gct2022: School and Conference on Geometric Complexity Theory — Conference — 2022-Jan-21

Implementing geometric complexity theory: On the separation of orbit closures via symmetries

> Christian Ikenmeyer joint work with Umangathan Kandasamy

Multiplicity obstructions

- 2 Fundamental invariant: the connection between orbit and its closure
- Proof idea: Highest weight vectors via Young tableaux

Multiplicity obstructions

2 Fundamental invariant: the connection between orbit and its closure

Proof idea: Highest weight vectors via Young tableaux

Obstructions (Mulmuley and Sohoni (2001,2008)) In GCT we try to prove "variety noninclusions": $Y_m \not\subseteq Z_m$ (1) Classically: $\operatorname{GL}_{p(m)^2} \cdot (x_0^{p(m)-m} \operatorname{per}_m) \not\subseteq \overline{\operatorname{GL}_{p(m)^2} \cdot \operatorname{det}_{p(m)}}$ (2) Without padding: $\overline{\mathsf{GL}}_{mp(m)^2} \cdot \operatorname{per}_m \not\subseteq \overline{\mathsf{GL}}_{mp(m)^2} \cdot \operatorname{imp}_{mp(m)^2}^{(m)}$ (3) This talk: $\overline{\mathsf{GL}_m \cdot (x_1^m + x_2^m + \dots + x_m^m)} \not\subseteq \overline{\mathsf{GL}_m \cdot (x_1 x_2 \cdots x_m)}$ Let $G := \mathsf{GL}_m$. If $\overline{Gp} \subset \overline{Gq}$, then $\begin{array}{ccc} \mathbb{C}[\overline{Gq}]_{\delta} & \longrightarrow & \mathbb{C}[\overline{Gp}]_{\delta} \\ & & & & \\ \mathbb{H} & & & \\ \bigoplus_{\lambda}\{\lambda\}^{\oplus z_{\lambda}} & & \bigoplus_{\lambda}\{\lambda\}^{\oplus y_{\lambda}} \end{array}$

 \leftarrow much simpler, polystable

Schur's lemma: $\forall \lambda$ we have $z_{\lambda} \geq y_{\lambda}$.

If $z_{\lambda} < y_{\lambda}$, then λ is a multiplicity obstruction. If also $z_{\lambda} = 0$, then λ is an occurrence obstruction.

Theorem (with Bürgisser and Panova, 2016)

Occurrence obstructions cannot prove superpolynomial lower bounds for (1).

Hope (Mulmuley and Sohoni): For orbit closures of points that are **characterized by their symmetries**: obstructions should be obtainable **from the symmetries**.

Hope for multiplicities

Definition (characterized by stabilizer)

A point p is characterized by its stabilizer H, if for every point q with $H \leq \operatorname{stab}_G(q)$ we have $q \in \mathbb{C}p$.

Many points are characterized by their stabilizer: $x_1 \cdots x_m$, $x_1^m + \cdots + x_m^m$, \det_D , per_D , $\operatorname{imp}_D^{(m)}$, ...

Proposition

If a point that is characterized by its stabilizer, each of the following pieces of information is sufficient to determine the others: $__$

(1) The orbit Gp (2) The orbit closure \overline{Gp} (3) The stabilizer of p up to conjugation

Proposition

For a polystable point, under technical assumptions (G must be be a compact Lie group and the stabilizer H must be connected and \mathbb{C}^m must be an irreducible H-representation) we can enlarge this list [Yu 2016], based on [Larsen, Pink 1990]:

- (4) The multiplicities in the coordinate ring of Gp
- (5) The multiplicities in the coordinate ring of \overline{Gp}

- GL_mp is an algebraic variety, $GL_mp \subseteq \overline{GL_mp}$ open in its closure.
- $\mathbb{C}[\mathsf{GL}_m p]$: ring of regular functions on the orbit $\mathsf{GL}_m p$. For example $a^4/(b^2 4ac) \in \mathbb{C}[\mathsf{GL}_2(x_1)^2]_2$
- $\mathbb{C}[\overline{\mathsf{GL}_m p}] \subseteq \mathbb{C}[\mathsf{GL}_m p]$ subring. Therefore $\operatorname{\mathsf{mult}}_{\lambda}\mathbb{C}[\overline{\mathsf{GL}_m p}] \leq \operatorname{\mathsf{mult}}_{\lambda}\mathbb{C}[\mathsf{GL}_m p]$.

