
GIT AND MOMENT MAPS À LA NESS

T.R. RAMADAS

For GIT, the best account is still P. E. Newstead: Introduction to Moduli
Problems and Orbit Spaces, Tata Institute of Fundamental Research Publi-
cations, Volume: 17; 2011

For much more on symplectic geometry, GIT and the topology of quotients,
please see: F. C. Kirwan, Cohomology of Quotients in Complex and Alge-
braic Geometry, Mathematical Notes 31, Princeton University Press, Prince-
ton N. J., 1984.

We will mostly follow the wonderful paper: Linda Ness, A stratification
of the null cone via the moment map, American Journal of Mathematics
106(6): 1281-1329, which is best suited to our needs.

1. Basics

We work over the complex numbers C. All group actions are on the left.
Given a G-set X, we denote by XG the set of fixed points. Given a vector
space V , we let V̂ denote its dual.

1.1. Algebraic actions of algebraic groups. An (algebraic) action of an
affine algebraic group G on an affine variety X is in particular a morphism
G ×X → X, and hence encoded in the induced map C[X] → C[G ×X] =
C[G]⊗C[X]. The tensor product on the right is the algebraic tensor prod-
uct, and this has the following important consequences:

(1) Given a regular function p on X, its G-translates span a finite-
dimensional vector space of functions.

(2) Given an affine G-variety X, there exists a closed G-equivariant em-
bedding X ↪ V into a finite-dimensional vector space V with a linear
G-action.

Proof. (1) Let p be a regular function, and suppose

p↦∑
α

qα ⊗ pα

Date: September 18, 2021.

1



2 T.R. RAMADAS

By definition, if g ∈ G and x ∈X, we have

p(g−1x) =∑
α

qα(g)pα(x)

so the G-translates of p are contained in the span of the pα.

(2) Choose a (finite) set of regular functions that generate C[X], then en-
large them to a finite set whose linear span is invariant under G. �

From now on, we will only consider algebraic actions of affine algebraic
groups on quasi-projective (usually affine or projective) varieties.

A linear action of G on a finite-dimensional vector space is also called a
representation.

Let an affine algebraic group G act linearly on a f.d. vector space V . It acts
on the algebra of polynomial functions C[V ] = S∗V̂ = C⊕ { ⊕

k=1,...
SkV̂ } by:

(p, g)↦ pg, pg(x) = p(g−1x)
Since the linear action preserves degrees, we have

C[V ]G = C⊕ { ⊕
k=1,...

[SkV̂ ]G}

In other words, if p = p0 + ⋅ ⋅ ⋅ + pk is a G-invariant polynomial, so are its ho-
mogeneous terms p0, . . . , pk of each degree. Let I denote the ideal generated
by all invariant polynomials with zero constant term, i.e.,

I =< ⊕
k=1,...

[SkV̂ ]G >

By the Hilbert Basis Theorem, there exist finitely many homogeneous invari-
ant polynomials q1, . . . , qr, of strictly positive degrees d1, . . . , dr that generate
I. The subscheme defined by I

N = {x ∈ V ∣q(x) = 0∀q ∈ I} = {x ∈ V ∣qi(x) = 0 i = 1, . . . , r}
is the (affine) null-cone. For future use, note that the null-cone is indeed
a conical subvariety, i.e., a closed subvariety of the vector space V that is
invariant under scalar multiplication. (This is because it is defined by the
vanishing of homogeneous polynomials.)

The extreme cases are when G acts trivially and every polynomial is invari-
ant, in which case, the null-cone is the origin 0V or when the only invariant
polynomials are the constants, in which case the null-cone is V itself. Ex-
cluding these cases, we see that

0V ⊊ N ⊊ V
and N is a closed conical (that is, stable under scalar multiplication) sub-
scheme. In general N need not be reduced1 or irreducible. (We should
therefore use the word scheme, since the term “variety” is often restricted

1Consider the action z ↦ ±z of Z/2Z on C.
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to reduced schemes. For the most part, we can and will ignore scheme-
theoretic subtleties.)

