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Obstructions (Mulmuley and Sohoni (2001,2008))
In GCT we try to prove “variety noninclusions”: Ym 6⊆ Zm

(1) Classically: GLp(m)2 · (x
p(m)−m
0 perm) 6⊆ GLp(m)2 · detp(m)

(2) Without padding: GLmp(m)2 · perm 6⊆ GLmp(m)2 · imp
(m)

mp(m)2

(3) This talk: GLm · (xm1 + xm2 + · · ·+ xmm) 6⊆ GLm · (x1x2 · · ·xm) ← much simpler, polystable

Let G := GLm.
If Gp ⊆ Gq, then

C[Gq]δ −� C[Gp]δ

= =⊕
λ{λ}

⊕zλ
⊕

λ{λ}
⊕yλ

Schur’s lemma: ∀λ we have zλ ≥ yλ.
If zλ < yλ, then λ is a multiplicity obstruction. If also zλ = 0, then λ is an occurrence obstruction.

Theorem (with Bürgisser and Panova, 2016)

Occurrence obstructions cannot prove superpolynomial lower bounds for (1).

Hope (Mulmuley and Sohoni): For orbit closures of points that are characterized by their symmetries:
obstructions should be obtainable from the symmetries.
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Hope for multiplicities

Definition (characterized by stabilizer)

A point p is characterized by its stabilizer H, if for every point q with H ≤ stabG(q) we have q ∈ Cp.

Many points are characterized by their stabilizer: x1 · · ·xm, xm1 + · · ·+ xmm, detD, perD, imp
(m)
D , . . .

Proposition

If a point that is characterized by its stabilizer, each of the following pieces of information is sufficient to
determine the others:
(1) The orbit Gp (2) The orbit closure Gp (3) The stabilizer of p up to conjugation

Proposition

For a polystable point, under technical assumptions (G must be be a compact Lie group and the stabilizer H
must be connected and Cm must be an irreducible H-representation) we can enlarge this list
[Yu 2016], based on [Larsen, Pink 1990]:

(4) The multiplicities in the coordinate ring of Gp

(5) The multiplicities in the coordinate ring of Gp
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GLmp is an algebraic variety, GLmp ⊆ GLmp open in its closure.
C[GLmp]: ring of regular functions on the orbit GLmp. For example a4/(b2 − 4ac) ∈ C[GL2(x1)2]2

C[GLmp] ⊆ C[GLmp] subring. Therefore multλC[GLmp] ≤ multλC[GLmp] .

Let H ≤ GLm be the stabilizer of p.

For p = xD1 + · · ·+ xDm we have H = CD oSm

For p = x1 · · ·xm we have H = STm oSm

For p = detD, m = D2, we have H = ((GLD × GLD)/C×) oS2 (Frobenius 1896).

Algebraic Peter-Weyl theorem

GLmp = GLm/H via gp 7→ gH. Have a GLm-action on GLm/H via g′(gH) := (g′g)H.

C[GLmp] = C[GLm]H '
⊕

λ{λ} ⊗ {λ}
H . Hence multλC[GLmp] = dim({λ})H .

dim({λ})H can be calculated using the stabilizer and representation theoretic branching rules:

For p = detD we have dim({λ})H = sk(λ,D × δ), a symmetric rectangular Kronecker coefficient
For p = x1 · · ·xm we have dim({λ})H = aλ(m, δ), a plethysm coefficient.

Theorem (with Panova), proof via classical representation theoretic branching coefficients

For p = xD1 + · · ·+ xDm we have dim({λ})H =
∑
%`mδ b(λ, %,D, δ) with

b(λ, %,D, δ) :=
∑

µ1,µ2,...,µδ

µi`Di%̂i

cλµ1,µ2,...,µδ

∏δ
i=1 aµi(%̂i, iD).

and %̂i = #{j | i = %j} (i.e., the frequency notation of %).
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x
p(m)−m
0 perm vs detp(m) occurrence obstructions multiplicity obstructions

via stabilizer upper bound No: I-Panova 2015 ?
any No: Bürgisser-I-Panova 2016 ?

power sum vs prod of lin forms in few variables occurrence obstructions multiplicity obstructions

via stabilizer upper bound No: ” Yes: Dörfler-I-Panova 2019
any No: Dörfler-I-Panova 2019 Yes: ”

unit tensor vs MaMu tensor occurrence obstructions multiplicity obstructions

via stabilizer upper bound Yes: Bürgisser-I 2011, 2013 Yes: ”
any Yes: ” Yes: ”

All obstructions so far require an evaluation of a function at the “hard problem” (permanent, MaMu, etc).

This is not intended in the Mulmuley-Sohoni papers.

