gct2022: School and Conference on Geometric Complexity Theory - Workshop -2022-Jan-21

Highest weight vectors, power sums, and Young tableaux (Implementing GCT: On the separation of orbit closures via symmetries)

Christian Ikenmeyer

- Let $G:=\mathrm{GL}_{m}, p=x_{1}^{D}+\cdots+x_{m}^{D}$.
- We have formulas for mult ${ }_{\lambda}(\mathbb{C}[G p])$.
- We want formulas for mult $\lambda_{\lambda}(\mathbb{C}[\overline{G p}])$.

We find a connection between these two via tableau-theoretic interpretations of both multiplicities.

This leads to the first multiplicity obstructions for orbit closure containment, based only on symmetry groups (2nd talk). (with Kandasamy, STOC 2020)

This talk:

A tableau-theoretic interpretation of mult $\lambda_{\lambda}(\mathbb{C}[\overline{G p}])$.
(1) Representation theoretic multiplicities and highest weight polynomials
(2) This talk's main theorem: Explicit construction of highest weight polynomials for the power sum via Young tableaux
(3) Proof sketch via multilinear algebra
(1) Representation theoretic multiplicities and highest weight polynomials

This talk's main theorem: Explicit construction of highest weight polynomials for the power sum via Young tableaux

Proof sketch via multilinear algebra

- Let $\operatorname{Sym}^{D} \mathbb{C}^{m}:=\mathbb{C}\left[x_{1}, \ldots, x_{m}\right]_{D}$.
- Let $G:=\mathrm{GL}_{m}$
- G acts linearly on $\operatorname{Sym}^{D} \mathbb{C}^{m}$ via $(g p)(x):=p\left(g^{-1} x\right)$.
- Let $X \subseteq \operatorname{Sym}^{D} \mathbb{C}^{m}$ be a closed subvariety that is closed under the action of G.
- For example, $X=\overline{G p}$ an orbit closure.
- Let $\operatorname{Sym}^{\delta} \operatorname{Sym}^{D} \mathbb{C}^{m}:=\mathbb{C}\left[\operatorname{Sym}^{D} \mathbb{C}^{m}\right]_{\delta}$.
- G acts linearly on $\operatorname{Sym}^{\delta} \operatorname{Sym}^{D} \mathbb{C}^{m}$ via $(g f)(p):=f\left(g^{-1} p\right)$, i.e., Sym $^{\delta}$ Sym $^{D} \mathbb{C}^{m}$ is a G-representation.
- Let $I(X)=\left\{f \in \mathbb{C}\left[\operatorname{Sym}^{D} \mathbb{C}^{m}\right] \mid f(X)=\{0\}\right\}$ be the vanishing ideal.
- Let $I(X)_{\delta}=\left\{f \in \operatorname{Sym}^{\delta} \operatorname{Sym}^{D} \mathbb{C}^{m} \mid f(X)=\{0\}\right\}$ be the homogeneous degree δ component of the vanishing ideal.
- Since X is closed under the action of $G, I(X)_{\delta}$ is also closed under the action of G, i.e., $I(X)_{\delta}$ is a G-representation.
- $\mathbb{C}[X]=\mathbb{C}\left[\operatorname{Sym}^{D} \mathbb{C}^{m}\right] / I(X)$ is the coordinate ring.
- Alternatively: $\mathbb{C}[X] \simeq\left\{\left.f\right|_{X} \mid f \in \operatorname{Sym}^{D} \mathbb{C}^{m}\right\}$ via restrictions of the domain of definition to X.
- $\mathbb{C}[X]_{\delta}=\operatorname{Sym}^{\delta} \operatorname{Sym}^{D} \mathbb{C}^{m} / I(X)_{\delta}$.
- Since $\operatorname{Sym}^{\delta} \operatorname{Sym}^{D} \mathbb{C}^{m}$ is a G-representation and $I(X)_{\delta}$ is a subrepresentation, it follows that $\mathbb{C}[X]_{\delta}$ is a G-representation.
- Sym $^{2} \mathbb{C}^{2}=\left\langle x_{1}^{2}, x_{1} x_{2}, x_{2}^{2}\right\rangle$.
- $G=\mathrm{GL}_{2}$.
- $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\left(x_{1}^{2}+x_{1} x_{2}\right)=\left(x_{2}^{2}+x_{1} x_{2}\right)$.
- $X=\left\{\ell^{2} \mid \exists \alpha, \beta \in \mathbb{C}: \ell=\alpha x_{1}+\beta x_{2}\right\}$ \subseteq Sym $^{2} \mathbb{C}^{2}$.
- $X=\overline{\mathrm{GL}_{2} x_{1}^{2}}$.
- Sym 2 Sym $^{2} \mathbb{C}^{2}=\left\langle a^{2}, a b, a c, b^{2}, b c, c^{2}\right\rangle$ $a=\left(x_{1}^{2}\right)^{*}, b=\left(x_{1} x_{2}\right)^{*}, c=\left(x_{2}\right)^{*}$
- $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\left(a^{2}+a c+b^{2}\right)=c^{2}+a c+b^{2}$
- $b^{2}-4 a c \in I(X)$
- $I(X)_{2}=\left\langle b^{2}-4 a c\right\rangle$
- $g\left(b^{2}-4 a c\right)=\operatorname{det}(g)^{2}\left(b^{2}-4 a c\right)$
- $\operatorname{dim} \mathbb{C}[X]_{2}=6-1=5$
- $\operatorname{dim} \mathbb{C}[X]_{2}=$ Sym 2 Sym $^{2} \mathbb{C}^{2} /\left\langle b^{2}-4 a c\right\rangle$

