrm{GL}_{m}\left(x_{1}^{m}+x_{2}^{m}+\cdots+x_{m}^{m}\right)}$. Let $\lambda:=(4 m, \underbrace{2 m, 2 m, 2 m, \ldots, 2 m}_{m-1 \text { many }})$. Then

$$
a_{\lambda}(m+1, m) \geq 3>\operatorname{mult}_{\lambda}\left(\mathbb{C}\left[Y_{m}\right]\right)=2>1 \geq \operatorname{mult}_{\lambda}\left(\mathbb{C}\left[Z_{m}\right]\right) \stackrel{m=\text { prime } \pm 1}{>} 0
$$

Therefore

- $Y_{m} \nsubseteq Z_{m}$.
and hence $\quad x_{1}^{m}+\cdots+x_{m}^{m}$ is not a product of homogeneous linear polynomials.
We have mult $\lambda_{\lambda}\left(\mathbb{C}\left[\overline{\left.\mathrm{GL}_{m}\left(x_{1} \cdots x_{m}\right)\right]_{\delta}}\right) \leq \operatorname{mult}_{\lambda}\left(\mathbb{C}\left[\mathrm{GL}_{m}\left(x_{1} \cdots x_{m}\right)\right]_{\delta}\right)=a_{\lambda}(m, \delta) \leq K(\lambda, m \times \delta)=\right.$ number of semistandard tableaux of shape $\lambda$ with numbers $1, \ldots, m$, each exactly $\delta$ times.

For the $\lambda$ in the theorem there is only 1 such tableau!
Example $(m=4)$ :

| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 3 | 3 | 4 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |  |  |  |  |  |  |  |  |
| 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |  |  |  |  |  |  |  |  |
| 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |  |  |  |  |  |  |  |  |

Multiplicity obstructions
(2) Fundamental invariant: the connection between orbit and its closure

Proof idea: Highest weight vectors via Young tableaux

Polystability: The fundamental invariant connects $\mathbb{C}[\overline{G p}]$ and $\mathbb{C}[G p]$
Let $G:=\mathrm{GL}_{m}$.

- These points are $\mathrm{SL}_{m}$-polystable, i.e., their $\mathrm{SL}_{m}$-orbit is closed (Hilbert-Mumford-Luna-Kempf):
- $x_{1} \cdots x_{m}$
- $x_{1}^{m}+\cdots+x_{m}^{m}$
- $\operatorname{det}_{D}$ for $m=D^{2}$
- $\operatorname{per}_{D}$ for $m=D^{2}$


## Theorem (Bürgisser-I)

If $p$ is polystable, then

- there is an $\mathrm{SL}_{m}$-invariant $\Phi \in \mathbb{C}[\overline{G p}]$ of smallest degree.
- $\Phi$ cuts out the boundary $\overline{G p} \backslash G p \subseteq \overline{G p}$.
- The ring $\mathbb{C}[G p]$ is the localization $\mathbb{C}[\overline{G p}]_{\Phi}$.
$\Phi$ is called the fundamental invariant.
- We know $\Phi$ for $x_{1}^{D}+\cdots+x_{m}^{D}$ for even $D$. For odd $D$ we need $\binom{2 D}{D} \geq 2 m$.
- For $x_{1} \cdots x_{m}$ we know it for all cases in which the Alon-Tarsi conjecture (Latin squares) is true.

Theorem [I, Kandasamy; STOC 2020]
Let $m \geq 3$. Let $Z_{m}:=\overline{\mathrm{GL}_{m}\left(x_{1} x_{2} \cdots x_{m}\right)}$. Let $Y_{m}:=\overline{\mathrm{GL}_{m}\left(x_{1}^{m}+x_{2}^{m}+\cdots+x_{m}^{m}\right)}$. Let
$\lambda:=(4 m, \underbrace{2 m, 2 m, 2 m, \ldots, 2 m}_{m-1 \text { many }})$. Then

$$
\stackrel{i-1 \text { many }}{a_{\lambda}(m+1, m) \geq 3>\operatorname{mult}_{\lambda}\left(\mathbb{C}\left[Y_{m}\right]\right)=2>1 \geq \operatorname{mult}_{\lambda}\left(\mathbb{C}\left[Z_{m}\right]\right) \stackrel{m=\text { prime } \pm 1}{>} 0 . . . ~}
$$

Let $p=x_{1}^{m}+\cdots+x_{m}^{m}$ so $\overline{G p}=Y_{m}$.
$\operatorname{mult}_{\lambda} \mathbb{C}[G p]=\sum_{\varrho \vdash_{m} \delta} b(\lambda, \varrho, D, \delta)=2$, but that is only an upper bound for mult $\lambda_{\lambda} \mathbb{C}[\overline{G p}]$.

