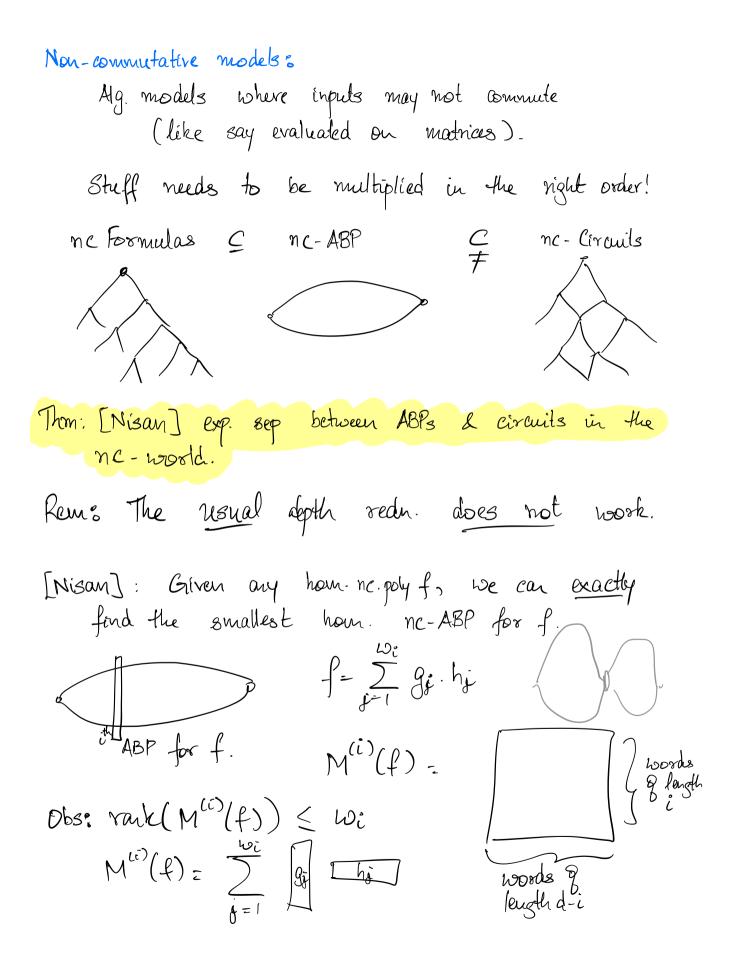
Get Workshop - Orline lecture series
Lower bounds - becture 2
Agenda: - Nisan's lower bound for non-commutative ABPS
- kayal's measure & shifted partial durivatives
- Some lower bounds resing shifted partials and
variants..
Recap: General lower bounds template:
-
$$\Gamma^{\circ}$$
 $F[\overline{x}] \rightarrow R$, as a groxy for sige.
- Γ° $re[\overline{x}] \rightarrow R$, as a groxy for sige.
- For any fee, show $\Gamma(f)$ is "small"
- Heuristically vaify that $\Gamma(R)$ is "large" for a
random R
- Ford hay in a haystack.
Some common measures:
 $P = \Gamma_k(f) = \dim(\partial^{=k}(f))$
 $i = \dim(sp \{\frac{\partial^k f}{\partial m} : m \text{ is a man}\})$
 $\Gamma_k(z_1, \dots, z_n) = \binom{n}{k}$
 $\Gamma_k(f) = 1$
 $\Gamma_k(f) = \frac{1}{k}$
 $\Gamma_k(f) = \frac{1}{k}$

Nacful to prove LBs for ZNZ and ZTT^[4]Z.
D X: YUZ.

$$P_{YUZ}(f) = \operatorname{rank}(M_{YUZ}(f))$$

 $\operatorname{coeff}_{f}(m_{1}m_{2})$
 $\operatorname{coeff}_{f}(m_{1}m_{2})$
 $\operatorname{rand}_{in,Y}$
 $\Gamma_{YUZ}(x_{1}...,x_{n}) = 1$
 $P_{YUZ}(f(Y)g(Z)) = 4$
 $\operatorname{Rous}(m) = \sigma_{Y=0} \partial_{m}(f)$
 $P_{YUZ}(ESym_{d}). \leq d$
Yey neeful for multilinear & non-commutative models.
D Other measures:
 $[Baur-Strassen] \quad \Gamma_{z}(f) = \# \{\bar{x} \circ (\nabla f)(\bar{x}) = \bar{a}\}.$
 $a^{S} \geq \Gammaa(Zx_{c}^{d}) \geq (d-1)^{N}$
 $[Mignon-Ressayre] \quad \Gamma_{x_{0}}(f) = \operatorname{rank}(Hers(f_{0})(x_{0}))$
 $where \quad f(x_{0}) = 0.$
 $\Gamma_{x_{0}}(f) \leq 2m$ if $dc(f) \leq m$.
 $\Gamma_{x_{0}}(Perm_{n}) = n^{2}$
Other non-matural measures:



In fact, we can build the smallest how ABP for f.

$$M^{(2)}(I) = \square_{A,V} =$$

Partial durivatives and their friends.
Recall:
$$2^{\Omega(M)}$$
 lb for ZNZ etchs computing $\alpha_1 \dots \alpha_n$
 $z^{\ell}l^{d}$
One what if the model is sums of quadratics?
 $Z \Omega_{1}^{d/2}$?
 $\partial_n (\Omega^d) = \Omega^{d-1} [lin]$
 $\partial^{=k} (\Omega^d) = \Omega^{d-k} (deg k)$
Obs: dim $(\partial^{\leq k} (\Omega^d)) \leq \binom{n+k}{k}$
 $\Pi_k^{k} (\Omega^d)$
 $\Pi_k^{k} (\Omega^d)$
 $\Pi_k^{k} (\Omega^d)$
 $\Pi_k^{k} (\Omega^d) \approx \binom{n+k}{n}$
 $\Pi_k^{k} (\Omega^d) \approx \binom{n+k}{k}$
 $\chi^{=l} \partial^{=k} (\Omega^d) \subseteq Sp \left\{ \Omega^{d-k} (deg k+l) \right\}$.
Obs: dim $(\chi^{=l} \partial^{=k} (\Omega^d)) \leq \binom{n+l+k}{n}$
 $\Pi_{k,k}^{k} (R) \approx \min \left\{ \binom{n+k}{k} \binom{n+l+k}{n}, \binom{n+l+d-k}{k} \right\}$.
 $\Pi_{k,k}^{k} (R) \approx \min \left\{ \binom{n+k}{k} \binom{n+l}{n}, \binom{n+l+d-k}{k} \right\}$.
 $\Pi_{k,k}^{k} (R) \approx \min \left\{ \binom{n+k}{k} \binom{n+l}{n}, \binom{n+l+d-k}{k} \right\}$.

Finding the right parameter choices is tricky...
Strongely, the "right"
$$l \ge n$$
...
 $\left(\frac{n+l}{k}\right)\binom{n+l}{n} \approx \frac{\left(\frac{n}{k}\right)^{k} \cdot \left(\frac{l}{k}\right)^{n}}{\left(\frac{l+k}{n}\right)^{n}} = \left(\frac{n}{k}\right)^{k} \cdot \left(\frac{l}{k+k}\right)^{n}$
Turns out, this does work! Can give an $n^{2(k)}$ lb.
Thom [kayal] $\alpha_{1} \dots \alpha_{n} = \sum_{l=1}^{s} Q_{l}^{l_{2}}$ and $deg(Q_{l}) = 2$
 $\implies s = 2^{2(n)}$
More generally, $\alpha_{1} \dots \alpha_{n} = \sum Q_{l}^{n/k} \Rightarrow s = 2^{2(n/k)}$
Last time, we could go from $2N2$ to $2\Pi^{2}_{2}$ easily.
Does the same work here?
 $\alpha^{=l} \Im^{=k}(Q_{1}\dots Q_{k}) \subseteq sp \begin{cases} \prod_{l \in S} Q_{l} \cdot \left(\frac{d_{q}}{k}\right) : |s| \cdot \frac{d}{2} - k \end{cases}$
Obs: dim $\alpha^{=l} \Im^{=k}(Q_{1}\dots Q_{k}) \leq \left(\frac{d_{l_{2}}}{k}\right) \cdot \left(n + \frac{l+k}{n}\right)$.
We shall get α
 $n^{2(k)}$ lower bound.

Tasks Find hay in the hay stack.

[Gupta-kaundh-kayal-S]
$$2^{\alpha(m)}$$
 16 for $\Sigma fi \Sigma fi$ ells
computing $D tn$ or $Perm.$
On: Why dou't we just engineer a poly where this
adaulation is easy?
dim $x^{=l} (f)$ always monomials
 $\partial_m(f) = m_1 + m_{2^{-l}}$
Can we ensure that any two
mons g f have $gcd < k$.
Build a poly from a code.
 $C \subseteq \Sigma^d \longrightarrow f_e \in F[\pi_{12...}, \pi_m]^{=d}$
Want a code
 g dislance $\times d-k$.
 g dislance $\times d-k$.
 $f = \Sigma f_{12...} \pi_{12...} \pi_{12...} \pi_{12...} f_{12...}$
Great! Now how large is $x^{=l} \partial^{=k}(f_e)$?
Fix one from each. $m_{12...}, m_{R}$

Ai =
$$\sum_{i \in J} m_i \cdot m_i$$
 m has deg l_j^2 .
Wart to estimate |UAi| > $\sum_{i \in J} |A_i| - \sum_{i \in J} |A_i| \cap A_j|$