Young tableaux

- A partition is finite nonincreasing list of natural numbers. E.g., $\lambda=(5,3,3,1)$
- The top-left-justified array of boxes with λ_{i} boxes in row i is called the Young diagram of λ.

The transpose λ^{t} :

- We often identify λ with its Young diagram.
- We write $\lambda \vdash_{m} d$ if λ is a Young diagram with d boxes and at most m rows.
- For $\lambda \vdash d$, we write $[\lambda]$ for the irreducible \mathfrak{S}_{d}-representation of type λ.
- For $\lambda \vdash_{m}$, we write $\{\lambda\}$ for the irreducible GL_{m}-representation of type λ.
- A Young tableau or just tableau $T: \lambda \rightarrow \mathbb{N}$ is an assignment of numbers to the boxes of λ.

- A Young tableau is called semistandard if each column is increasing from top to bottom and every row is nondecreasing from left to right.

The superstandard tableau \mathbb{S}_{λ} of shape λ has only entries i in row i :

1	1	1	1	1
2	2	2		
3	3	3		
4				

Multiplicities and highest weight polynomials

- Every GL_{m}-representation \mathscr{V} decomposes (not necessarily uniquely) into a direct sum of irreducible subrepresentations:

$$
\mathscr{V}=\bigoplus_{\lambda \vdash m}\{\lambda\}^{\oplus c_{\lambda}}
$$

For example:

$$
\operatorname{Sym}^{\delta} \operatorname{Sym}^{D} \mathbb{C}^{m}=\bigoplus_{\lambda \vdash_{m}}\{\lambda\}^{\oplus a_{\lambda}(\delta, D)}
$$

- These nonnegative integers c_{λ} (and hence also $a_{\lambda}(\delta, D)$) are independent of the decomposition. They are called representation theoretic multiplicities. mult $_{\lambda}(\mathscr{V}):=c_{\lambda}$. $a_{\lambda}(\delta, D)$ is called a plethysm coefficient.

Every irreducible GL_{m}-representation contains exactly one (up to scale) highest weight vector (HWV):

- $\operatorname{diag}\left(\alpha_{1}, \ldots, \alpha_{m}\right) f=\alpha_{1}^{\lambda_{1}} \cdots \alpha_{m}^{\lambda_{m}} f$
- $\left(\begin{array}{lll}1 & & \\ & \ddots & \\ 0 & \ddots & \\ & \end{array}\right) f=f$

The exponent vector λ is called the weight of f.
Two irreducible GL_{m}-representations are isomorphic iff the weights of their HWVs coincide.
Example: $g\left(b^{2}-4 a c\right)=\operatorname{det}(g)^{2}\left(b^{2}-4 a c\right)$, hence $b^{2}-4 a c$ is a HWV of weight $(2,2)$.