We note the following result of Borel. (I am quoting conveniently from
stackexchange!):

If G is an algebraic group acts on an algebraic variety X, then each orbit
Gx is a smooth algebraic variety, open in its Zariski closure Gx. The set
Gx∖Gx is a union of orbits of strictly lower dimension. Each orbit Gx is a
constructible set, hence the Zariski closure Gx coincides with the closure in
the standard Euclidean topology.

Another (deeper) result is Matsushima’s theorem: if G is reductive, G/H is
affine iff H is reductive.

1.2. Reductive=linearly reductive groups. We will deal exclusively with
reductive groups. This is a affine algebraic group such that any maximal
compact subgroup K is Zariski-dense. Examples are:

(1) The group C∗ of nonzero complex numbers, with (in this case unique)
maximal compact S1, the group of complex numbers of modulus 1.

(2) More generally, complex tori:

C∗ × ⋅ ⋅ ⋅ ×C∗
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n times

with (also unique) maximal compact subgroup

S1 × ⋅ ⋅ ⋅ × S1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n times

(3) Finite groups.

(4) Simple Lie groups, say SL(2,C), with maximal compact SU(2) (or
any of its conjugates.).

(5) Products of the above, and quotients by finite normal subgroups.

A reductive group is the same as a linearly reductive group, i.e., one for
which every representation is completely reducible. In particular, given a
linear action of such a G on a finite-dimensional vector space W , we have a
unique splitting compatible with the G-action:

W =WG ⊕W ′

or equivalently, a G-equivariant projection rW ∶W →WG. (Choose a max-
imal compact subgroup K, average any inner product on W over K to get
a K-invariant inner product, and let W ′ be the orthogonal complement of
WG. This is K-invariant, and G-invariance (of W ′ not the inner product!)
follows from the Zariski-density of K.)
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If a linearly reductive G acts linearly on a vector space V , the projections

rSkV̂ ∶ SkV̂ → (SkV̂ )G, k = 0,1, . . . ,

together give the Reynolds operator

r ∶ C[V ]→ C[V ]G

which satisfies

(1) r(q) = q for every invariant polynomial q, and

(2) r(qp) = qr(p) if q is invariant.

We will use the following repeatedly. Let G be a linearly reductive group.

(1) A Reynolds operator r ∶ C[X] → C[X]G exists for any affine G-
variety X.

(2) If X is an affine G-variety and Y a closed G-invariant subvariety,
the restriction map

C[X]→ C[Y ]

has a G-equivariant splitting. In particular a G-invariant regular
function on Y has a G-invariant extension to X. That is, the map

C[X]G → C[Y ]G

is onto.

Let us now consider a linear action of a linearly reductive group G on a
vector space V . Using the Reynolds operator, one can prove:

Theorem 1.1. Let q1, . . . , qr be homogeneous invariant polynomials that
generate the ideal I, or equivalentlly, define the null-cone N . Then they
generate the invariant ring C[V ]G. In particular, the invariant ring is
finitely-generated.

Proof. Let P be a homogeneous invariant polynomial of minimal degree that
is not in the subalgebra generated by q1, . . . , qr. We have

P =∑
i

piqi

where deg pi = deg P − deg qi < deg P . Applying the Reynolds operator, we
get

P =∑
i

r(pi)qi

Since r(pi) are invariant and of degree < deg P , they are in the subalge-
bra generated by the qi; contradiction. (This argument might read better
formulated as an induction.) �
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Suppose given an action of a linearly reductive group G on an affine variety2

X. One can bootstrap our previous claims to yield: the invariant ring
C[X]G is finitely-generated.

Let X//G denote the affine variety with coordinate ring C[X]G. That is
to say, C[X//G] = C[X]G. The inclusion C[X]G ↪ C[X] yields a map
(a priori only dominant, i.e., with Zariski-dense image) π ∶ X → X//G.
Concretely, if C[X]G is generated by invariant regular functions q1, . . . , qN ,
the map

π̃ ∶X → CN , x↦ (q1(x), . . . , qN(x))
has image the closed subvariety X//G defined by equations expressing alge-
braic identities between the qi. We write

X Ð→
π
X//G ↪

inclusion
CN

The choice of generators is not unique; the dimension N and the specific
way X//G is expressed as an affine sub-variety depend on this choice.

