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Let G := GLm, p = xD1 + · · ·+ xDm.

We have formulas for multλ(C[Gp]).

We want formulas for multλ(C[Gp]).

We find a connection between these two via tableau-theoretic interpretations of both multiplicities.

This leads to the first multiplicity obstructions for orbit closure containment, based only on symmetry groups (2nd talk).
(with Kandasamy, STOC 2020)

This talk:

A tableau-theoretic interpretation of multλ(C[Gp]).
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Let SymDCm := C[x1, . . . , xm]D.

Let G := GLm

G acts linearly on SymDCm via (gp)(x) := p(g−1x).

Let X ⊆ SymDCm be a closed subvariety that is closed under the
action of G.

For example, X = Gp an orbit closure.

Let SymδSymDCm := C[SymDCm]δ.

G acts linearly on SymδSymDCm via (gf)(p) := f(g−1p), i.e.,
SymδSymDCm is a G-representation.

Let I(X) = {f ∈ C[SymDCm] | f(X) = {0}} be the vanishing ideal.

Let I(X)δ = {f ∈ SymδSymDCm | f(X) = {0}} be the homogeneous
degree δ component of the vanishing ideal.

Since X is closed under the action of G, I(X)δ is also closed under the
action of G, i.e., I(X)δ is a G-representation.

C[X] = C[SymDCm]/I(X) is the coordinate ring.

Alternatively: C[X] ' {f |X | f ∈ SymDCm} via restrictions of the
domain of definition to X.

C[X]δ = SymδSymDCm/I(X)δ.

Since SymδSymDCm is a G-representation and I(X)δ is a
subrepresentation, it follows that C[X]δ is a G-representation.

Sym2C2 = 〈x21, x1x2, x22〉.
G = GL2.(
0 1
1 0

)
(x21 + x1x2) = (x22 + x1x2).

X = {`2 | ∃α, β ∈ C : ` = αx1 + βx2}
⊆ Sym2C2.

X = GL2x21.

Sym2Sym2C2 = 〈a2, ab, ac, b2, bc, c2〉
a = (x21)∗, b = (x1x2)∗, c = (x2)∗(
0 1
1 0

)
(a2 + ac+ b2) = c2 + ac+ b2

b2 − 4ac ∈ I(X)

I(X)2 = 〈b2 − 4ac〉

g(b2 − 4ac) = det(g)2(b2 − 4ac)

dimC[X]2 = 6− 1 = 5

dimC[X]2 = Sym2Sym2C2/〈b2 − 4ac〉
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Young tableaux
A partition is finite nonincreasing list of natural numbers. E.g., λ = (5, 3, 3, 1)
The top-left-justified array of boxes with λi boxes in row i is called the Young diagram of λ.

The transpose λt:

We often identify λ with its Young diagram.
We write λ `m d if λ is a Young diagram with d boxes and at most m rows.
For λ ` d, we write [λ] for the irreducible Sd-representation of type λ.
For λ `m, we write {λ} for the irreducible GLm-representation of type λ.
A Young tableau or just tableau T : λ→ N is an assignment of numbers to the boxes of λ.

1 1 1 2 2
2 3 3
3 4 4
4

A Young tableau is called semistandard if each column is increasing from top to bottom and every row is
nondecreasing from left to right.

The superstandard tableau Sλ of shape
λ has only entries i in row i:

1 1 1 1 1
2 2 2
3 3 3
4

The column-standard
tableau Tλ of shape λ:

1 5 8 11 12
2 6 9
3 7 10
4
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Multiplicities and highest weight polynomials
Every GLm-representation V decomposes (not necessarily uniquely) into a direct sum of irreducible subrepresentations:

V =
⊕
λ`m

{λ}⊕cλ

For example:

SymδSymDCm =
⊕
λ`m

{λ}⊕aλ(δ,D)

These nonnegative integers cλ (and hence also aλ(δ,D)) are independent of the decomposition.
They are called representation theoretic multiplicities. multλ(V ) := cλ.
aλ(δ,D) is called a plethysm coefficient.

Every irreducible GLm-representation contains exactly one (up to scale) highest weight vector (HWV):

diag(α1, . . . , αm)f = αλ1
1 · · ·α

λm
m f(

1 ∗
. . .

0 1

)
f = f

The exponent vector λ is called the weight of f .
Two irreducible GLm-representations are isomorphic iff the weights of their HWVs coincide.