## Main Technical Theorem

- If $D$ is even, let $e_{\varrho}:=\sum_{i=1}^{m}\left\lceil\frac{\rho_{i}}{D-2}\right\rceil$. If $D$ is odd, let $e_{\varrho}:=\sum_{i=1}^{m} 2\left\lceil\frac{\rho_{i}}{2(D-2)}\right\rceil$.
- Let $\lambda \vdash_{m} \delta D$. $\quad$ Let $k$ be the number of $m \times m$ blocks in $\lambda$.
- Let $d:=\delta-m k$.
- Let $e:=\max \left\{e_{\varrho} \mid \varrho \vdash_{m} d\right\}$.

$$
\text { If } k \geq e \text {, then } \operatorname{mult}_{\lambda} \mathbb{C}[G p]=\operatorname{mult}_{\lambda} \mathbb{C}[\overline{G p}] .
$$

- $\lambda=(4 m, 2 m, 2 m, \ldots, 2 m)$
- $k=2, \quad D=m, \quad \delta=2 m^{2}+2 m$
- $d=\delta-m k=2 m^{2}$
- $e=\max \left\{e_{(2)}, e_{(1,1)}\right\}=\max \{1,2\}=2$.


# Multiplicity obstructions 

## Fundamental invariant: the connection between orbit and its closure

(3) Proof idea: Highest weight vectors via Young tableaux

## Main Technical Theorem

- If $D$ is even, let $e_{\varrho}:=\sum_{i=1}^{m}\left\lceil\frac{\varrho_{i}}{D-2}\right\rceil$. If $D$ is odd, let $e_{\varrho}:=\sum_{i=1}^{m} 2\left\lceil\frac{\varrho_{i}}{2(D-2)}\right\rceil$.
- Let $\lambda \vdash_{m} \delta D$. Let $k$ be the number of $m \times m$ blocks in $\lambda$. - Let $d:=\delta-m k$.
- Let $e:=\max \left\{e_{\varrho} \mid \varrho \vdash_{m} d\right\}$.

$$
\text { If } k \geq e \text {, then } \text { mult }_{\lambda} \mathbb{C}[G p]=\text { mult }_{\lambda} \mathbb{C}[\overline{G p}]
$$

A vector $f$ in a $\mathrm{GL}_{m}$-representation $\mathscr{V}$ is called a highest weight vector (HWV) of weight $\lambda$, if

- $\operatorname{diag}\left(\alpha_{1}, \ldots, \alpha_{m}\right) f=\alpha_{1}^{\lambda_{1}} \cdots \alpha_{m}^{\lambda_{m}} f$
- $\left(\begin{array}{lll}1 & & * \\ & \ddots & \\ 0 & & 1\end{array}\right) f=f$

The highest weight vectors of weight $\lambda$ form a linear subspace $\mathrm{HWV}_{\lambda}(\mathscr{V}) \subseteq \mathscr{V}$.

- $\operatorname{mult}_{\lambda}(\mathscr{V})=\operatorname{dim} \operatorname{HWV}_{\lambda}(\mathscr{V})$

HWVs can be understood in terms of tableaux

A Young tableau or just The content of a tableau $T: \lambda \rightarrow \mathbb{N}$ is an assignment of numbers to the boxes of $\lambda$.

tableau $T$ is the list: (number of 1 s in $T$, number of 2 s in $T$, ...).

A Young tableau is called semistandard if each column is increasing from top to bottom and every row is nondecreasing from left to right.