Let $H \leq \mathsf{GL}_m$ be the stabilizer of p.

- For $p = x_1^D + \dots + x_m^D$ we have $H = C_D \wr \mathfrak{S}_m$
- For $p = x_1 \cdots x_m$ we have $H = \mathsf{ST}_m \rtimes \mathfrak{S}_m$
- For $p = \det_D$, $m = D^2$, we have $H = ((\mathsf{GL}_D \times \mathsf{GL}_D)/\mathbb{C}^{\times}) \rtimes \mathfrak{S}_2$ (Frobenius 1896).

Algebraic Peter-Weyl theorem

$$\begin{aligned} \mathsf{GL}_m p &= \mathsf{GL}_m / H \text{ via } gp \mapsto gH. \text{ Have a } \mathsf{GL}_m\text{-action on } \mathsf{GL}_m / H \text{ via } g'(gH) := (g'g)H. \\ \mathbb{C}[\mathsf{GL}_m p] &= \mathbb{C}[\mathsf{GL}_m]^H \simeq \bigoplus_{\lambda} \{\lambda\} \otimes \{\lambda\}^H. \text{ Hence } \frac{\mathsf{mult}_{\lambda} \mathbb{C}[\mathsf{GL}_m p] = \dim(\{\lambda\})^H}{\mathsf{mult}_{\lambda} \mathbb{C}[\mathsf{GL}_m p] = \dim(\{\lambda\})^H}. \end{aligned}$$

 $\dim(\{\lambda\})^H$ can be calculated using the stabilizer and representation theoretic branching rules:

For p = det_D we have dim({λ})^H = sk(λ, D × δ), a symmetric rectangular Kronecker coefficient
 For p = x₁ ··· x_m we have dim({λ})^H = a_λ(m, δ), a plethysm coefficient.

Theorem (with Panova), proof via classical representation theoretic branching coefficients

For
$$p = x_1^D + \dots + x_m^D$$
 we have $\dim(\{\lambda\})^H = \sum_{\varrho \vdash_m \delta} b(\lambda, \varrho, D, \delta)$ with

$$(\lambda, \varrho, D, \delta) := \sum_{\substack{\mu^1, \mu^2, \dots, \mu^\delta \\ \mu^i \vdash D i \delta_i}} c^{\lambda}_{\mu^1, \mu^2, \dots, \mu^\delta} \prod_{i=1}^{\delta} a_{\mu^i}(\hat{\varrho}_i, iD).$$

and $\hat{\varrho}_i = \#\{j \mid i = \varrho_j\}$ (i.e., the frequency notation of ϱ).

b

$x_0^{p(m)-m} \operatorname{per}_m \operatorname{vs} \operatorname{det}_{p(m)}$	occurrence obstructions	multiplicity obstructions
via stabilizer upper bound	No: I-Panova 2015	?
any	No: Bürgisser-I-Panova 2016	?

power sum vs prod of lin forms in few variables	occurrence obstructions	multiplicity obstructions
via stabilizer upper bound	No: "	Yes: Dörfler-I-Panova 2019
any	No: Dörfler-I-Panova 2019	Yes: "

unit tensor vs MaMu tensor	occurrence obstructions	multiplicity obstructions				
via stabilizer upper bound	Yes: Bürgisser-I 2011, 2013	Yes: "				
any	Yes: "	Yes: "				

- All obstructions so far require an evaluation of a function at the "hard problem" (permanent, MaMu, etc).
- This is not intended in the Mulmuley-Sohoni papers.
- [I-Kandasamy 2020] does not require an evaluation. We show a tight connection

 $\mathbb{C}[\mathsf{GL}_m(x_1^m + \dots + x_m^m)] \leftrightarrow \mathbb{C}[\overline{\mathsf{GL}_m(x_1^m + \dots + x_m^m)}].$