In fact, the morphism π has many nice properties. To make a proper def-
inition, consider a morphism π ∶ X → Y of quasi-projective varieties, with
an algebraic group G acting on X. We say that π is a good quotient if the
following hold.

(1) The map π is onto. It is G-equivariant with G acting trivially on
Y , which is a fancy way of saying: π is constant on G-orbits (i.e.,
π(gx) = π(x)∀x ∈X, g ∈ G.)

(2) Any G-equivariant map X → Y ′, with G acting trivially on Y ′, fac-
tors uniquely through π. (We say that π is a “categorical” quotient.)

(3) The map π is an affine morphism. That is, given any affine open

U ⊂ Y , the morphism π∣Ũ ∶ Ũ → U is a morphism.of affine varieties,

where Ũ ⊂X denotes the inverse image of U .

(4) Given any affine open U ⊂ Y , we have C[U] = C[π−1(U)]G; equiva-
lently, the natural map C[U] → C[π−1(U)]G is an isomorphism. In
sheaf-theoretic terms, OY is the invariant direct image of OX .

(5) Given a closed G-invariant subvariety X ′ ⊂ X, its image π(X ′) is
closed in Y .

(6) Given disjoint closed G-invariant subvarieties X ′,X ′′ in X, the im-
ages π(X ′) and π(X ′) are disjoint.

Note that the definition of good quotient does not require G to be reduc-
tive. Because of possible subtleties, we will assume that when we talk of

2so we are generalising the situation from the previous one, in that the variety in
question need not be a vector space, and the action need not be linear.
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good quotients, G is reductive and we are working over C unless otherwise
specified explicitly.

The variety X//G, together with the morphism π ∶ X → X//G is a good
quotient, and called an affine geometric invariant theory (GIT) quotient.

Note the following facts:

(1) if X ′ ⊂ X is a closed G-invariant subavariety, the functorial map
X ′//G→ π(X ′) is an isomorphism of affine varieties.

(2) π(x) = π(x′) iff the G-orbit closures Gx and Gx′ intersect.

(3) Given y ∈ X//G, the inverse image π−1(y) is a union of G-orbits,
and contains precisely one closed G-orbit. So the points of X//G are
in bijection with closed G-orbits.

Let y ∈ Y , and consider π−1(y). The possibilities are:

(1) π−1(y) consists of only one orbit, with its dimension equal to that
of G, in which case, G acts with finite isotropy at any of the points
along the orbit.

(2) π−1(y) consists of only one orbit, with its dimension strictly less than
that of G, in which case, G acts with positive-dimensional isotropy
at any of the points along the orbit.

(3) π−1(y) consists of more than one orbit, in which case, it contains
precisely one closed orbit, whose dimension is minimal among all
orbits in π−1(y). The closure of any orbit in π−1(y) must contain
the closed orbit.

An example of a good quotient which is not an affine GIT quotient is the
familiar construction of the projective space P(V ) of one-dimensional sub-
spaces of a vector space V . The map V ∖ {0V } → P(V ) is a good quotient
by a free action of C∗. In fact the points of P(V ) are in bijection with C∗
orbits – all orbits are closed – so that this is a “geometric” quotient.

An affine (and by extension good) GIT quotient π ∶ X → X//G (and by
extension a good quotient) inherits many properties from X. You can
check that If X is reduced so is Y , and if X is normal, so is Y . Non-
singularity is rarely preserved, but the property of having rational singular-
ities is (Boutot).

Warning regarding positive characteristics. In positive characteristic we need
to define reductive groups differently. Very few groups are linearly reduc-
tive (although k∗ itself is), but the notion of “geometric reductivity” and
Haboush’s resolution of Mumford’s conjecture (that reductive groups are
geometrically reductive) come to our rescue, and much of the theory goes
through. Some care has to be taken. For example, it is no longer always
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true that X ′//G sits inside X//G if X ′ ↪ X. (This is because an invari-
ant function on a closed invariant subvariety need not lift to an invariant
function on the ambient variety.)