The
superstandard tableau $\mathbb{S}_{\lambda}$ of shape $\lambda$ has only entries $i$ in row $i$ :

| 1 | 1 | 1 | 1 | 1 |
| :---: | :---: | :---: | :---: | :---: |
| 2 | 2 | 2 |  |  |
| 3 | 3 | 3 |  |  |
| 4 |  |  |  |  |

## Quotient out by the vector space of shuffle relations (Grassmann-Plücker relations)

In the vector space of formal linear combinations of Young tableaux there is the linear subspace $K(\lambda)$, which is spanned by

- $T+T^{\prime}$, where $T^{\prime}$ is a tableau that arises from $T$ by switching two numbers within one column.
- $T-\Sigma S$, where for two fixed columns $j, j^{\prime}$ and a fixed number of entries $k$ the sum is over all tableaux $S$ that arise from $T$ by exchanging the top $k$ entries in column $j$ with any $k$ entries in column $j^{\prime}$, preserving the internal vertical order.

The action on the space of linear combinations of tableax is defined via multilinear expansion.

## Averaging

- Let $T: \lambda \rightarrow\{1, \ldots, \delta\}$ be a tableau.
- Let $\varphi:\{1, \ldots, \delta\} \rightarrow\{1, \ldots, m\}$ be a map.
- Define $\varphi T:=\varphi(T)$ naively.


$$
\text { The "orbit average": } \quad M_{\delta, m} T:=\sum_{\varphi:\{1, \ldots, \delta\} \rightarrow\{1, \ldots, m\}} \varphi T
$$



$$
\text { The symmetrization: } \quad P_{m} T:=\sum_{\pi \in \mathfrak{G}_{m}} \pi T
$$

## Main Technical Theorem

- If $D$ is even, let $e_{\varrho}:=\sum_{i=1}^{m}\left\lceil\frac{Q_{i}}{D-2}\right\rceil$. If $D$ is odd, let $e_{\varrho}:=\sum_{i=1}^{m} 2\left\lceil\frac{\rho_{i}}{2(D-2)}\right\rceil$.
- Let $\lambda \vdash_{m} \delta D$. - Let $k$ be the number of $m \times m$ blocks in $\lambda$.
- Let $d:=\delta-m k$.
- Let $e:=\max \left\{e_{\varrho} \mid \varrho \vdash_{m} d\right\}$.

$$
\text { If } k \geq e \text {, then } \operatorname{mult}_{\lambda} \mathbb{C}[G p]=\operatorname{mult}_{\lambda} \mathbb{C}[\overline{G p}] .
$$

## Theorem (HWVs in the coordinate ring of the orbit closure)

The vector space $\operatorname{HWV}_{\lambda}\left(\mathbb{C}[\overline{G p}]_{\delta}\right)$ is generated by the functions

$$
g \mapsto\left\langle\mathbb{S}_{\lambda}, g M_{\delta, m} T\right\rangle,
$$

where $T$ runs over all semistandard tableaux of shape $\lambda$ in which each entry $1, \ldots, \delta$ appears exactly $D$ times.

## Theorem (HWVs in the coordinate ring of the orbit)

The vector space $\operatorname{HWV}_{\lambda}\left(\mathbb{C}[G p]_{\delta}\right)$ decomposes into a direct sum of vector spaces $\mathrm{HWV}_{\lambda}\left(\mathbb{C}[G p]_{\delta}\right)=\bigoplus_{\varrho \vdash_{m} \delta} \mathscr{W}_{\varrho}$, and each $\mathscr{W}_{\varrho}$ is generated by the functions

$$
g \mapsto\left\langle\mathbb{S}_{\lambda}, g P_{m} S\right\rangle,
$$

where $S$ runs over all semistandard tableaux $S$ of shape $\lambda$ and content $\varrho D$.