- $\operatorname{mult}_{\lambda}(\mathscr{V})=\operatorname{dim} \operatorname{HWV}_{\lambda}(\mathscr{V})$
- $\operatorname{mult}_{\lambda}\left(\mathbb{C}[X]_{\delta}\right)=\operatorname{dim}\left(\left.\left(\operatorname{HWV}_{\lambda}\left(\operatorname{Sym}^{\delta} \operatorname{Sym}^{D} \mathbb{C}^{m}\right)\right)\right|_{X}\right)$.

Some papers with coauthors where HWVs are explicitly constructed from Young tableaux:

1. 16,051 formulas for Ottaviani's invariant of cubic threefolds, with Abdesselam and Royle 2014: $\lambda=(9,9,9,9,9), D=3, \delta=15$.
2. Symmetrizing Tableaux and the 5th case of the Foulkes Conjecture, with Cheung and Mkrtchyan 2015: $(\delta, D)=(5,5),(5,6),(6,6)$.
3. Fundamental invariants of orbit closures, with Bürigsser 2015:
rectangular λ.
4. On GCT: Multiplicity obstructions are stronger than occurrence obstructions, with Dörfler and Panova 2019: $D=6,7$.
5. On the complexity of evaluating highest weight vectors, with Bläser and Dörfler 2020: HWV evaluation is NP-hard. Efficient algorithms for evaluation for low tree-width.
6. Equations for GL invariant families of polynomials with Breiding, Michałek, Hodges 2021:
$D=3, \delta=11, \lambda=(15,6,6,6)$. Software and database.
Uses Hodges' fast tableau straightening code, arXiv:1710.05214
7. Implementing GCT: On the separation of orbit closures via symmetries, with Kandasamy 2019:

HWV construction is implicit from the existence of certain invariants.
Many other authors, because this is a very classical approach.

In this talk we study the power sum:

- $p:=x_{1}^{D}+\cdots+x_{m}^{D} \in \operatorname{Sym}^{D} \mathbb{C}^{m}$.
- $G:=\mathrm{GL}_{m}$.

We want to understand $\operatorname{HWV}_{\lambda}\left(\mathbb{C}[\overline{G p}]_{\delta}\right)$ in terms of Young tableaux.

Representation theoretic multiplicities and highest weight polynomials

(2) This talk's main theorem: Explicit construction of highest weight polynomials for the power sum via Young tableaux

Proof sketch via multilinear algebra

$$
\text { tableau } T: \lambda \rightarrow\{1, \ldots, m\}
$$

$\downarrow 1: 1$ correspondence
basis vector $e_{T(1,1)} \otimes e_{T(2,1)} \otimes \cdots \otimes e_{T\left(\mu_{1}, 1\right)} \otimes e_{T(1,2)} \otimes e_{T(2,2)} \otimes \cdots \otimes e_{T\left(\mu_{2}, 2\right)} \otimes \cdots \cdots \otimes e_{T\left(\mu_{\lambda_{1}}, \lambda_{1}\right)} \in \otimes^{|\lambda|} \mathbb{C}^{m}$
This gives a vector space isomorphism: $\{$ linear combinations of tableaux of shape $\lambda\} \xrightarrow{\sim} \otimes^{|\lambda|} \mathbb{C}^{m}$. The G-action, which is given by $g\left(v_{1} \otimes \cdots \otimes v_{|\lambda|}\right)=g\left(v_{1}\right) \otimes \cdots \otimes g\left(v_{|\lambda|}\right)$, is inherited:

$$
\text { Example: } \quad\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right) \begin{array}{|l|l|}
\hline 1 & 1 \\
\hline 2 & 2 \\
\hline
\end{array}=\begin{array}{|l|l|}
\hline 1 & 1 \\
\hline 2 & 2
\end{array}++\begin{array}{|l|l|l|}
\hline 1 & 2 \\
\hline 2 & 2 \\
\hline
\end{array}+\begin{array}{|l|l|l|}
\hline 2 & 1 \\
\hline 2 & 2 \\
\hline
\end{array}+\begin{array}{|l|l|}
\hline 2 & 2 \\
\hline
\end{array} .
$$

The vector space of shuffle relations (Grassmann-Plücker relations)

The subrepresentation $K(\lambda)$ is spanned by

- $T+T^{\prime}$, where T^{\prime} is a tableau that arises from T by switching two numbers within one column.
- $T-\Sigma S$, where for two fixed columns j, j^{\prime} and a fixed number of entries k the sum is over all tableaux S that arise from T by exchanging the top k entries in column j with any k entries in column j^{\prime}, preserving the internal vertical order.