1.3. Action on a vector space; null-cone. Consider a linear action of a
linearly reductive group G on a vector space V . Let π ∶ V → V //G be the
GIT quotient. Recall that V //G is the affine variety with coordinate ring
C[V ]G

For future use, note that both C[V ] and C[V ]G are graded C-algebras. The
first of these is in fact generated by its degree one homogeneous component
S1V̂ = V̂ . If G is linearly reductive, the invariant ring C[V ]G is finitely gen-
erated, but it need not be generated by homogeneous invariant polynomials
of degree one, or even of equal degree.

Let us introduce the notation R = C[G], and denote by Rk the kth graded

piece, i.e., Rk = SkV̂ . The invariant ring is RG = ∑kRGk . Let R>0,R
G
>0

denote the “irrelevant maximal ideals”:

R>0 = ⊕k>0Rk

RG>0 = ⊕k>0R
G
k = RG ∩R>0

Note that R>0 is the (maximal) ideal defining the origin 0V . Let ν ∈ V //G
denote the point defined by RG>0. This is the scheme-theoretic image of 0V .
We have N = π−1(ν) (scheme-theoretic inverse image).

1.4. Projective quotients. Let C∗ act on V by (t, v⃗) ↦ tv⃗ (scalar multi-

plication of the vector x ∈ V by the scalar t. The induced action on SkV̂ is
by q ↦ t−kq. This restricts to the invariant subring, and induces an action
of C∗ on the quotient V //G commuting with π:

π(tx) = t ⋅ π(x)

Let P(V //G) denote the Proj (variety rather than scheme) of the graded
ring RG. (Note that Proj(R) = P(V ).) There is a natural map V //G∖{ν}→
P(V //G). This is in fact a good quotient by the action of C∗. We have
therefore a commutative diagram of maps:

V ∖N P(V )ss ≡ P(V ) ∖ P(N )

V //G ∖ {ν} P(V //G)

π∣V ∖N πP

That πP is a good quotient is not entirely obvious, but true. We have snuck in
the all-important definition and notation, that of semistable points of P(V )
under the action of a reductive group G, and the GIT quotient P(V //G) of
the open set P(V )ss of semistable points. Note that P(V //G) is projective
even though P(V )ss is usually only quasi-projective.
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(Though the above point of view is implicit in many accounts, it is sys-
tematically used in lecture notes by M.S. Narasimhan, where he uses the
”Ramanathan Lemma” to justify the arguments.)

Given a nonzero vector v⃗ ∈ V , we will let [v⃗] ∈ P(V ) denote the corresponding
one-dimensional vector space and say that v⃗ is “above” or “over” [v⃗]. Note
that [v⃗] = [v⃗′] iff the two vectors are nonzero scalar multiples of each other.
Since N is a conical subvariety of V , it determines a closed closed subvariety
P(N ) ⊂ P(V ) is called the (projectivised) null-cone.

A point [v⃗] ∈ P(V ) is said to be semistable if it lies in the complement
of P(N ). To be explicit: a point [v⃗] ∈ P(V ) is semistable if there is a
homogeneous invariant polynomial q of positive degree which does not vanish

at any point v⃗ ∈ V “above” [v⃗].

Points on the null-cone are called unstable by Mumford, but it is safer to
use the term non-semistable.

We can successively generalise the situation.

(1) First, if the action of G on P(V ) leaves invariant a closed subvariety
X ⊂ P(V ), we can define Xss ≡ X ∩ P(V )ss, and we obtain a good
quotient (red arrow below)

P(V )ss ↩
closed

Xss→Xss//G ↪
closed

P(V //G)

(2) Suppose given a projective variety X with a G-action. To define
the notion of semistability, we need to first choose an ample line
bundle L and a lift of the G-action to L. Then one can bootstrap
what went before and obtain a good quotient Xss → Xss//G, with
Xss//G projective. Some power of L descends to Xss//G and is
ample there.

Let us recall the list of possibilities for the fibre π−1(y) of a good quotient:

(1) π−1(y) consists of only one orbit (which is necessarily closed), with
its dimension equal to that of G, in which case, G acts with finite
isotropy at any of the points along the orbit.