Example: g(b2 − 4ac) = det(g)2(b2 − 4ac), hence b2 − 4ac is a HWV of weight (2, 2).
multλ(V ) = dim HWVλ(V )

multλ(C[X]δ) = dim
((

HWVλ(SymδSymDCm)
)
|X
)

.
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Some papers with coauthors where HWVs are explicitly constructed from Young tableaux:

1. 16,051 formulas for Ottaviani’s invariant of cubic threefolds, with Abdesselam and Royle 2014:
λ = (9, 9, 9, 9, 9), D = 3, δ = 15.

2. Symmetrizing Tableaux and the 5th case of the Foulkes Conjecture, with Cheung and Mkrtchyan 2015:
(δ,D) = (5, 5), (5, 6), (6, 6).

3. Fundamental invariants of orbit closures, with Bürigsser 2015:
rectangular λ.

4. On GCT: Multiplicity obstructions are stronger than occurrence obstructions, with Dörfler and Panova 2019:
D = 6, 7.

5. On the complexity of evaluating highest weight vectors, with Bläser and Dörfler 2020:
HWV evaluation is NP-hard. Efficient algorithms for evaluation for low tree-width.

6. Equations for GL invariant families of polynomials with Breiding, Micha lek, Hodges 2021:
D = 3, δ = 11, λ = (15, 6, 6, 6). Software and database.
Uses Hodges’ fast tableau straightening code, arXiv:1710.05214

7. Implementing GCT: On the separation of orbit closures via symmetries, with Kandasamy 2019:
HWV construction is implicit from the existence of certain invariants.

Many other authors, because this is a very classical approach.
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In this talk we study the power sum:

p := xD1 + · · ·+ xDm ∈ SymDCm.

G := GLm.

We want to understand HWVλ(C[Gp]δ) in terms of Young tableaux.
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T (r, c): entry of T in row r and column c. Let {ei} ⊂ Cm standard basis. Let µ = λt.

tableau T : λ→ {1, . . . ,m}
l 1:1 correspondence

basis vector eT (1,1) ⊗ eT (2,1) ⊗ · · · ⊗ eT (µ1,1) ⊗ eT (1,2) ⊗ eT (2,2) ⊗ · · · ⊗ eT (µ2,2) ⊗ · · · · · · ⊗ eT (µλ1 ,λ1) ∈
⊗|λ|Cm

This gives a vector space isomorphism: {linear combinations of tableaux of shape λ} ∼−→
⊗|λ|Cm.

The G-action, which is given by g(v1 ⊗ · · · ⊗ v|λ|) = g(v1)⊗ · · · ⊗ g(v|λ|), is inherited:

Example:

(
1 0
1 1

)
1 1
2 2

= 1 1
2 2

+ 1 2
2 2

+ 2 1
2 2

+ 2 2
2 2

.

The vector space of shuffle relations (Grassmann-Plücker relations)

The subrepresentation K(λ) is spanned by

T + T ′, where T ′ is a tableau that arises from T by switching two numbers within one column.

T −ΣS, where for two fixed columns j, j′ and a fixed number of entries k the sum is over all tableaux S that arise from
T by exchanging the top k entries in column j with any k entries in column j′, preserving the internal vertical order.

Theorem

{λ} ' (
⊗|λ|Cm)/K(λ). Basis: the semistd tableaux of shape λ with entries from {1, . . . ,m}. HWV: Sλ

2
1

= − 1
2

; 4 1
2

= 1 4
2

+ 4 2
1

= 1 4
2
− 1 2

4
; 4 1

2 2
= 1 4

2 2
+ 4 2

1 2
= 1 4

2 2
;

(
1 α β
0 1 γ
0 0 1

)
1 1 1 1
2 2 2
3

=
1 1 1 1
2 2 2
3

If we insist that every 1, . . . ,m appears exactly once, we obtain the Specht modules [λ], i.e., the irreps of Sm.
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Averaging
Let T : λ→ {1, . . . , δ} be a tableau.

Let ϕ : {1, . . . , δ} → {1, . . . ,m} be a map.

Define ϕT := ϕ(T ) naively.

Example:

 ϕ(1) = 2
ϕ(2) = 2
ϕ(3) = 1

 implies ϕ

(
1 1 1 2 3
2 2 3
3

)
=

2 2 2 2 1
2 2 1
1︸ ︷︷ ︸

=0 in {(5,3,1)}

.

