GCT Online Lecture series - Lower Bounds I.
Agenda: - Some recap of models,

- Ramprasad Saptharishi 2021-11-16.
- Typical lb proof templates.
- Some basic lower bounds, techniques

Models of computation.

Constant depth circuits / formulas. work only with $d=$ poly (n))

- $\sum \pi$: $\sum_{i=1}^{s} \prod_{j=1}^{d} x_{i j}$ - sparse polynomials.
- I $: \quad \sum \pi \sum x_{i j k}$ - depth 3 circuits.
$\sum \pi l_{i j}$
(surprisingly powerful)
$-\sum 1 \Sigma: \quad \sum l_{i}^{e_{i}}$
depth 3 powering Circuits (or "diagonal" circuits)
\ldots and so on.

Goal: Find an explicit family $\left\{f \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]\right\}_{n}$ of polynomials such that any circuit c from the class C computing f must have "large" size.
Ideally: $\left.\begin{aligned} & C=\text { alg. circuits. } \\ & \\ & \\ & \text { "large" }=\exp (n) .\end{aligned} \right\rvert\, \begin{array}{lll} & \text { Explicit: "youll know it when } \\ \text { you see it." }\end{array}$ "large" $=\exp (n)$.
How do lower bounds "typically" proceed?

- Identify a weakness of the class C.
- Quantify this weakness using a "complexity measure".
- Upper bound this measure for any small $C \in C$
- Heveristically convince yourself that the measure is "large" for a "random polynomial".
- Find a hay in the haystack.

In a lot of cases, $L B s$ follow the following template: (sub-additive measures)

- Show that any $c \in C$ can be written as a sum of "building blocks" (B).

$$
t=f_{h} q_{8} s .
$$

$C=B_{1}+\ldots+B_{t} \quad$ where each $B_{i} \in Q$

- Find a $\Gamma_{:} \mathbb{F}[\bar{x}] \rightarrow \mathbb{R}$ that is subadditive

$$
\Gamma(f+g) \leqslant \Gamma(f)+\Gamma(g)
$$

and show that $\Gamma(B) \leq$ "small" for any $B \in B$.

- Heuristically convince yourself that $\Gamma(f)$ is "large" if f is "random".
- Find hay in the haystack.

$$
\Gamma(f)=\operatorname{dim}\{L(f): L \in \alpha\}
$$

This lecture: - Some examples of $L B s$ that follow this template.

- Some examples that don't. (in some sense)
Starting with the basics:
- 2π circuíls (Iknow...)
$B=$ monomials.

$$
\begin{equation*}
\Gamma(B) \leqslant 1 \tag{duh}
\end{equation*}
$$

$$
\begin{aligned}
& \Gamma(f)=\text { sparsity. } \\
& \Gamma(f+g) \leq \Gamma(f)+\Gamma(g)
\end{aligned}
$$

A random poly probably has lots of monomials in it.
$f:\left(x_{1}+1\right) \cdots\left(x_{n}+1\right)$ is one of them hay.
$\Gamma(f)=2^{n} \quad \Rightarrow$ we have our lower bound.

- Depth 3 powering circuits.: $\quad l_{1}^{d_{1}}+\ldots+l_{s}^{d_{s}}$

$$
\mathcal{B}=\left\{l^{e}: \quad l \text {-linear, } \quad e \in \mathbb{N}\right\} \text {. }
$$

What is an exploitable weakness for such building becks?
Obs: $\frac{\partial^{2}}{\partial x_{i} r_{j}} l^{\alpha}=\alpha \cdot l^{\alpha-2}$

$$
\partial^{=k}(f)=\left\{\partial_{m}(f): m-\text { mon } o \operatorname{deg} k\right\}
$$

Lemma: $\operatorname{dim} \partial^{=k}\left(l^{d}\right) \leq 1$.
Set $\left.\Gamma_{k}(f)=\operatorname{dan} . \partial^{=k}(f) \quad \begin{array}{l}\text { where } k \\ \text { later }\end{array}\right)$ will be chosen
Cor: $f \in \sum^{s} X \Sigma$, then for any $k, \Gamma_{k}(f) \leqslant s$.
If f is a random n-var, deg d poly, what do we expect this to be?

