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Obstructions (Mulmuley and Sohoni (2001,2008))

In GCT we try to prove “variety noninclusions”: Y,, € Z,,

(1) Classically: GL

. (:L‘g(m)imperm) Z GLp(m)2 -detp(m)

p(m)?

(2) Without padding: GL,,,(m2 - Per,, Z GLop(m)2 -imp:;)(m)Q

(3) This talk: GLy, - (27 + 27" + -+ -+ 21) € Glu, - (z122 -+ - Tim) + much simpler, polystable

Let G := GLyy,. -
If Gp C Gq, then

C[ﬁfﬂs —> C[C”v'p]é

D, {7 RO

Schur's lemma: VA we have z) > ya.
If zx < yx, then X is a multiplicity obstruction. If also zy = 0, then X is an occurrence obstruction.

Theorem (with Biirgisser and Panova, 2016) J

Occurrence obstructions cannot prove superpolynomial lower bounds for (1).

Hope (Mulmuley and Sohoni): For orbit closures of points that are characterized by their symmetries:
obstructions should be obtainable from the symmetries.

Christian lkenmeyer 4



Hope for multiplicities

Definition (characterized by stabilizer)
A point p is characterized by its stabilizer H, if for every point ¢ with H < stabg(q) we have g € Cp. J

Many points are characterized by their stabilizer: z; - - - xm, 27" + - -- + a7, detp, perp, impgn)

Proposition

If a point that is characterized by its stabilizer, each of the following pieces of information is sufficient to
determine the others: o
(1) The orbit Gp (2) The orbit closure Gp (3) The stabilizer of p up to conjugation

Proposition

For a polystable point, under technical assumptions (G must be be a compact Lie group and the stabilizer H
must be connected and C™ must be an irreducible H-representation) we can enlarge this list
[Yu 2016], based on [Larsen, Pink 1990]:

(4) The multiplicities in the coordinate ring of Gp
(5) The multiplicities in the coordinate ring of Gp

v
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@ GL,,p is an algebraic variety, GL,,,p C GL,,,p open in its closure.
o C[GL.p]: ring of regular functions on the orbit GL,,p. For example a*/(b* — 4ac) € C[GLa(x1)?]2

o C[GLmp] C C[GL.,p] subring. Therefore multyxC[GL»p] < multxC[GL,p] .
Let H < GL,, be the stabilizer of p.
o Forp=aP + -4+ 22 we have H =Cp 16,

o Forp=ux1- -2y we have H =ST,, X &,
e For p =detp, m = D?, we have H = ((GLp x GLp)/C*) x &> (Frobenius 1896).

Algebraic Peter-Weyl theorem
GL.,p = GL,,,/H via gp — gH. Have a GL,,-action on GL,,,/H via ¢'(gH) := (¢'9)H.
C[GLmp] = C[GLm]" ~ P, {\} ® {A\}". Hence multrxC[GLyp] = dim({\})* .

dim({\})™ can be calculated using the stabilizer and representation theoretic branching rules:
@ For p = detp we have dim({\})" = sk(\, D x &), a symmetric rectangular Kronecker coefficient
e For p =z -+ & we have dim({\}) = ax(m, §), a plethysm coefficient.

Theorem (with Panova), proof via classical representation theoretic branching coefficients
For p=aP +--- + 22 we have dim({)\})H = EQ,_mE b(A, 0, D,0) with
b(A, 0, D,8) := 3 12 s Gt oo Loy @, (84,4D).

wikDig;

and 9; = #{j | i = 0;} (i.e., the frequency notation of p).
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p(m)—m

x; per,, vs det,(m) H occurrence obstructions multiplicity obstructions
via stabilizer upper bound No: I-Panova 2015 ?
any No: Biirgisser-1-Panova 2016 ?
power sum vs prod of lin forms in few variables H occurrence obstructions \ multiplicity obstructions
via stabilizer upper bound No: " Yes: Dorfler-1-Panova 2019
any No: Dorfler-1-Panova 2019 Yes: "
unit tensor vs MaMu tensor H occurrence obstructions ‘ multiplicity obstructions
via stabilizer upper bound Yes: Biirgisser-1 2011, 2013 Yes: "
any Yes: " Yes: "