The “orbit average”: Mδ,mT :=
∑

ϕ:{1,...,δ}→{1,...,m}
ϕT ∈ {λ}Sm

Example: M3,2
1 1 1 2 3
2 2 3
3

=
1 1 1 2 1
2 2 1
1

+
1 1 1 2 2
2 2 2
2

+
2 2 2 2 1
2 2 1
1

+
2 2 2 2 2
2 2 2
2

+
1 1 1 1 1
1 1 1
1

+
1 1 1 1 2
1 1 2
2

+
2 2 2 1 1
1 1 1
1

+
2 2 2 1 2
1 1 2
2

= 0

Main Theorem of this talk (coordinate ring of the orbit closure of the power sum expressed via tableaux)

Let p := xD1 + · · ·+ xDm ∈ SymDCm. Let G := GLm.

Let λ ` δD. The vector space HWVλ(C[Gp]δ) is generated by the functions

g 7→
〈
Sλ, gMδ,mT

〉
, 〈S, T 〉 = δS,T

where T runs over all semistandard tableaux of shape λ in which each entry 1, . . . , δ appears exactly D times.
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Mδ,mT :=
∑
ϕ:{1,...,δ}→{1,...,m} ϕ(T )

Let p := xD1 + · · ·+ xDm ∈ SymDCm. Let G := GLm. Let λ ` δD.

Main Theorem of this talk (coordinate ring of the orbit closure of the power sum expressed via tableaux)

The vector space HWVλ(C[Gp]δ) is generated by the functions

g 7→
〈
Sλ, gMδ,mT

〉
, 〈S, T 〉 = δS,T

where T runs over all semistandard tableaux of shape λ in which each entry 1, . . . , δ appears exactly D times.

Well-definedness:
stab(p) ' CD oSm
For q ∈ Gp we have q = gp, but g is unique only up to right-mult. with stab(p): gp = ghp with h ∈ stab(p).

Example (D = 3, δ = 4, m = 2)

The cyclic group part: If ω3 = 1, then diag(ω, 1) 1 1 2 1 1 1
2 2 1

= 1 1 2 1 1 1
2 2 1

The symmetric group part: If h ∈ Sm, then hMδ,mT and Mδ,mT are the same sum, just permuted order of summands.
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Main Theorem of this talk (coordinate ring of the orbit closure of the power sum expressed via tableaux)

Let p := xD1 + · · ·+ xDm ∈ SymDCm. Let G := GLm.

Let λ ` δD. The vector space HWVλ(C[Gp]δ) is generated by the functions
g 7→

〈
Sλ, gMδ,mT

〉
, 〈S, T 〉 = δS,T

where T runs over all semistandard tableaux of shape λ in which each entry 1, . . . , δ appears exactly D times.

Discriminant T = 1
4

1 1
2 2

Discriminant at x21 is zero: M2,1T = 1
4

1 1
1 1

= 0. It follows that it vanishes on Waring rank 1.

Discriminant at x21 + x22 is nonzero: M2,2T = 1 1
2 2

+ 1 1
1 1

+ 2 2
2 2

+ 2 2
1 1

= 2 1 1
2 2

,

〈
1
4

1 1
2 2

, 2 1 1
2 2

〉
= 1

2
6= 0

Aronhold invariant: The HWV to
1 1 1 2
2 2 3 3
3 4 4 4

vanishes on Waring rank 3. But one calculates that it does not vanish on x31+x32+x33+(x1+x2+x3)3 ∈ GL4(x31 + · · ·+ x34).
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Let p := xD1 + · · ·+ xDm ∈ SymDCm. Let G := GLm. Let λ ` δD.

Main Theorem of this talk (coordinate ring of the orbit closure of the power sum expressed via tableaux)

The vector space HWVλ(C[Gp]δ) is generated by the functions

g 7→
〈
Sλ, gMδ,mT

〉
,

where T runs over all semistandard tableaux of shape λ in which each entry 1, . . . , δ appears exactly D times.