Theorem

$\{\lambda\} \simeq\left(\otimes^{|\lambda|} \mathbb{C}^{m}\right) / K(\lambda)$. Basis: the semistd tableaux of shape λ with entries from $\{1, \ldots, m\}$. HWV: \mathbb{S}_{λ}

If we insist that every $1, \ldots, m$ appears exactly once, we obtain the Specht modules [λ], i.e., the irreps of \mathfrak{S}_{m}.

Averaging

- Let $T: \lambda \rightarrow\{1, \ldots, \delta\}$ be a tableau.
- Let $\varphi:\{1, \ldots, \delta\} \rightarrow\{1, \ldots, m\}$ be a map.
- Define $\varphi T:=\varphi(T)$ naively.

$$
\text { The "orbit average": } \quad M_{\delta, m} T:=\sum_{\varphi:\{1, \ldots, \delta\} \rightarrow\{1, \ldots, m\}} \varphi T \in\{\lambda\}{ }^{\mathfrak{S}_{m}}
$$

Main Theorem of this talk (coordinate ring of the orbit closure of the power sum expressed via tableaux)

Let $p:=x_{1}^{D}+\cdots+x_{m}^{D} \in \operatorname{Sym}^{D} \mathbb{C}^{m}$. Let $G:=\mathrm{GL}_{m}$.
Let $\lambda \vdash \delta D$. The vector space $\mathrm{HWV}_{\lambda}\left(\mathbb{C}[\overline{G p}]_{\delta}\right)$ is generated by the functions

$$
g \mapsto\left\langle\mathbb{S}_{\lambda}, g M_{\delta, m} T\right\rangle, \quad\langle S, T\rangle=\delta_{S, T}
$$

where T runs over all semistandard tableaux of shape λ in which each entry $1, \ldots, \delta$ appears exactly D times.
$M_{\delta, m} T:=\sum_{\varphi:\{1, \ldots, \delta\} \rightarrow\{1, \ldots, m\}} \varphi(T)$
Let $p:=x_{1}^{D}+\cdots+x_{m}^{D} \in \operatorname{Sym}^{D} \mathbb{C}^{m}$. Let $G:=\mathrm{GL}_{m}$. Let $\lambda \vdash \delta D$.

Main Theorem of this talk (coordinate ring of the orbit closure of the power sum expressed via tableaux)

The vector space $\mathrm{HWV}_{\lambda}\left(\mathbb{C}[\overline{G p}]_{\delta}\right)$ is generated by the functions

$$
g \mapsto\left\langle\mathbb{S}_{\lambda}, g M_{\delta, m} T\right\rangle, \quad\langle S, T\rangle=\delta_{S, T}
$$

where T runs over all semistandard tableaux of shape λ in which each entry $1, \ldots, \delta$ appears exactly D times.
Well-definedness:
$\operatorname{stab}(p) \simeq C_{D} \backslash \mathfrak{S}_{m}$
For $q \in G p$ we have $q=g p$, but g is unique only up to right-mult. with $\operatorname{stab}(p): g p=g h p$ with $h \in \operatorname{stab}(p)$.
Example ($D=3, \delta=4, m=2$)

The cyclic group part: If $\omega^{3}=1$, then $\operatorname{diag}(\omega, 1)$| 1 | 1 | 2 | 1 | 1 | 1 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 2 | 1 | | | | |
| 1 | 1 | 1 | 2 | 1 | 1 | 1 |
| 2 | 2 | 1 | | | | |

The symmetric group part: If $h \in \mathfrak{S}_{m}$, then $h M_{\delta, m} T$ and $M_{\delta, m} T$ are the same sum, just permuted order of summands.

Main Theorem of this talk (coordinate ring of the orbit closure of the power sum expressed via tableaux)

Let $p:=x_{1}^{D}+\cdots+x_{m}^{D} \in \operatorname{Sym}^{D} \mathbb{C}^{m}$. Let $G:=\mathrm{GL}_{m}$.
Let $\lambda \vdash \delta D$. The vector space $\mathrm{HWV}_{\lambda}\left(\mathbb{C}[\overline{G p}]_{\delta}\right)$ is generated by the functions

$$
g \mapsto\left\langle\mathbb{S}_{\lambda}, g M_{\delta, m} T\right\rangle, \quad\langle S, T\rangle=\delta_{S, T}
$$

where T runs over all semistandard tableaux of shape λ in which each entry $1, \ldots, \delta$ appears exactly D times.