Theorem [I, Kandasamy; STOC 2020]
Let
$$m \ge 3$$
. Let $Z_m := \overline{\operatorname{GL}_m(x_1x_2\cdots x_m)}$. Let $Y_m := \overline{\operatorname{GL}_m(x_1^m + x_2^m + \cdots + x_m^m)}$. Let
 $\lambda := (4m, \underbrace{2m, 2m, 2m, \dots, 2m}_{m-1 \text{ many}})$. Then
 $a_{\lambda}(m+1, m) \ge 3 > \operatorname{mult}_{\lambda}(\mathbb{C}[Y_m]) = 2 > 1 \ge \operatorname{mult}_{\lambda}(\mathbb{C}[Z_m]) \xrightarrow{m=\operatorname{prime}\pm 1} 0$.
Therefore
• $Y_m \not\subseteq Z_m$.
and hence $x_1^m + \cdots + x_m^m$ is not a product of homogeneous linear polynomials.

Caveat: Just the non-inclusion on its own is only barely nontrivial as a result.

The bounds are derived from the symmetry groups of $x_1^m + \cdots + x_m^m$ and $x_1 \cdots x_m$.

Theorem [I, Kandasamy; STOC 2020]

Let
$$m \ge 3$$
. Let $Z_m := \overline{\mathsf{GL}_m(x_1x_2\cdots x_m)}$. Let $Y_m := \overline{\mathsf{GL}_m(x_1^m + x_2^m + \cdots + x_m^m)}$. Let $\lambda := (4m, \underbrace{2m, 2m, 2m, \dots, 2m}_{m-1 \text{ many}})$. Then

$$a_{\lambda}(m+1,m) \geq 3 > \mathsf{mult}_{\lambda}(\mathbb{C}[Y_m]) = 2 > 1 \geq \mathsf{mult}_{\lambda}(\mathbb{C}[Z_m]) \xrightarrow{m = \mathsf{prime} \pm 1} 0$$

Therefore

• $Y_m \not\subseteq Z_m$.

and hence $x_1^m + \cdots + x_m^m$ is not a product of homogeneous linear polynomials.

We have $\operatorname{mult}_{\lambda}(\mathbb{C}[\overline{\operatorname{GL}_m(x_1\cdots x_m)}]_{\delta}) \leq \operatorname{mult}_{\lambda}(\mathbb{C}[\operatorname{GL}_m(x_1\cdots x_m)]_{\delta}) = a_{\lambda}(m, \delta) \leq K(\lambda, m \times \delta) = \operatorname{number} \operatorname{of} semistandard tableaux of shape <math>\lambda$ with numbers $1, \ldots, m$, each exactly δ times.

For the λ in the theorem there is only 1 such tableau!

Example (m = 4):

1	1	1	1	1	1	1	1	1	1	2	2	3	3	4	4
2	2	2	2	2	2	2	2								
3	3	3	3	3	3	3	3								
4	4	4	4	4	4	4	4								

Multiplicity obstructions

2 Fundamental invariant: the connection between orbit and its closure

Proof idea: Highest weight vectors via Young tableaux

Polystability: The fundamental invariant connects $\mathbb{C}[\overline{Gp}]$ and $\mathbb{C}[Gp]$

Let $G := \mathsf{GL}_m$.

- These points are SL_m-polystable, i.e., their SL_m-orbit is closed (Hilbert-Mumford-Luna-Kempf):
 - $\blacktriangleright x_1 \cdots x_m$
 - $\blacktriangleright x_1^m + \dots + x_m^m$
 - \det_D for $m = D^2$
 - ▶ per_D for $m = D^2$

Theorem (Bürgisser-I)

If p is polystable, then

- there is an SL_m -invariant $\Phi \in \mathbb{C}[\overline{Gp}]$ of smallest degree.
- Φ cuts out the boundary $\overline{Gp} \setminus Gp \subseteq \overline{Gp}$.
- The ring $\mathbb{C}[Gp]$ is the localization $\mathbb{C}[\overline{Gp}]_{\Phi}$.

Φ is called the **fundamental invariant**.

- We know Φ for $x_1^D + \cdots + x_m^D$ for even D. For odd D we need $\binom{2D}{D} \ge 2m$.
- For $x_1 \cdots x_m$ we know it for all cases in which the Alon-Tarsi conjecture (Latin squares) is true.