There are $\approx\binom{n+k}{k}$ vectors in $\partial^{=k}(f)$ each with. $\binom{n+d-k}{d-k}$ coordinates.

derivatives
of order k.
Wishful heuristic:

$$
\Gamma_{k}(f) \approx \min \left(\binom{n+k}{k},\binom{n+d-k}{d-k}\right)
$$

for a random f.

$$
f=x_{1} \ldots x_{n} . \quad \Gamma_{k}(f)=\binom{n}{k} .
$$

\therefore If $f \in \sum^{s} \lambda \Sigma$, then $\Gamma_{k}(f) \leqslant s$ and $\Gamma_{k}(f) \geqslant\binom{ n}{k}$

$$
\Rightarrow s \geq\binom{ n}{k} . \quad k=n / 2 \Rightarrow s=2^{\Omega(n)}
$$

- LBS for depth 3 circuits.
$f=\sum_{i=1}^{\sum} \prod_{j=1}^{d_{i}} l_{i j} \longrightarrow$ surprisingly powerful.
Hor. depth 3 circuits.
$f=\sum_{i=1}^{s} \prod_{j=1}^{d} l_{i j} \quad$ each $l_{i j}$ is a linear form (no constant term).
$B=\left\{\prod_{i=1}^{d} l_{i j}: l_{i j}^{\prime} s\right.$ linear forms $\}$.

$$
\partial_{x_{1}}\left(l_{1} \ldots l_{d}\right)
$$

What is an exploitable weakness? $\quad x l_{2} \ldots l_{2}+\alpha \cdot l_{1} l_{3} \ldots l_{d} \ldots$
Claim: $\Gamma_{k}\left(l_{1} \ldots l_{d}\right)=\operatorname{dim} \underbrace{=k}\left(l_{1} \ldots l_{d}\right) \leq\binom{ d}{k}$

$$
\subseteq \operatorname{span}\left\{\prod_{i \in S} l i:|s|=d-k\right\}
$$

\therefore If $f=\sum_{i=1}^{s} l i 1 \ldots l_{i d}$ and f is "random", then we can hope $s \geqslant \frac{\min \left\{\binom{n+k}{k},\binom{n+d-k}{d-k}\right\}}{\binom{d}{k} .}$
Say $k=d / 2$
Numerator. $\approx\binom{n}{d / 2}$
Denom: $\approx 2^{\alpha}$

Fact: If $f=E S Y M_{n, d}$, dim. $\partial^{=k}(f) \approx$ wishful bound.
\therefore Any ham. $\Sigma \pi \Sigma$ celt computing EsyM n, d requires size $\left(\frac{2 n}{d}\right)^{d / 2} / 2^{d}$

On the other hand, there are non-hom. $\sum \pi \Sigma$ chs for ESYM fid of size just $O\left(n^{2}\right)$ [Ben-Or]

- Multilinear $\Sigma \pi \Sigma$ circuits.
$f=\sum_{i=1}^{s} l_{i 1} \ldots$ lid where $l_{i 1}, ., l_{\text {id }}$ are variable disjoint.
$B:\left\{l_{1} \ldots l_{d}:\right.$ variable disjoint linear polys $\}$. coeff $f_{m_{1} m_{2}}(f)$

On: Is $\operatorname{rark}(M(f))$ a

[az] If you choose the partition at random, then it is a good measure.

$$
\operatorname{rel}_{-\operatorname{rank}}^{y, z}(f)=\frac{\operatorname{rark}\left(M_{y, z}(f)\right)}{\sqrt{\# \text { Rows. \#Cols }}}=\frac{\operatorname{rark}\left(M_{y, z}(f)\right)}{2^{(|y|+|z|) / 2}}
$$

$$
\therefore M(f g)=M(f) \otimes M(g)
$$

$$
n=2 d
$$

What is $\underset{x=4 \mathrm{Lz}}{\mathbb{E}}\left[\operatorname{rel} \operatorname{Rank}\left(l_{1} \ldots \ell_{k}\right)\right]$

$$
\leqslant \prod_{i=1}^{d / 2} \mathbb{E}\left[\operatorname{re|} \mid \operatorname{Rak}\left(l_{i}\right)\right]
$$