Discriminant $T=\frac{1}{4}$| 1 | 1 |
| :--- | :--- |
| 2 | 2 |

Discriminant at x_{1}^{2} is zero: $M_{2,1} T=\frac{1}{4}$| 1 | 1 |
| :--- | :--- |
| 1 | 1 |$=0$. It follows that it vanishes on Waring rank 1.

Aronhold invariant: The HWV to

$$
\begin{array}{|l|l|l|l|}
\hline 1 & 1 & 1 & 2 \\
\hline 2 & 2 & 3 & 3 \\
\hline 3 & 4 & 4 & 4 \\
\hline
\end{array}
$$

vanishes on Waring rank 3. But one calculates that it does not vanish on $x_{1}^{3}+x_{2}^{3}+x_{3}^{3}+\left(x_{1}+x_{2}+x_{3}\right)^{3} \in \overline{\mathrm{GL}_{4}\left(x_{1}^{3}+\cdots+x_{4}^{3}\right)}$.

Let $p:=x_{1}^{D}+\cdots+x_{m}^{D} \in \operatorname{Sym}^{D} \mathbb{C}^{m}$. Let $G:=\mathrm{GL}_{m}$. Let $\lambda \vdash \delta D$.

Main Theorem of this talk (coordinate ring of the orbit closure of the power sum expressed via tableaux)

The vector space $\mathrm{HWV}_{\lambda}\left(\mathbb{C}[\overline{G p}]_{\delta}\right)$ is generated by the functions

$$
g \mapsto\left\langle\mathbb{S}_{\lambda}, g M_{\delta, m} T\right\rangle,
$$

where T runs over all semistandard tableaux of shape λ in which each entry $1, \ldots, \delta$ appears exactly D times.
In the second talk we will see how to construct such functions, using a similar description for functions in $\mathbb{C}[G p]$:

Theorem (HWVs in the coordinate ring of the orbit)

The vector space $\mathrm{HWV}_{\lambda}\left(\mathbb{C}[G p]_{d}\right)$ decomposes into a direct sum of vector spaces $\mathrm{HWV} \mathrm{V}_{\lambda}\left(\mathbb{C}[G p]_{d}\right)=\bigoplus_{\varrho \vdash_{m} d} \mathscr{W}_{\varrho}$, and each \mathscr{W}_{ϱ} is generated by the functions

$$
g \mapsto\left\langle\mathbb{S}_{\lambda}, g P_{m} S\right\rangle,
$$

where S runs over all semistandard tableaux S of shape λ and content ϱD.

Representation theoretic multiplicities and highest weight polynomials

This talk's main theorem: Explicit construction of highest weight polynomials for the power sum via Young tableaux
(3) Proof sketch via multilinear algebra

$$
\begin{aligned}
& \bigotimes^{\delta D} \mathbb{C}^{m} \quad \rightarrow \quad \operatorname{Sym}^{\delta} \operatorname{Sym}^{D} \mathbb{C}^{m} \quad \rightarrow \quad \mathbb{C}[\overline{G p}]_{\delta} \\
& \text { UI } \\
& \text { UI } \\
& \text { UI } \\
& \operatorname{HWV}_{\lambda}\left(\otimes^{\delta D} \mathbb{C}^{m}\right) \rightarrow \operatorname{HWV}_{\lambda}\left(\operatorname{Sym}^{\delta} \operatorname{Sym}^{D} \mathbb{C}^{m}\right) \quad \rightarrow \underbrace{\operatorname{HWV}_{\lambda}\left(\mathbb{C}[\overline{G p}]_{\delta}\right)}_{\text {our goal }}
\end{aligned}
$$

Theorem (Schur-Weyl duality)

$$
\otimes^{\delta D} \mathbb{C}^{m}=\bigoplus_{\lambda \vdash_{m} \delta D}\{\lambda\} \otimes[\lambda], \quad \quad \operatorname{HWV}_{\nu}\left(\otimes^{\delta D} \mathbb{C}^{m}\right) \simeq[\nu]
$$