Theorem [I, Kandasamy; STOC 2020]

Let
$$m \ge 3$$
. Let $Z_m := \overline{\operatorname{GL}_m(x_1x_2\cdots x_m)}$. Let $Y_m := \overline{\operatorname{GL}_m(x_1^m + x_2^m + \cdots + x_m^m)}$. Let $\lambda := (4m, \underbrace{2m, 2m, 2m, \dots, 2m}_{m-1 \text{ many}})$. Then
 $a_\lambda(m+1, m) \ge 3 > \operatorname{mult}_\lambda(\mathbb{C}[Y_m]) = 2 > 1 \ge \operatorname{mult}_\lambda(\mathbb{C}[Z_m]) \xrightarrow{m=\operatorname{prime}\pm 1} 0.$

Let $p = x_1^m + \cdots + x_m^m$ so $\overline{Gp} = Y_m$.

 $\operatorname{mult}_{\lambda} \mathbb{C}[Gp] = \sum_{\varrho \vdash_{m} \delta} b(\lambda, \varrho, D, \delta) = 2, \text{ but that is only an upper bound for } \operatorname{mult}_{\lambda} \mathbb{C}[\overline{Gp}].$

Main Technical Theorem

• If
$$D$$
 is even, let $e_{\varrho} := \sum_{i=1}^{m} \lceil \frac{\varrho_i}{D-2} \rceil$. If D is odd, let $e_{\varrho} := \sum_{i=1}^{m} 2 \lceil \frac{\varrho_i}{2(D-2)} \rceil$.
• Let $\lambda \vdash_m \delta D$.
• Let k be the number of $m \times m$ blocks in λ .
• Let $e := \max\{e_{\varrho} \mid \varrho \vdash_m d\}$.

If
$$k \ge e$$
, then $\operatorname{mult}_{\lambda} \mathbb{C}[Gp] = \operatorname{mult}_{\lambda} \mathbb{C}[\overline{Gp}]$

•
$$\lambda = (4m, 2m, 2m, \dots, 2m)$$

• $k = 2, \quad D = m, \quad \delta = 2m^2 + 2m$
• $d = \delta - mk = 2m^2$
• $e = \max\{e_{(2)}, e_{(1,1)}\} = \max\{1, 2\} = 2.$

Multiplicity obstructions

2 Fundamental invariant: the connection between orbit and its closure

Proof idea: Highest weight vectors via Young tableaux

Main Technical Theorem

• If D is even, let $e_{\varrho} := \sum_{i=1}^{m} \lceil \frac{\varrho_i}{D-2} \rceil$. If D is odd, let $e_{\varrho} := \sum_{i=1}^{m} 2\lceil \frac{\varrho_i}{2(D-2)} \rceil$. • Let $\lambda \vdash_m \delta D$. • Let k be the number of $m \times m$ blocks in λ . • Let $e := \max\{e_{\varrho} \mid \varrho \vdash_m d\}$.

If
$$k \geq e$$
, then $\operatorname{\mathsf{mult}}_{\lambda}\mathbb{C}[Gp] = \operatorname{\mathsf{mult}}_{\lambda}\mathbb{C}[\overline{Gp}]$.

A vector f in a GL_m-representation $\mathscr V$ is called a **highest weight vector** (HWV) of weight λ , if

• diag
$$(\alpha_1, \dots, \alpha_m)f = \alpha_1^{\lambda_1} \cdots \alpha_m^{\lambda_m}$$

• $\binom{1}{0} \cdots \binom{1}{1} f = f$

The highest weight vectors of weight λ form a linear subspace $HWV_{\lambda}(\mathscr{V}) \subseteq \mathscr{V}$.