[I-Kandasamy 2020] does not require an evaluation. We show a tight connection

C[GLm(xm1 + · · ·+ xmm)] ↔ C[GLm(xm1 + · · ·+ xmm)].
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Theorem [I, Kandasamy; STOC 2020]

Let m ≥ 3. Let Zm := GLm(x1x2 · · ·xm). Let Ym := GLm(xm1 + xm2 + · · ·+ xmm). Let
λ := (4m, 2m, 2m, 2m, . . . , 2m︸ ︷︷ ︸

m−1 many

). Then

aλ(m+ 1,m) ≥ 3 > multλ(C[Ym]) = 2 > 1 ≥ multλ(C[Zm])
m=prime±1

> 0.

Therefore

Ym 6⊆ Zm.

and hence xm1 + · · ·+ xmm is not a product of homogeneous linear polynomials.

Caveat: Just the non-inclusion on its own is only barely nontrivial as a result.

The bounds are derived from the symmetry groups of xm1 + · · ·+ xmm and x1 · · ·xm.
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Theorem [I, Kandasamy; STOC 2020]

Let m ≥ 3. Let Zm := GLm(x1x2 · · ·xm). Let Ym := GLm(xm1 + xm2 + · · ·+ xmm). Let
λ := (4m, 2m, 2m, 2m, . . . , 2m︸ ︷︷ ︸

m−1 many

). Then

aλ(m+ 1,m) ≥ 3 > multλ(C[Ym]) = 2 > 1 ≥ multλ(C[Zm])
m=prime±1

> 0.

Therefore

Ym 6⊆ Zm.

and hence xm1 + · · ·+ xmm is not a product of homogeneous linear polynomials.

We have multλ(C[GLm(x1 · · ·xm)]δ) ≤ multλ(C[GLm(x1 · · ·xm)]δ) = aλ(m, δ) ≤ K(λ,m× δ) = number of
semistandard tableaux of shape λ with numbers 1, . . . ,m, each exactly δ times.

For the λ in the theorem there is only 1 such tableau!

Example (m = 4):

1 1 1 1 1 1 1 1 1 1 2 2 3 3 4 4
2 2 2 2 2 2 2 2
3 3 3 3 3 3 3 3
4 4 4 4 4 4 4 4
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Polystability: The fundamental invariant connects C[Gp] and C[Gp]

Let G := GLm.

These points are SLm-polystable, i.e., their SLm-orbit is closed (Hilbert-Mumford-Luna-Kempf):

I x1 · · ·xm
I xm1 + · · ·+ xmm
I detD for m = D2

I perD for m = D2

Theorem (Bürgisser-I)

If p is polystable, then

there is an SLm-invariant Φ ∈ C[Gp] of smallest degree.

Φ cuts out the boundary Gp \Gp ⊆ Gp.

The ring C[Gp] is the localization C[Gp]Φ.

Φ is called the fundamental invariant.

We know Φ for xD1 + · · ·+ xDm for even D. For odd D we need
(

2D
D

)
≥ 2m.

For x1 · · ·xm we know it for all cases in which the Alon-Tarsi conjecture (Latin squares) is true.
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Theorem [I, Kandasamy; STOC 2020]

Let m ≥ 3. Let Zm := GLm(x1x2 · · ·xm). Let Ym := GLm(xm1 + xm2 + · · ·+ xmm). Let
λ := (4m, 2m, 2m, 2m, . . . , 2m︸ ︷︷ ︸

m−1 many

). Then

aλ(m+ 1,m) ≥ 3 > multλ(C[Ym]) = 2 > 1 ≥ multλ(C[Zm])
m=prime±1

> 0.

Let p = xm1 + · · ·+ xmm so Gp = Ym.

multλC[Gp] =
∑
%`mδ b(λ, %,D, δ) = 2, but that is only an upper bound for multλC[Gp].

Main Technical Theorem

If D is even, let e% :=
∑m
i=1d

%i
D−2
e. If D is odd, let e% :=

∑m
i=1 2d %i

2(D−2)
e.

Let λ `m δD. Let k be the number of m×m blocks in λ. Let d := δ −mk.
Let e := max{e% | % `m d}.

If k ≥ e, then multλC[Gp] = multλC[Gp] .

λ = (4m, 2m, 2m, . . . , 2m)
k = 2, D = m, δ = 2m2 + 2m
d = δ −mk = 2m2

e = max{e(2), e(1,1)} = max{1, 2} = 2.
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Main Technical Theorem

If D is even, let e% :=
∑m
i=1d

%i
D−2
e. If D is odd, let e% :=

∑m
i=1 2d %i

2(D−2)
e.