@ All obstructions so far require an evaluation of a function at the “hard problem” (permanent, MaMu, etc).
@ This is not intended in the Mulmuley-Sohoni papers.
o [I-Kandasamy 2020] does not require an evaluation. We show a tight connection

ClGLim (2" + - -+ zm)] ¢ C[GLn(z7 + -+ 2)].
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Theorem [l, Kandasamy; STOC 2020]

Let m > 3. Let Z,, := GLyw(z122 - - - Tm). Let Vi, := GLyn (2" + 25" + - - + 27%). Let
A= (4m,2m,2m,2m,...,2m). Then

m—1 many

ax(m +1,m) > 3 > [MURA(CTAN 22 > TSR EZa ™
Therefore
o Y, & Zn.
and hence 7" + - -+ + x;, is not a product of homogeneous linear polynomials.

Caveat: Just the non-inclusion on its own is only barely nontrivial as a result.

The bounds are derived from the symmetry groups of 7" + --- + z, and 1 - - Tp,.
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Theorem [l, Kandasamy; STOC 2020]

Let m > 3. Let Zy, := GLyn(z122 - - - Tm). Let Vi, := GLyn (2" + 25" + - - + 27%). Let
A= (4m, 2m,2m,2m,...,2m). Then

m—1 many

ax(m+1,m) > 3> multy (C[Yo]) = 2 > 13 multa(€[Zn]) ">
Therefore
o Y & Zn.
and hence 2+ -+ 27 is not a product of homogeneous linear polynomials.

We have multy(C[GLy (21 - - zm)]s) < multy(C[GLy, (21 -+ - 2m)]s) = ax(m,d) < K(X,m X §) = number of
semistandard tableaux of shape A with numbers 1,...,m, each exactly d times.

For the X in the theorem there is only 1 such tableau!

Example (m = 4):

1]1]2]2[3]3[4]4]

1
2
3
4

=N [
N
00N [
N |
0N [
N | =
0N [
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© Fundamental invariant: the connection between orbit and its closure
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Polystability: The fundamental invariant connects C[Gp] and C[Gp]
Let G := GL,.
@ These points are SL,,-polystable, i.e., their SL,,-orbit is closed (Hilbert-Mumford-Luna-Kempf):
» Tl Tm
4+ xm
detp for m = D?
per, for m = D?

v

v

v

Theorem (Biirgisser-I)

If p is polystable, then

o there is an SL,-invariant ® € C[Gp] of smallest degree.
e & cuts out the boundary Gp \ Gp C Gp.

@ The ring C[Gp] is the localization C[Gp|s.

P is called the fundamental invariant.

o We know @ for z” + - - + x}, for even D. For odd D we need (*)) > 2m.

@ For z1- -z, we know it for all cases in which the Alon-Tarsi conjecture (Latin squares) is true.
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Theorem [l, Kandasamy; STOC 2020]
Let m > 3. Let Z,, := GLyw (122 -+ - Tm). Let Vi, := GLyy (2 + 25" + -+ + 272). Let
A= (4m,2m,2m,2m,...,2m). Then

m—1 many

ax(m+1,m) > 3> multrA(C[Yrn]) =2 > 1 > multa(C[Z,])

m=prime+1

Letp=2a7 + -+ 2z so Gp = Y.

multAC[Gp] =3 . 5b(X, 0, D,0) =2, but that is only an upper bound for mult,C[Gp].

Main Technical Theorem

o If Dis even, let ep := 377" [55]. If D is odd, let e, := 37", 2[ 5851
o Let A\, 6D. o Let k be the number of m x m blocks in A. o Letd:=0— mk.
o Let e :=max{e, | o Fm d}.

If k > e, then multAC[Gp] = multAC[Gp] .

e A= (4m,2m,2m,...,2m)

° k=2, D =m, §=2m’+2m
o d=¢6—mk=2m?

e e = max{e(g), e(1,1)} = max{1,2} = 2.
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Main Technical Theorem

o If Dis even, let e, := > 7" [5%5]. If Dis odd, let e, := > 7" | 2[5 1-

o Let A, 0D. o Let k be the number of m x m blocks in A. o Letd:=0— mk.
o Let e :=max{e, | 0 Fm d}.