This implies: If we find $v_{\lambda} \in \operatorname{HWV}_{\lambda}\left(\otimes^{\delta D} \mathbb{C}^{m}\right)$, then

$$
\operatorname{HWV}_{\lambda}\left(\otimes^{\delta D} \mathbb{C}^{m}\right)=\operatorname{linspan}\left(\left\{\pi v_{\lambda} \mid \pi \in \mathfrak{S}_{\delta D}\right\}\right)
$$

An example of such a $v_{\lambda} \in \operatorname{HWV}_{\lambda}\left(\bigotimes^{\delta D} \mathbb{C}^{m}\right)$:

$$
v_{\lambda}:=e_{1} \wedge e_{2} \wedge \cdots \wedge e_{\mu_{1}} \otimes e_{1} \wedge e_{2} \wedge \cdots \wedge e_{\mu_{2}} \otimes \cdots \cdots \otimes e_{1} \wedge e_{2} \wedge \cdots \wedge e_{\mu_{\lambda_{1}}}
$$

where $\mu=\lambda^{t}$.
Example: $e_{1} \wedge e_{2} \otimes e_{1} \wedge e_{2}=\frac{1}{2}\left(e_{1} \otimes e_{2}-e_{2} \otimes e_{1}\right) \otimes \frac{1}{2}\left(e_{1} \otimes e_{2}-e_{2} \otimes e_{1}\right)$

$$
\begin{aligned}
= & \frac{1}{4}\left(e_{1} \otimes e_{2} \otimes e_{1} \otimes e_{2}+e_{2} \otimes e_{1} \otimes e_{1} \otimes e_{2}+e_{1} \otimes e_{2} \otimes e_{2} \otimes e_{1}+e_{2} \otimes e_{1} \otimes e_{2} \otimes e_{1}\right) \in \operatorname{HWV}_{(2,2)}\left(\otimes^{4} \mathbb{C}^{2}\right) \\
& \downarrow(23) \\
& \frac{1}{4}\left(e_{1} \otimes e_{1} \otimes e_{2} \otimes e_{2}+e_{2} \otimes e_{1} \otimes e_{1} \otimes e_{2}+e_{1} \otimes e_{2} \otimes e_{2} \otimes e_{1}+e_{2} \otimes e_{2} \otimes e_{1} \otimes e_{1}\right) \in \operatorname{HWV}_{(2,2)}\left(\otimes^{4} \mathbb{C}^{2}\right)
\end{aligned}
$$

Defining polynomials via tensor contraction

Let $v \in \bigotimes^{\delta D} \mathbb{C}^{m}$.

$$
\forall y \in \operatorname{Sym}^{D} \mathbb{C}^{m}: f(y):=\left\langle v, y^{\otimes \delta}\right\rangle \text { defines a polynomial } f \in \operatorname{Sym}^{\delta} \operatorname{Sym}^{D} \mathbb{C}^{m}
$$

- Example (evaluation at $x_{1}^{2}+x_{2}^{2}$, which as a tensor is $e_{1} \otimes e_{1}+e_{2} \otimes e_{2}$):

$$
\begin{aligned}
& \left\langle\frac{1}{4}\left(e_{1} \otimes e_{1} \otimes e_{2} \otimes e_{2}+e_{2} \otimes e_{1} \otimes e_{1} \otimes e_{2}+e_{1} \otimes e_{2} \otimes e_{2} \otimes e_{1}+e_{2} \otimes e_{2} \otimes e_{1} \otimes e_{1}\right),\left(e_{1} \otimes e_{1}+e_{2} \otimes e_{2}\right)^{\otimes 2}\right\rangle \\
= & \frac{1}{4}\langle 1122-2112-1221+2211,1111+1122+2211+2222\rangle=\frac{1}{4} \cdot 2=\frac{1}{2}
\end{aligned}
$$