(2) π−1(y) consists of only one orbit (again, necessarily closed), with its
dimension strictly less than that of G, in which case, G acts with
positive-dimensional isotropy at any of the points along the orbit.

(3) π−1(y) consists of more than one orbit, in which case, it contains
precisely one closed orbit, whose dimension is minimal among all
orbits in π−1(y). The closure of any orbit in π−1(x) must contain
the closed orbit.

A point [v⃗] ∈ P(V ) is stable if it is semistable with its orbit closed in P(V )ss
and the group G acts freely through it, except possibly for a finite isotropy.
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(This corresponds to a point on a fibre of type (1) above.) If the group G
acts “effectively” (roughly speaking, the action does not factor though the
action of a quotient group of smaller dimension), the typical semi-stable but
not stable point of P(V ) lies on a fibre of type (3), and occasionally of type
(2). The terms stable and semistable can be extended to nonzero vectors
in V : a nonzero vector v⃗ ∈ V is (semi)stable) if the corresponding point
[v⃗] ∈ P(V ) is.

1.5. Weighted projective spaces and P(V //G). To understand P(V //G)
it is useful to introduce weighted projective spaces. Let a sequence positive
integers d ≡ {d1 ≤ d2 ⋅ ⋅ ⋅ ≤ dN} be given. We let PN−1

d denote the quotient of

CN ∖ {0CN } by the following action of C∗:

(t, (z1, . . . , zN))↦ (td1z1, . . . , t
dN zN)

This is a (in general singular) projective variety called a weighted projective
space. Standard references are notes by Dolgachev or Miles Reid.

Given G-invariant homogeneous polynomials q1, . . . , qN (of degrees d1 ≤
. . . , dN ) that generate RG, the maps π and πP are induced by the maps

v⃗ ∈ V ↦ (q1(v⃗), . . . , qN(v⃗)) ∈ CN

[v⃗] ∈ P(V )ss ↦ [(q1(v⃗), . . . , qN(v⃗))] ∈ PN−1
d

Note that since [v⃗] is semistable at least one of the qi(v⃗) is nonzero.

1.6. Examples. Let us keep the following examples in mind.

(1) V = C2 and G = S2, the group of permutations of the coordinates
x, y. Then R = C[x, y], and RG = C[u = x+ y, v = xy]. Note that the
quotient map is (x, y) ↦ (u = x + y, v = xy). Note that N is defined
by the ideal (x + y, xy) and is not reduced.

(2) Let V be the space of n × n matrices A and G = SL(n,C) acting by
conjugation. ThenR is a polynomial ring, as is RG = C[u1, u2, . . . , un];
the quotient map A ↦ π(A) = {ui = pi(A)}, where the polynomials
(in the entries of A) pi are the coefficients of the characteristic poly-
nomial of A:

det (λnIn −A) = λn + p1(A)λn−1 + p2(A)tn−2 + ⋅ ⋅ ⋅ + pn(A)
(so that p1(A) = −tr(A) and pn(A) = (−1)ndet A.) Note that
π(A) = π(B) iff A and B have the same characteristic polynomial
iff they have the same (unordered) sets of eigenvalues. Note that pd
is homogeneous of degree d, so that scaling by t ∈ C,

tA↦ (tp1(A), . . . , tnpn(A))

Turning to the nilpotent cone, if n = 2, N is defined by the ideal
(tr(A), det A) and is a reduced affine cone of dimension 2. Note
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that N is the union of two orbits – the closed orbit consisting of
the zero matrix and the dense orbit consisting of nonzero nilpotent
traceless 2 × 2 matrices, all of which are “similar”. If n = 3, N is
defined by the ideal (trace(A), trace(A2), trace(A3)) and a reduced
affine cone of dimension 7.

(3) Let G = SL(2,C) act on V = M4×2(C) (the space of 4 × 2 complex
matrices) by multiplying on the right. The ring of invariants is
generated by the six 2 × 2 minors.