If k> e, then multyC[Gp] = multyC[Gp] .

A vector f in a GL,,-representation ¥ is called a highest weight vector (HWV) of weight X, if

o diag(au,...,am)f =3t ---apm f

- (1._*)f=f

The highest weight vectors of weight A form a linear subspace HWV(¥) C 7.

o multy(¥) = dim HWV,\ (¥)
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HWVs can be understood in terms of tableaux

A Young tableau or just The content of a A Young tableau is The superstandard
tableau 7 : A — N is an as-  tableau 7T is the list:  called semistandard if tableau S, of shape A has
signment of numbers to the (number of 1s in T, each column is in- only entries 7 in row i:
boxes of . number of 2s in T, creasing from top to 1[1]1]1]1]
1[1]1]2]2] Sol) bottom and every row 2122

21313 is nondecreasing from 31313

i 4]4 left to right. 4]

Quotient out by the vector space of shuffle relations (Grassmann-Pliicker relations)
In the vector space of formal linear combinations of Young tableaux there is the linear subspace K(\), which is
spanned by

o T+ T', where T” is a tableau that arises from T' by switching two numbers within one column.

o T — XS, where for two fixed columns j,j’ and a fixed number of entries k the sum is over all tableaux S
that arise from 7' by exchanging the top k entries in column j with any k entries in column j’, preserving
the internal vertical order.

The action on the space of linear combinations of tableax is defined via multilinear expansion.

UoO\[a]a] _ 2+ _ [afx], [1]2], [2]1] [2]2]_ 11
E |: = = :2 .
xamere (1 1)22 513 a2 22 T22) T 2]2] T 1202
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Averaging
o LetT:\— {1,...,0} be a tableau.
o Let p:{1,...,0} = {1,...,m} be a map.
o Define T := ¢(T") naively.

Example ig; -, implies ( mhms]) 2R
X : = implies ¢ ( [2[2[3 = [2l2[1
e(3) =1 -

—_——
=0in {(5.3,1)}

2[2[2]2[2 1[1]1]1]2]

[1]1]1]2]3] [afafafe1]  [2]x [1[2 [2] 2 2[1 [2]2]2]1]1] 2[2[2[1]2
Example: M3,2H23 = [kl + lIl + i 12 +11 + =0

[L]1]1]2[3] [Aa]af2[3]  [2]2]2[1]3] ([3[3[3[2]1] [i[i[1[3[2] [2[2[2[3[1]  [3[3[3]1]2]

Example:szs :;3 +13 +21 +32 +31 + 112 =0
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Main Technical Theorem

o If D is even, let ep := 37" [5%5]. If Dis odd, let e, := 7", 2[ 555 1.
o Let A, 0D. o Let k be the number of m x m blocks in . o Letd:=0— mk.
o Let e := max{e, | 0 Fm d}.

If k > e, then multxC[Gp] = multAC[Gp] .

Theorem (HWVs in the coordinate ring of the orbit closure)
The vector space HWV (C[Gp]s) is generated by the functions
g = (Skngé,mT> P

where T' runs over all semistandard tableaux of shape A in which each entry 1,...,0 appears exactly D times.

Theorem (HWVs in the coordinate ring of the orbit)

The vector space HWV(C[Gp]s) decomposes into a direct sum of vector spaces HWV (C[GDpls) = D, 5 7o,
and each %, is generated by the functions
g+ (Sx,gPmS),

where S runs over all semistandard tableaux S of shape A and content pD.
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Theorem (HWVs in the coordinate ring of the orbit)

The vector space HWV  (C[Gp]s) decomposes into a direct sum of vector spaces HWV  (C[Gp]s) = P
and each %, is generated by the functions

s Ve

obm

g — <S>\:ngS> )

where S runs over all semistandard tableaux S of shape A and content oD.