In the second talk we will see how to construct such functions, using a similar description for functions in C[Gp]:

Theorem (HWVs in the coordinate ring of the orbit)

The vector space HWVλ(C[Gp]d) decomposes into a direct sum of vector spaces HWVλ(C[Gp]d) =
⊕
%`md W%, and each

W% is generated by the functions
g 7→ 〈Sλ, gPmS〉 ,

where S runs over all semistandard tableaux S of shape λ and content %D.
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⊗
δDCm � SymδSymDCm � C[Gp]δ

⊆ ⊆ ⊆

HWVλ(
⊗
δDCm) � HWVλ(SymδSymDCm) � HWVλ(C[Gp]δ)︸ ︷︷ ︸

our goal

Theorem (Schur-Weyl duality) ⊗δDCm =
⊕

λ`mδD
{λ} ⊗ [λ], HWVν(

⊗δDCm) ' [ν]

This implies: If we find vλ ∈ HWVλ(
⊗
δDCm), then

HWVλ(
⊗δDCm) = linspan({πvλ | π ∈ SδD}).

An example of such a vλ ∈ HWVλ(
⊗
δDCm):

vλ := e1 ∧ e2 ∧ · · · ∧ eµ1 ⊗ e1 ∧ e2 ∧ · · · ∧ eµ2 ⊗ · · · · · · ⊗ e1 ∧ e2 ∧ · · · ∧ eµλ1 ,

where µ = λt.
Example: e1 ∧ e2 ⊗ e1 ∧ e2 = 1

2
(e1 ⊗ e2 − e2 ⊗ e1)⊗ 1

2
(e1 ⊗ e2 − e2 ⊗ e1)

= 1
4

(e1 ⊗ e2 ⊗ e1 ⊗ e2 + e2 ⊗ e1 ⊗ e1 ⊗ e2 + e1 ⊗ e2 ⊗ e2 ⊗ e1 + e2 ⊗ e1 ⊗ e2 ⊗ e1) ∈ HWV(2,2)(
⊗

4C2)
↓ (2 3)

1
4

(e1 ⊗ e1 ⊗ e2 ⊗ e2 + e2 ⊗ e1 ⊗ e1 ⊗ e2 + e1 ⊗ e2 ⊗ e2 ⊗ e1 + e2 ⊗ e2 ⊗ e1 ⊗ e1) ∈ HWV(2,2)(
⊗

4C2)

Christian Ikenmeyer 17



Defining polynomials via tensor contraction
Let v ∈

⊗
δDCm.

∀y ∈ SymDCm : f(y) := 〈v, y⊗δ〉 defines a polynomial f ∈ SymδSymDCm.

Example (evaluation at x21 + x22, which as a tensor is e1 ⊗ e1 + e2 ⊗ e2):

〈 1
4

(e1 ⊗ e1 ⊗ e2 ⊗ e2 + e2 ⊗ e1 ⊗ e1 ⊗ e2 + e1 ⊗ e2 ⊗ e2 ⊗ e1 + e2 ⊗ e2 ⊗ e1 ⊗ e1), (e1 ⊗ e1 + e2 ⊗ e2)⊗2〉

= 1
4
〈1122− 2112− 1221 + 2211, 1111 + 1122 + 2211 + 2222〉 = 1

4
· 2 = 1

2

Evaluation at x1x2, which as a tensor is 1
2

(e1 ⊗ e2 + e2 ⊗ e1):

〈 1
4

(e1 ⊗ e1 ⊗ e2 ⊗ e2 + e2 ⊗ e1 ⊗ e1 ⊗ e2 + e1 ⊗ e2 ⊗ e2 ⊗ e1 + e2 ⊗ e2 ⊗ e1 ⊗ e1), ( 1
2

(e1 ⊗ e2 + e2 ⊗ e1))⊗2〉

= 1
16
〈1122− 2112− 1221 + 2211, 1212 + 1221 + 2112 + 2121〉 = 1

16
· (−2) = − 1

8

Remark that we recognize this: − 1
8
b2 + 1

2
ac = − 1

4
(b2 − 4ac), the discriminant.

Alternative way to calculate via keeping the determinants:
〈(2 3)(1 ∧ 2⊗ 1 ∧ 2) , 1111 + 1122 + 2211 + 2222〉 = 〈1 ∧ 2⊗ 1 ∧ 2 , 1111 + 1212 + 2121 + 2222〉
= 1

4

(
det
(
1 1
0 0

) (
1 1
0 0

)
+ det

(
1 0
0 1

) (
1 0
0 1

)
+ det

(
0 1
1 0

) (
0 1
1 0

)
+ det

(
0 0
1 1

) (
0 0
1 1

) )
= 1

2

Alternative way to calculate via contraction with superstandard tableau (this talk’s main theorem):