Let λ `m δD. Let k be the number of m×m blocks in λ. Let d := δ −mk.
Let e := max{e% | % `m d}.

If k ≥ e, then multλC[Gp] = multλC[Gp] .

A vector f in a GLm-representation V is called a highest weight vector (HWV) of weight λ, if

diag(α1, . . . , αm)f = αλ1
1 · · ·αλmm f(

1 ∗
. . .

0 1

)
f = f

The highest weight vectors of weight λ form a linear subspace HWVλ(V ) ⊆ V .

multλ(V ) = dim HWVλ(V )
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HWVs can be understood in terms of tableaux
A Young tableau or just
tableau T : λ → N is an as-
signment of numbers to the
boxes of λ.
1 1 1 2 2
2 3 3
3 4 4
4

The content of a
tableau T is the list:
(number of 1s in T ,
number of 2s in T ,
. . .).

A Young tableau is
called semistandard if
each column is in-
creasing from top to
bottom and every row
is nondecreasing from
left to right.

The superstandard
tableau Sλ of shape λ has
only entries i in row i:
1 1 1 1 1
2 2 2
3 3 3
4

Quotient out by the vector space of shuffle relations (Grassmann-Plücker relations)

In the vector space of formal linear combinations of Young tableaux there is the linear subspace K(λ), which is
spanned by

T + T ′, where T ′ is a tableau that arises from T by switching two numbers within one column.

T − ΣS, where for two fixed columns j, j′ and a fixed number of entries k the sum is over all tableaux S
that arise from T by exchanging the top k entries in column j with any k entries in column j′, preserving
the internal vertical order.

The action on the space of linear combinations of tableax is defined via multilinear expansion.

Example:

(
1 0
1 1

)
1 1
2 2

=
1+21+2

2 2
= 1 1

2 2
+ 1 2

2 2
+ 2 1

2 2
+ 2 2

2 2
= 2 1 1

2 2
.
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Averaging
Let T : λ→ {1, . . . , δ} be a tableau.
Let ϕ : {1, . . . , δ} → {1, . . . ,m} be a map.
Define ϕT := ϕ(T ) naively.

Example:

 ϕ(1) = 2
ϕ(2) = 2
ϕ(3) = 1

 implies ϕ
(

1 1 1 2 3
2 2 3
3

)
=

2 2 2 2 1
2 2 1
1︸ ︷︷ ︸

=0 in {(5,3,1)}

.

The “orbit average”: Mδ,mT :=
∑

ϕ:{1,...,δ}→{1,...,m}

ϕT

Example: M3,2
1 1 1 2 3
2 2 3
3

=
1 1 1 2 1
2 2 1
1

+
1 1 1 2 2
2 2 2
2

+
2 2 2 2 1
2 2 1
1

+
2 2 2 2 2
2 2 2
2

+
1 1 1 1 1
1 1 1
1

+
1 1 1 1 2
1 1 2
2

+
2 2 2 1 1
1 1 1
1

+
2 2 2 1 2
1 1 2
2

= 0

The symmetrization: PmT :=
∑
π∈Sm

πT

Example: P3
1 1 1 2 3
2 2 3
3

=
1 1 1 2 3
2 2 3
3

+
2 2 2 1 3
1 1 3
3

+
3 3 3 2 1
2 2 1
1

+
1 1 1 3 2
3 3 2
2

+
2 2 2 3 1
3 3 1
1

+
3 3 3 1 2
1 1 2
2

= 0
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Main Technical Theorem

If D is even, let e% :=
∑m
i=1d

%i
D−2
e. If D is odd, let e% :=

∑m
i=1 2d %i

2(D−2)
e.

Let λ `m δD. Let k be the number of m×m blocks in λ. Let d := δ −mk.
Let e := max{e% | % `m d}.

If k ≥ e, then multλC[Gp] = multλC[Gp] .

Theorem (HWVs in the coordinate ring of the orbit closure)

The vector space HWVλ(C[Gp]δ) is generated by the functions

g 7→ 〈Sλ, gMδ,mT 〉 ,

where T runs over all semistandard tableaux of shape λ in which each entry 1, . . . , δ appears exactly D times.

Theorem (HWVs in the coordinate ring of the orbit)

The vector space HWVλ(C[Gp]δ) decomposes into a direct sum of vector spaces HWVλ(C[Gp]δ) =
⊕

%`mδ W%,
and each W% is generated by the functions

g 7→ 〈Sλ, gPmS〉 ,

where S runs over all semistandard tableaux S of shape λ and content %D.
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Theorem (HWVs in the coordinate ring of the orbit)

The vector space HWVλ(C[Gp]δ) decomposes into a direct sum of vector spaces HWVλ(C[Gp]δ) =
⊕

%`mδ W%,
and each W% is generated by the functions

g 7→ 〈Sλ, gPmS〉 ,

where S runs over all semistandard tableaux S of shape λ and content %D.