Evaluation at $x_{1} x_{2}$, which as a tensor is $\frac{1}{2}\left(e_{1} \otimes e_{2}+e_{2} \otimes e_{1}\right)$:

$$
\begin{aligned}
& \left\langle\frac{1}{4}\left(e_{1} \otimes e_{1} \otimes e_{2} \otimes e_{2}+e_{2} \otimes e_{1} \otimes e_{1} \otimes e_{2}+e_{1} \otimes e_{2} \otimes e_{2} \otimes e_{1}+e_{2} \otimes e_{2} \otimes e_{1} \otimes e_{1}\right),\left(\frac{1}{2}\left(e_{1} \otimes e_{2}+e_{2} \otimes e_{1}\right)\right)^{\otimes 2}\right\rangle \\
= & \frac{1}{16}\langle 1122-2112-1221+2211,1212+1221+2112+2121\rangle=\frac{1}{16} \cdot(-2)=-\frac{1}{8}
\end{aligned}
$$

Remark that we recognize this: $-\frac{1}{8} b^{2}+\frac{1}{2} a c=-\frac{1}{4}\left(b^{2}-4 a c\right)$, the discriminant.

- Alternative way to calculate via keeping the determinants:
$\langle(23)(1 \wedge 2 \otimes 1 \wedge 2), 1111+1122+2211+2222\rangle=\langle 1 \wedge 2 \otimes 1 \wedge 2,1111+1212+2121+2222\rangle$
$=\frac{1}{4}\left(\operatorname{det}\left(\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right)\left(\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right)+\operatorname{det}\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)+\operatorname{det}\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)+\operatorname{det}\left(\begin{array}{ll}0 & 0 \\ 1 & 1\end{array}\right)\left(\begin{array}{ll}0 & 0 \\ 1 & 1\end{array}\right)\right)=\frac{1}{2}$
- Alternative way to calculate via contraction with superstandard tableau (this talk's main theorem):
$T=\frac{11}{22}, \mathbb{S}_{2,2}=\frac{111}{222}, \quad M_{2,2} T=\frac{\frac{11}{22}}{22}+\frac{111}{111}+\frac{22}{222}+\frac{2 \frac{2}{112}}{112}=2 \cdot\left[\frac{11}{222}\right.$.
$\frac{1}{\prod_{i} \mu_{i}!}\left\langle\mathbb{S}_{2,2}, M_{2,2} T\right\rangle=\frac{1}{4} \cdot 2=\frac{1}{2}$.

Evaluation at the power sum

Let $p:=x_{1}^{D}+\cdots+x_{m}^{D} \in \operatorname{Sym}^{D} \mathbb{C}^{m}$.
We calculate

$$
\text { Let } g p=\ell_{1}^{D}+\cdots+\ell_{m}^{D} \text {, i.e., } \ell_{i}=g_{1 \ldots m, i} . \quad \text { Let } y:=g p .
$$

$$
y^{\otimes \delta}=\sum_{\varphi:\{1, \ldots, \delta\} \rightarrow\{1, \ldots, m\}} \ell_{\varphi(1)}^{D} \otimes \cdots \otimes \ell_{\varphi(\delta)}^{D}
$$

$$
\text { Recall } v_{\lambda}:=e_{1} \wedge e_{2} \wedge \cdots \wedge e_{\mu_{1}} \otimes e_{1} \wedge e_{2} \wedge \cdots \wedge e_{\mu_{2}} \otimes \cdots \cdots \otimes e_{1} \wedge e_{2} \wedge \cdots \wedge e_{\mu_{\lambda_{1}}}
$$

Let f be the polynomial defined by the tensor $\pi^{-1} v_{\lambda}$.

$$
f(y):=\left\langle\pi^{-1} v_{\lambda}, y^{\otimes \delta}\right\rangle=\left\langle v_{\lambda}, \pi\left(y^{\otimes \delta}\right)\right\rangle
$$

T_{λ} is the column-standard tableau.

$$
\left(\prod_{i} \mu_{i}!\right)\left\langle v_{\lambda}, \pi\left(y^{\otimes \delta}\right)\right\rangle \stackrel{\operatorname{expand}}{=} y^{\otimes \delta} \sum_{\substack{\beta:\{1, \ldots . \delta D\} \rightarrow\{1, \ldots, m\} \\ \text { respecting } \pi T_{\lambda}}} \underbrace{\prod_{c=1}^{\lambda_{1}} \operatorname{det}\left(g_{1 . . . \mu_{c}, \beta\left(\pi T_{\lambda}(1, c)\right)}, \ldots, g_{1 . . \mu_{c}, \beta\left(\pi T_{\lambda}\left(\mu_{c}, c\right)\right)}\right)}_{=:(*)},
$$

where β respects a tableau S if all numbers $1, \ldots, D$ are mapped to the same value, and all numbers $D+1, \ldots, 2 D$ are mapped to the same value, and so on.