T = 1 1
2 2

, S2,2 = 1 1
2 2

, M2,2T = 1 1
2 2

+ 1 1
1 1

+ 2 2
2 2

+ 2 2
1 1

= 2 · 1 1
2 2

. 1∏
i µi!
〈S2,2,M2,2T 〉 = 1

4
· 2 = 1

2
.
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Evaluation at the power sum
Let p := xD1 + · · ·+ xDm ∈ SymDCm. Let gp = `D1 + · · ·+ `Dm, i.e., `i = g1..m,i. Let y := gp.
We calculate

y⊗δ =
∑

ϕ:{1,...,δ}→{1,...,m}
`Dϕ(1) ⊗ · · · ⊗ `

D
ϕ(δ).

Recall vλ := e1 ∧ e2 ∧ · · · ∧ eµ1 ⊗ e1 ∧ e2 ∧ · · · ∧ eµ2 ⊗ · · · · · · ⊗ e1 ∧ e2 ∧ · · · ∧ eµλ1 .
Let f be the polynomial defined by the tensor π−1vλ.

f(y) := 〈π−1vλ, y
⊗δ〉 = 〈vλ, π(y⊗δ)〉

Tλ is the column-standard tableau.

(
∏
iµi!) 〈vλ, π(y⊗δ)〉 expand y⊗δ

=
∑

β:{1,...,δD}→{1,...,m}
respecting πTλ

∏λ1
c=1det(g1..µc,β(πTλ(1,c)), . . . , g1..µc,β(πTλ(µc,c)))︸ ︷︷ ︸

=:(∗)

,

where β respects a tableau S if all numbers 1, . . . , D are mapped to the same value, and all numbers D + 1, . . . , 2D are
mapped to the same value, and so on.

Lemma: (∗) = 〈Sλ, g(βπTλ)〉

Therefore the vector space HWVλ(C[Gp]) is generated by the functions

g 7→
∑

β:{1,...,Dδ}→{1,...,m}
respecting S

〈Sλ, gβ(S)〉,

where S runs over all tableaux of shape λ with every number from 1, . . . , Dδ exactly once.
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Let p := xD1 + · · ·+ xDm ∈ SymDCm. Let G := GLm. Let λ ` δD.

HWVλ(C[Gp]) is generated by the functions

g 7→
∑

β:{1,...,Dδ}→{1,...,m}
respecting S

〈Sλ, gβ(S)〉,

where S runs over all tableaux of shape λ with every number from 1, . . . , Dδ exactly once.
We want:

Main Theorem of this talk (coordinate ring of the orbit closure of the power sum expressed via tableaux)

The vector space HWVλ(C[Gp]δ) is generated by the functions

g 7→
〈
Sλ, gMδ,mT

〉
,

where T runs over all semistandard tableaux of shape λ in which each entry 1, . . . , δ appears exactly D times.

Given a standard tableau S we define a semistandard tableau T (or T = 0) by replacing the first D entries 1, . . . , D by the
number 1, the next D entries D + 1, . . . , 2D by the number 2, and so on.

g 7→
∑

β:{1,...,Dδ}→{1,...,m}
respecting S

〈Sλ, gβ(S)〉 can be rewritten as
(1:1 corresp. between summands)

g 7→
∑

ϕ:{1,...,δ}→{1,...,m}
〈Sλ, gϕ(T )〉

By definition of Mδ,m, this can be rewritten as:

g 7→ 〈Sλ, gMδ,mT 〉,
which finishes the proof. �
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Let p := xD1 + · · ·+ xDm ∈ SymDCm. Let G := GLm. Let λ ` δD.

Main Theorem of this talk (coordinate ring of the orbit closure of the power sum expressed via tableaux)

The vector space HWVλ(C[Gp]δ) is generated by the functions

g 7→
〈
Sλ, gMδ,mT

〉
,

where T runs over all semistandard tableaux of shape λ in which each entry 1, . . . , δ appears exactly D times.

In the second talk we will see how to construct such functions, using a similar description for functions in C[Gp]:

Theorem (HWVs in the coordinate ring of the orbit)

The vector space HWVλ(C[Gp]d) decomposes into a direct sum of vector spaces HWVλ(C[Gp]d) =
⊕
%`md W%, and each

W% is generated by the functions
g 7→ 〈Sλ, gPmS〉 ,

where S runs over all semistandard tableaux S of shape λ and content %D.

Thank you for your attention!
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