Example: D = 8, λ = (24, 8, 8, 8, 8, 8, 8, 8),

S =

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2
3 3 3 3 3 3 3 3
4 4 4 4 4 4 4 4
5 5 5 5 5 5 5 5
6 6 6 6 6 6 6 6
7 7 7 7 7 7 7 7
8 8 8 8 8 8 8 8

% = (3, 1, 1, 1, 1, 1, 1, 1)

P8S = 7!


1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2
3 3 3 3 3 3 3 3
4 4 4 4 4 4 4 4
5 5 5 5 5 5 5 5
6 6 6 6 6 6 6 6
7 7 7 7 7 7 7 7
8 8 8 8 8 8 8 8

+ · · ·+

1 1 1 1 1 1 1 1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
2 2 2 2 2 2 2 2
3 3 3 3 3 3 3 3
4 4 4 4 4 4 4 4
5 5 5 5 5 5 5 5
6 6 6 6 6 6 6 6
7 7 7 7 7 7 7 7
8 8 8 8 8 8 8 8


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From
S = 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2
3 3 3 3 3 3 3 3
4 4 4 4 4 4 4 4
5 5 5 5 5 5 5 5
6 6 6 6 6 6 6 6
7 7 7 7 7 7 7 7
8 8 8 8 8 8 8 8

we construct

T = 1 1 2 2 3 3 3 3 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3
4 4 4 4 4 4 4 4
5 5 5 5 5 5 5 5
6 6 6 6 6 6 6 6
7 7 7 7 7 7 7 7
8 8 8 8 8 8 8 8
9 9 9 9 9 9 9 9
10 10 10 10 10 10 10 10

M10,8T = 7!


1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2
3 3 3 3 3 3 3 3
4 4 4 4 4 4 4 4
5 5 5 5 5 5 5 5
6 6 6 6 6 6 6 6
7 7 7 7 7 7 7 7
8 8 8 8 8 8 8 8

+ · · ·+

1 1 1 1 1 1 1 1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
2 2 2 2 2 2 2 2
3 3 3 3 3 3 3 3
4 4 4 4 4 4 4 4
5 5 5 5 5 5 5 5
6 6 6 6 6 6 6 6
7 7 7 7 7 7 7 7
8 8 8 8 8 8 8 8

 = P8S

Proof of the technical theorem: This works for all λ with enough full m×m blocks.
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Main Technical Theorem

If D is even, let e% :=
∑m
i=1d

%i
D−2
e. If D is odd, let e% :=

∑m
i=1 2d %i

2(D−2)
e.

Let λ `m δD. Let k be the number of m×m blocks in λ. Let d := δ −mk.
Let e := max{e% | % `m d}.

If k ≥ e, then multλC[Gp] = multλC[Gp] .

Theorem (HWVs in the coordinate ring of the orbit closure)

The vector space HWVλ(C[Gp]δ) is generated by the functions

g 7→ 〈Sλ, gMδ,mT 〉 ,

where T runs over all semistandard tableaux of shape λ in which each entry 1, . . . , δ appears exactly D times.

Theorem (HWVs in the coordinate ring of the orbit)

The vector space HWVλ(C[Gp]δ) decomposes into a direct sum of vector spaces HWVλ(C[Gp]δ) =
⊕

%`mδ W%,
and each W% is generated by the functions

g 7→ 〈Sλ, gPmS〉 ,

where S runs over all semistandard tableaux S of shape λ and content %D.
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Theorem [I, Kandasamy; STOC 2020]

Let m ≥ 3. Let Zm := GLm(x1x2 · · ·xm). Let Ym := GLm(xm1 + xm2 + · · ·+ xmm). Let
λ := (4m, 2m, 2m, 2m, . . . , 2m︸ ︷︷ ︸

m−1 many

). Then

aλ(m+ 1,m) ≥ 3 > multλ(C[Ym]) = 2 > 1 ≥ multλ(C[Zm])
m=prime±1

> 0.
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Summary

The power sum does not factor as a product of linear forms.

This is shown via explicit multiplicity obstructions λ = (4m, 2m, 2m, . . . , 2m).

Not occurrence obstructions (in infinitely many cases).

Not vanishing ideal occurrence obstructions.

Both multiplicities are obtained via representation theoretic branching formulas.

This is achieved by proving a close connection between C[Gp] and C[Gp], p = xm1 + · · ·+ xmm.

Thank you for your attention!
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