• $\operatorname{\mathsf{mult}}_{\lambda}(\mathscr{V}) = \dim \operatorname{\mathsf{HWV}}_{\lambda}(\mathscr{V})$

HWVs can be understood in terms of tableaux

A Young tableau or just	The content of a	A Young tableau is	٦
tableau $T:\lambda ightarrow\mathbb{N}$ is an as-	tableau T is the list:	called semistandard if	t
signment of numbers to the	(number of 1s in T ,	each column is in-	C
boxes of λ .	number of 2s in T ,	creasing from top to	
).	bottom and every row	L
		is nondecreasing from	L
		left to right.	
4			

Thesuperstandardtableau \mathbb{S}_{λ} of shape λ hasonly entries i in row i:1122334

Quotient out by the vector space of shuffle relations (Grassmann-Plücker relations)

In the vector space of formal linear combinations of Young tableaux there is the linear subspace $K(\lambda)$, which is spanned by

- T + T', where T' is a tableau that arises from T by switching two numbers within one column.
- $T \Sigma S$, where for two fixed columns j, j' and a fixed number of entries k the sum is over all tableaux S that arise from T by exchanging the top k entries in column j with any k entries in column j', preserving the internal vertical order.

The action on the space of linear combinations of tableax is defined via multilinear expansion.

Example: $\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \boxed{\begin{array}{c} 1 & 1 \\ 2 & 2 \end{pmatrix}} = \boxed{\begin{array}{c} 1+21+2 \\ 2 & 2 \end{pmatrix}} = \boxed{\begin{array}{c} 1 & 1 \\ 2 & 2 \end{pmatrix}} + \boxed{\begin{array}{c} 1 & 2 \\ 2 & 2 \end{pmatrix}} + \boxed{\begin{array}{c} 2 & 1 \\ 2 & 2 \end{pmatrix}} + \boxed{\begin{array}{c} 2 & 2 \\ 2 & 2 \end{pmatrix}} = 2 \boxed{\begin{array}{c} 1 & 1 \\ 2 & 2 \end{pmatrix}}.$

Averaging

• Let
$$T : \lambda \to \{1, \dots, \delta\}$$
 be a tableau.
• Let $\varphi : \{1, \dots, \delta\} \to \{1, \dots, m\}$ be a map.
• Define $\varphi T := \varphi(T)$ naively.
Example:
$$\begin{bmatrix} \varphi(1) = 2\\ \varphi(2) = 2\\ \varphi(3) = 1 \end{bmatrix}$$
 implies $\varphi \begin{pmatrix} 1 \\ 2 \\ 2 \\ 3 \end{pmatrix} = \underbrace{ 22221 \\ 2 \\ 2 \\ 3 \end{pmatrix} = \underbrace{ 2222121 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 1 \end{bmatrix}$.

Main Technical Theorem

• If D is even, let $e_{\varrho} := \sum_{i=1}^{m} \lceil \frac{\varrho_i}{D-2} \rceil$. If D is odd, let $e_{\varrho} := \sum_{i=1}^{m} 2\lceil \frac{\varrho_i}{2(D-2)} \rceil$. • Let $\lambda \vdash_m \delta D$. • Let k be the number of $m \times m$ blocks in λ . • Let $d := \delta - mk$. • Let $e := \max\{e_{\varrho} \mid \varrho \vdash_m d\}$.

f
$$k \ge e$$
, then $\operatorname{mult}_{\lambda}\mathbb{C}[Gp] = \operatorname{mult}_{\lambda}\mathbb{C}[\overline{Gp}]$

Theorem (HWVs in the coordinate ring of the orbit closure)

The vector space $HWV_{\lambda}(\mathbb{C}[\overline{Gp}]_{\delta})$ is generated by the functions

 $g \mapsto \langle \mathbb{S}_{\lambda}, gM_{\delta,m}T \rangle$,

where T runs over all semistandard tableaux of shape λ in which each entry $1, \ldots, \delta$ appears exactly D times.

Theorem (HWVs in the coordinate ring of the orbit)

The vector space $\text{HWV}_{\lambda}(\mathbb{C}[Gp]_{\delta})$ decomposes into a direct sum of vector spaces $\text{HWV}_{\lambda}(\mathbb{C}[Gp]_{\delta}) = \bigoplus_{\varrho \vdash_{m}\delta} \mathscr{W}_{\varrho}$, and each \mathscr{W}_{ϱ} is generated by the functions

 $g \mapsto \langle \mathbb{S}_{\lambda}, gP_m S \rangle$,

where S runs over all semistandard tableaux S of shape λ and content ρD .