## Theorem (HWVs in the coordinate ring of the orbit)

The vector space $\mathrm{HWV} \vee_{\lambda}\left(\mathbb{C}[G p]_{\delta}\right)$ decomposes into a direct sum of vector spaces $\mathrm{HWV}\left(\mathbb{C}[G p]_{\delta}\right)=\bigoplus_{\varrho \vdash_{m} \delta} \mathscr{W}_{\varrho}$, and each $\mathscr{W}_{\varrho}$ is generated by the functions

$$
g \mapsto\left\langle\mathbb{S}_{\lambda}, g P_{m} S\right\rangle
$$

where $S$ runs over all semistandard tableaux $S$ of shape $\lambda$ and content $\varrho D$.


| 6 | 6 | 6 | 6 | 6 | 6 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 7 | 7 | 7 | 7 | 8 | 7 | 7 |


| 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 |



## From

## 

we construct


Proof of the technical theorem: This works for all $\lambda$ with enough full $m \times m$ blocks.

## Main Technical Theorem

- If $D$ is even, let $e_{\varrho}:=\sum_{i=1}^{m}\left\lceil\frac{Q_{i}}{D-2}\right\rceil$. If $D$ is odd, let $e_{\varrho}:=\sum_{i=1}^{m} 2\left\lceil\frac{\rho_{i}}{2(D-2)}\right\rceil$.
- Let $\lambda \vdash_{m} \delta D$. - Let $k$ be the number of $m \times m$ blocks in $\lambda$.
- Let $d:=\delta-m k$.
- Let $e:=\max \left\{e_{\varrho} \mid \varrho \vdash_{m} d\right\}$.

$$
\text { If } k \geq e \text {, then } \operatorname{mult}_{\lambda} \mathbb{C}[G p]=\operatorname{mult}_{\lambda} \mathbb{C}[\overline{G p}] .
$$

## Theorem (HWVs in the coordinate ring of the orbit closure)

The vector space $\operatorname{HWV}_{\lambda}\left(\mathbb{C}[\overline{G p}]_{\delta}\right)$ is generated by the functions

$$
g \mapsto\left\langle\mathbb{S}_{\lambda}, g M_{\delta, m} T\right\rangle,
$$

where $T$ runs over all semistandard tableaux of shape $\lambda$ in which each entry $1, \ldots, \delta$ appears exactly $D$ times.

## Theorem (HWVs in the coordinate ring of the orbit)

The vector space $\operatorname{HWV}_{\lambda}\left(\mathbb{C}[G p]_{\delta}\right)$ decomposes into a direct sum of vector spaces $\mathrm{HWV}_{\lambda}\left(\mathbb{C}[G p]_{\delta}\right)=\bigoplus_{\varrho \vdash_{m} \delta} \mathscr{W}_{\varrho}$, and each $\mathscr{W}_{\varrho}$ is generated by the functions

$$
g \mapsto\left\langle\mathbb{S}_{\lambda}, g P_{m} S\right\rangle,
$$

where $S$ runs over all semistandard tableaux $S$ of shape $\lambda$ and content $\varrho D$.

## Theorem [I, Kandasamy; STOC 2020]

Let $m \geq 3$. Let $Z_{m}:=\overline{\mathrm{GL}_{m}\left(x_{1} x_{2} \cdots x_{m}\right)}$. Let $Y_{m}:=\overline{\mathrm{GL}_{m}\left(x_{1}^{m}+x_{2}^{m}+\cdots+x_{m}^{m}\right)}$. Let $\lambda:=(4 m, \underbrace{2 m, 2 m, 2 m, \ldots, 2 m}_{m-1 \text { many }})$. Then

$$
a_{\lambda}(m+1, m) \geq 3>\operatorname{mult}_{\lambda}\left(\mathbb{C}\left[Y_{m}\right]\right)=2>1 \geq \operatorname{mult}_{\lambda}\left(\mathbb{C}\left[Z_{m}\right]\right) \stackrel{m=\text { prime } \pm 1}{>} 0
$$

## Summary

- The power sum does not factor as a product of linear forms.
- This is shown via explicit multiplicity obstructions $\lambda=(4 m, 2 m, 2 m, \ldots, 2 m)$.
- Not occurrence obstructions (in infinitely many cases).
- Not vanishing ideal occurrence obstructions.
- Both multiplicities are obtained via representation theoretic branching formulas.
- This is achieved by proving a close connection between $\mathbb{C}[G p]$ and $\mathbb{C}[\overline{G p}], p=x_{1}^{m}+\cdots+x_{m}^{m}$.

Thank you for your attention!