Lemma: $\quad(*)=\left\langle\mathbb{S}_{\lambda}, g\left(\beta \pi T_{\lambda}\right)\right\rangle$
Therefore the vector space $\mathrm{HWV}_{\lambda}(\mathbb{C}[\overline{G p}])$ is generated by the functions

$$
g \mapsto \sum_{\substack{\beta:\{1, \ldots, D \delta\} \rightarrow\{1, \ldots, m\} \\ \text { respecting } S}}\left\langle\mathbb{S}_{\lambda}, g \beta(S)\right\rangle,
$$

where S runs over all tableaux of shape λ with every number from $1, \ldots, D \delta$ exactly once.

$$
g \mapsto \sum_{\substack{\beta:\{1, \ldots, D \delta\} \rightarrow\{1, \ldots, m\} \\ \text { respecting } S}}\left\langle\mathbb{S}_{\lambda}, g \beta(S)\right\rangle,
$$

where S runs over all tableaux of shape λ with every number from $1, \ldots, D \delta$ exactly once.
We want:

Main Theorem of this talk (coordinate ring of the orbit closure of the power sum expressed via tableaux)

The vector space $\mathrm{HWV}{ }_{\lambda}\left(\mathbb{C}[\overline{G p}]_{\delta}\right)$ is generated by the functions

$$
g \mapsto\left\langle\mathbb{S}_{\lambda}, g M_{\delta, m} T\right\rangle
$$

where T runs over all semistandard tableaux of shape λ in which each entry $1, \ldots, \delta$ appears exactly D times.
Given a standard tableau S we define a semistandard tableau T (or $T=0$) by replacing the first D entries $1, \ldots, D$ by the number 1 , the next D entries $D+1, \ldots, 2 D$ by the number 2 , and so on.
$g \mapsto \sum_{\substack{\beta:\{1, \ldots, D \delta\} \rightarrow\{1, \ldots, m\} \\ \text { respecting } S}}\left\langle\mathbb{S}_{\lambda}, g \beta(S)\right\rangle \quad \begin{gathered}\text { can be rewritten as } \\ \text { corresp. between summands) }\end{gathered} \quad g \mapsto \sum_{\varphi:\{1, \ldots, \delta\} \rightarrow\{1, \ldots, m\}}\left\langle\mathbb{S}_{\lambda}, g \varphi(T)\right\rangle$
By definition of $M_{\delta, m}$, this can be rewritten as:

$$
g \mapsto\left\langle\mathbb{S}_{\lambda}, g M_{\delta, m} T\right\rangle
$$

which finishes the proof.

$$
\text { Let } p:=x_{1}^{D}+\cdots+x_{m}^{D} \in \operatorname{Sym}^{D} \mathbb{C}^{m} . \quad \text { Let } G:=\mathrm{GL}_{m} . \quad \text { Let } \lambda \vdash \delta D .
$$

Main Theorem of this talk (coordinate ring of the orbit closure of the power sum expressed via tableaux)

The vector space $\operatorname{HWV}_{\lambda}\left(\mathbb{C}[\overline{G p}]_{\delta}\right)$ is generated by the functions

$$
g \mapsto\left\langle\mathbb{S}_{\lambda}, g M_{\delta, m} T\right\rangle,
$$

where T runs over all semistandard tableaux of shape λ in which each entry $1, \ldots, \delta$ appears exactly D times.
In the second talk we will see how to construct such functions, using a similar description for functions in $\mathbb{C}[G p]$:

Theorem (HWVs in the coordinate ring of the orbit)

The vector space $\mathrm{HWV}_{\lambda}\left(\mathbb{C}[G p]_{d}\right)$ decomposes into a direct sum of vector spaces $\mathrm{HWV} \mathrm{H}_{\lambda}\left(\mathbb{C}[G p]_{d}\right)=\bigoplus_{\varrho \vdash_{m} d} \mathscr{W}_{\varrho}$, and each \mathscr{W}_{ϱ} is generated by the functions

$$
g \mapsto\left\langle\mathbb{S}_{\lambda}, g P_{m} S\right\rangle,
$$

where S runs over all semistandard tableaux S of shape λ and content ϱD.

Thank you for your attention!