Theorem (HWVs in the coordinate ring of the orbit)

The vector space $\text{HWV}_{\lambda}(\mathbb{C}[Gp]_{\delta})$ decomposes into a direct sum of vector spaces $\text{HWV}_{\lambda}(\mathbb{C}[Gp]_{\delta}) = \bigoplus_{\varrho \vdash_{m} \delta} \mathscr{W}_{\varrho}$, and each \mathscr{W}_{ϱ} is generated by the functions

 $g \mapsto \langle \mathbb{S}_{\lambda}, gP_m S \rangle$,

where S runs over all semistandard tableaux S of shape λ and content ρD .

From

						_															
S =	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	2	2	2	2	2	2	2	2													
	3	3	3	3	3	3	3	3													
	4	4	4	4	4	4	4	4													
	5	5	5	5	5	5	5	5													
	6	6	6	6	6	6	6	6													
	7	$\overline{7}$	7	7	7	7	7	7													
	8	8	8	8	8	8	8	8													

we construct

Proof of the technical theorem: This works for all λ with enough full $m\times m$ blocks.

Christian Ikenmeyer

Main Technical Theorem

• If D is even, let $e_{\varrho} := \sum_{i=1}^{m} \lceil \frac{\varrho_i}{D-2} \rceil$. If D is odd, let $e_{\varrho} := \sum_{i=1}^{m} 2\lceil \frac{\varrho_i}{2(D-2)} \rceil$. • Let $\lambda \vdash_m \delta D$. • Let k be the number of $m \times m$ blocks in λ . • Let $d := \delta - mk$. • Let $e := \max\{e_{\varrho} \mid \varrho \vdash_m d\}$.

f
$$k \ge e$$
, then $\operatorname{mult}_{\lambda}\mathbb{C}[Gp] = \operatorname{mult}_{\lambda}\mathbb{C}[\overline{Gp}]$

Theorem (HWVs in the coordinate ring of the orbit closure)

The vector space $HWV_{\lambda}(\mathbb{C}[\overline{Gp}]_{\delta})$ is generated by the functions

 $g \mapsto \langle \mathbb{S}_{\lambda}, gM_{\delta,m}T \rangle$,

where T runs over all semistandard tableaux of shape λ in which each entry $1, \ldots, \delta$ appears exactly D times.

Theorem (HWVs in the coordinate ring of the orbit)

The vector space $\text{HWV}_{\lambda}(\mathbb{C}[Gp]_{\delta})$ decomposes into a direct sum of vector spaces $\text{HWV}_{\lambda}(\mathbb{C}[Gp]_{\delta}) = \bigoplus_{\varrho \vdash_{m}\delta} \mathscr{W}_{\varrho}$, and each \mathscr{W}_{ϱ} is generated by the functions

 $g \mapsto \langle \mathbb{S}_{\lambda}, gP_m S \rangle$,

where S runs over all semistandard tableaux S of shape λ and content ρD .

Theorem [I, Kandasamy; STOC 2020]
Let
$$m \ge 3$$
. Let $Z_m := \overline{\operatorname{GL}_m(x_1x_2\cdots x_m)}$. Let $Y_m := \overline{\operatorname{GL}_m(x_1^m + x_2^m + \cdots + x_m^m)}$. Let
 $\lambda := (4m, \underbrace{2m, 2m, 2m, \dots, 2m}_{m-1 \text{ many}})$. Then
 $a_{\lambda}(m+1, m) \ge 3 > \operatorname{mult}_{\lambda}(\mathbb{C}[Y_m]) = 2 > 1 \ge \operatorname{mult}_{\lambda}(\mathbb{C}[Z_m]) \xrightarrow{m=\operatorname{prime} \pm 1} 0.$

Summary

- The power sum does not factor as a product of linear forms.
- This is shown via explicit multiplicity obstructions $\lambda = (4m, 2m, 2m, \dots, 2m)$.
- Not occurrence obstructions (in infinitely many cases).
- Not vanishing ideal occurrence obstructions.
- Both multiplicities are obtained via representation theoretic branching formulas.
- This is achieved by proving a close connection between $\mathbb{C}[Gp]$ and $\mathbb{C}[\overline{Gp}]$, $p = x_1^m + \cdots + x_m^m$.

Thank you for your attention!