Suppose $\operatorname{Var}\left(l_{i}\right) \geqslant 3 . \Rightarrow \operatorname{relRack}(l) \leq \frac{2}{2^{3 / 2}}=\frac{1}{\sqrt{2}}$

$$
\begin{aligned}
& \operatorname{Var}\left(l_{i}\right)=2 . \quad \mathbb{E}[\operatorname{rel} \operatorname{Rank}] \leqslant \frac{1}{2} \cdot \frac{2}{2}+\frac{1}{2} \cdot \frac{1}{2}=\frac{3}{4} \\
& x_{1}+x_{2} \\
& \therefore \therefore \quad \mathbb{E}\left[\operatorname{rel} \operatorname{Rark}\left(l_{1} \ldots l_{k}\right)\right] \leqslant\left(\frac{3}{4}\right)^{d / 2}
\end{aligned}
$$

For a random poly, we expect $M(f)$ to be fullrak $\therefore \operatorname{relRark}($ random poly) ≈ 1.
\Rightarrow We have a $2^{\Omega(d)}$ lower bound.
[Raz] $n^{\Omega(\operatorname{logn} n} l b$ for ML formulas computing Det/Perm. [CELS] Depth hierarchy the for ML formulas.

Some lbs that don't follow this template:

- Baur-Strassen: $\Omega(n \text { loge })_{d} l b$ for general Circuits comoutina $x_{1}^{d}+\ldots+x_{n}^{d}$.

Sketch:
Lemma 1:

(Bac kpropagation in the ML comm).
Can we fix an output $\bar{a} \in \mathbb{F}^{n}$ and ask how many input result in that output?

$g-g_{1} g_{2}$ or $g-\left(g_{1}+g_{2}\right)$
There is one quadratic eqn for each gate.
\#solns to s-quadratic equs.
[Bezout] If this is finite, then $\leq 2^{S}$.

If $f=x_{1}^{d}+\cdots+x_{n}^{d}$,

$\bar{a}=(d, \ldots, d)$ How mary inputs lead to this?
\Rightarrow each x_{i} is a $(d-1)^{\text {th }}$ - root of unity.
\Rightarrow We hare $(d-1)^{n}$ inputs.

$$
(d-1)^{n} \leq 2^{s} \quad \Rightarrow \quad s=\Omega(n \log d)
$$

- Determinental complexity LB. [Mignon-Ressagre]

$$
f=\operatorname{Det}\left[\begin{array}{ccc}
l_{11} & \cdots & l_{m} \\
l_{m 1} & \cdots & l_{\operatorname{lm}}
\end{array}\right]
$$

$$
l_{i} \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]
$$

linear.
Wart an $L B$ for m.

$$
\begin{aligned}
f(x) & =\operatorname{det}(A(x)) \quad \text { let } x_{0}: \quad f\left(x_{0}\right)=0 . \\
f\left(x+x_{0}\right) & =\operatorname{det}\left(A\left(x+x_{0}\right)\right) \\
& =\operatorname{det}(L(x)+B)_{L_{\infty}} \operatorname{det}(B)=0
\end{aligned} \quad B v: \quad B v=0 .
$$

Suppose x^{\prime} st $L\left(x^{\prime}\right) v=0$
then $L\left(x^{\prime}\right)+B$ is also singular!

$$
\begin{aligned}
& \Rightarrow f\left(x^{\prime}+x_{0}\right)=0 \\
& V=\left\{x^{\prime}: L\left(x^{\prime}\right) \cdot v=0\right\} \rightarrow \begin{array}{l}
\text { vector space } \\
\text { of dim } \\
\geqslant N-m .
\end{array} \\
& \quad \cdots v=0
\end{aligned}
$$

Claim: If $f\left(x_{0}\right)=0$ and V is a rector space of dim $n-r$ $f\left(x_{0}+x\right)=0 \quad \forall x \in V$, then $\operatorname{rark}\left(\operatorname{Hess}(f)\left(x_{0}\right)\right) \leqslant 2 r$.

Claim: There is an $n \times n \quad$ matrix X_{0} s.t $\operatorname{Perm}\left(x_{0}\right)=0$ and $\operatorname{rark}\left(\operatorname{Hess}(\operatorname{Perm})\left(x_{0}\right)\right)=n^{2}$.

Cor: $\operatorname{Det}_{m}(A(x))=\operatorname{Perm}_{n} \Rightarrow m \geqslant \frac{n^{2}}{2}$.