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x1 y1

x2 y2

x3 y3

x4 y4

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

↦ (x1y2 − x2y1, x1y3 − x3y1, x1y4 − x4y1, x2y3 − x3y2, , x2y4 − x4y2, x3y4 − x4y3)

Note that

(x1y2−x2y1)(x3y4−x4y3)−(x1y3−x3y1)(x2y4−x4y2)+(x1y4−x4y1)(x2y3−x3y2) = 0

so the image is a quadric cone in C6. The projective quotient is
in fact the Grassmannian G(2,4) ⊂ P5. A matrix A corresponds to
a semistable (in fact stable) point of P(M4×2(C)) if it is of maxi-
mal rank 2, in which case the corresponding SL(2,C) orbit can be
identified with the point of G(2,4) given by the image of the cor-
responding linear map C4 → C2, v⃗ ↦ Av⃗. (In the earlier version of
these notes and in the lecture, we had SL(2,C) multiplying 2 × 4
matrices on the left.)

1.7. Inner products and semistability. Consider a linear action of G on
V . Choose an inner product on V .

Proposition 1.2. Let v⃗ be a nonzero vector in V . Then the corresponding
point [v⃗] ∈ P(V ) is semistable iff infg∈G ∣∣gv⃗∣∣2 > 0.

Proof. If [v⃗] ∈ P(V ) is semistable, there exists a nonzero homogeneous in-
variant q ∈ C[V ] of positive degree such that q(v⃗) ≠ 0. If infg∈G ∣∣gv⃗∣∣2 = 0,
there exists a sequence gn ∈ G such that ∣∣gnv⃗∣∣2 → 0. This implies that
gnv⃗ → 0V , and by continuity, q(gnv⃗) → g(0V ) = 0. But since q is invariant
q(gnv⃗) = q(v⃗) ≠ 0, which is a contradiction.

Conversely, if if infg∈G ∣∣gv⃗∣∣2 > 0, we know that 0V is not contained in Gv⃗
m

,
the closure of the orbit Gv⃗ w.r.to the topology on V given by the metric (the

“classical topology”). On the other hand, by Borel’s theorem, Gv⃗
m

coincides
with the Zariski closure Gv⃗. Since 0V and Gv⃗ are disjoint closed G-invariant
subsets their images in V //G are disjoint. (In the lecture, I gave another
argument, which is essentially a proof of this part of the “good-quotient-
hood” of the map V → V //G.) �

Introduce a metric into complex algebraic geometry, and soon the whole
camel of differential geometry is inside. This will be the theme of the last
lecture. Here is a preliminary result.
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Proposition 1.3. Any critical point of ∣∣.∣∣2∣O is a minimum. The minimum
is attained on O iff ∣∣O∣∣ is closed in V iff the projection of O to P(V ) is
a closed semi-stable orbit in P(V )ss. In this case, the minima are unique
apart from the action of K = G ∩U(W ).

The norm-squared function is defined on V (not P(V )) and has little to say
about the nilpotent cone, projectivised or otherwise.

1.8. Unreliable history. Everything below should be prefaced “it is my
impression that..” because I have not run the fact-checks.

The first serious attention to the null-cone, was by Hilbert. His route to the
finite generation of invariants was through his basis theorem (proved in this
context) to describe the ideal defining the null-cone. With Mumford and
his geometric invariant theory (invented as a method to construct moduli
of polarised projective varieties) came the notion of GIT semistability and
the discovery, most clearly in the case of moduli of vector bundles, that
the notion is mirrored in an intrinsic property of the object being classified.
In some sense, one “threw out” non-semistable objects, effectively ignoring
the null-cone. Harder and Narasimhan, in their pioneering work, discov-
ered the Harder-Narasimhan filtration of a non-semistable vector bundle.
This intrinsic construction was linked to a stratification of the null-cone,
which thus regained its relevance to moduli theory. Symplectic geometry
and Morse-theoretic techniques came to the fore in the work of Atiyah-
Bott, where an infinite-dimensional version of GIT was used. A celebrated
theorem of Narasimhan and Seshadri was revealed as a version of the re-
lationship (which we will see below) between minimal critical points of the
norm-squared of the moment map and (poly)stable points.
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