Example: D =38, A=(24,8,8,8,8,8,8,8),
Aaafaaaaaafaafaafaaafaafafa]aa]a ]
2[2[2[2[2[2[2]2
3[3[3[3[3][3[3[3
__[4]4[4]a]44]4[4 _
S = BEEEEEE 0=1(3,1,1,1,1,1,1,1)
6]6]6/6]6]6]6]6
fdkdkdrdidkdidid
8[8[8[8[8][8[8[8
L[aafaafafafafafafafafafafafafafafafa]z]a]1]1] 1[1]a]a]a]a[1]1[88[8]8[8]8[8[8[8[8[8[8[8[8][8]8
2[2[2[2[2]2[2]2 2[2[2]2[2]2[2]2
3[3[3[3[3[3[3]3 3[3[3[3[3[3[3]3
— 7 4lal4l4l4]al4]4 . 4l4[4lal4[al4]4
PsS 7! 5[5[5(5[5[5[5]5 + +55555555
6/6]6/6(6]6]6]6 6l6/66]6]6]6]6
A kA Ak kd
8[s[8[8[8[8[8[8 8[s[8[s8[8[8[8[8
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From

LA aa]1]1]

QO ~J| O U W[ Lo DOf =
QO ~J| O U W[ Lo DOf =

QO ~J| O U W[ W DOf =

Q0| | OO U | W DO

Q0| | OO U | W DO

Q0| | OO U | W DO =

Q0| | OO U W | W DO =

Q0| | OO U | W DO =

we construct

A fafafaafafafafafafafafafafafa]a]afa[1][a]1]1] 1f1]1f1[1[a]a]1]8[8[8[8[8[8]8[8[8[8[8[8[8[8[8[8]

2[22[2[2[2[2]2 2[2[2[2[2[2[2[2

313[3[3]3|3|3[3 3[3[3[3[3]|3]|3|3

— 7 4lafafalafafa]a 4lafalala]a]a[4 —

MlO,ST—7' 515555555 + + BEEBEEEE =PsS

6|6(6/6/6|6|6(6 6(6(6(6]/6|6|6|6

rdididididididid T|\7\7|\7T|T|7|7|7

888[8[8[8[8[8 8[88[8[8[8[8[8
Proof of the technical theorem: This works for all A with enough full m x m blocks.
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Main Technical Theorem

o If D is even, let ep := 37" [5%5]. If Dis odd, let e, := 7", 2[ 555 1.
o Let A, 0D. o Let k be the number of m x m blocks in . o Letd:=0— mk.
o Let e := max{e, | 0 Fm d}.

If k > e, then multxC[Gp] = multAC[Gp] .

Theorem (HWVs in the coordinate ring of the orbit closure)
The vector space HWV (C[Gp]s) is generated by the functions
g = (Skngé,mT> P

where T' runs over all semistandard tableaux of shape A in which each entry 1,...,0 appears exactly D times.

Theorem (HWVs in the coordinate ring of the orbit)

The vector space HWV(C[Gp]s) decomposes into a direct sum of vector spaces HWV (C[GDpls) = D, 5 7o,
and each %, is generated by the functions
g+ (Sx,gPmS),

where S runs over all semistandard tableaux S of shape A and content pD.

Christian Ikenmeyer 20



Theorem [l, Kandasamy; STOC 2020]
Let m > 3. Let Z,, := GLyw (122 -+ - Tm). Let Vi, := GLyy (2 + 25" + -+ + 22). Let
A= (4m,2m,2m,2m,...,2m). Then

m—1 many

ax(m+1,m) > 3> multyx(C[Yrn]) =2 > 1> multa(C[Zn])

m=prime+1
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Summary

@ The power sum does not factor as a product of linear forms.

This is shown via explicit multiplicity obstructions A = (4m, 2m,2m, ..., 2m).

@ Not occurrence obstructions (in infinitely many cases).

@ Not vanishing ideal occurrence obstructions.
@ Both multiplicities are obtained via representation theoretic branching formulas.
. _

This is achieved by proving a close connection between C[Gp] and C[Gp|, p=z" + -+ + a,.

Thank you for your attention!
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