if JSSR C.T X=Z(S). Rmk: If I is the ideal in R generated by S, then Z(I)= Z(S). Very easy to check. • $f,g \in R \stackrel{2}{\leftarrow} (f+g) = f(p) \stackrel{g(p)}{\leftarrow} g(p)$ $p \in A^n \stackrel{2}{\leftarrow} (f+g) p = f(p) + g(p)$ Fact: Ris a noetherian ring, i.e.; every ideal is finitely generated. So: if Z(S) is an algebraicset, then $Z(S) = Z(f_1, ., f_r) \text{ for } f_1, ., f_r \in R$ Lemma. Algebraic sets are closed under finite unions and arbitrary intersections; ϕ , A^n are algebraic. $\underline{Pf}: \cdot Z(S_1) \cup Z(S_2) = Z(S_1S_2)$ $(|Z(S_{\alpha}) = Z(US_{\alpha})|$ $d \in N$ $z(1) = \phi$ N $Z(0) = A^{\prime}$. Conclusion: Algebraic Sets are closed sets in a topology on A'. This is called the Zariski topology on A".

$$f = \{f \in R | f \in I \text{ for some }$$

"radical of $I'', VI.$

 $\underline{eq}: \quad \mathbb{I}(\mathbb{Z}(\chi_{\circ}^{2})) = (\chi_{\circ}) = \sqrt{(\chi_{\circ}^{2})}$

Cor: $V(I) = \phi \Rightarrow I = R$. Reason: $V(I) = \phi \Rightarrow I(V(I)) = I(\phi) = (I)$ VI ⇒ IEVI ⇒IEI⇒I=R This is not fine for other fields: $I = (X^2 + y^2 + i) \in \mathbb{R}[X, Y]$ $V(I) = \phi$, but $I \neq (I)$. (1) If $X_1, X_2 \subseteq A^{\vee}$ and $X_1 \subseteq X_2$, then frop: $T(X_1) \supseteq T(X_2)$. (2) If $I_1 \subseteq I_2 \subseteq R$, then $Z(I_1) \supseteq Z(I_2)$. (3) If ICR is an ideal, $I(Z(I)) = \sqrt{I}$. (4) If $X \subset A^n$ is any subset, $Z(I(X)) = \overline{X}$, the closure of X in the Zariski topology. Pf: (1), (2) trivial, (3) is Hilbert's Nullstellensatz, (4): early. (Def: An ideal ICR is 'radical') if I=JI Upshot: S Algebraic Sets 2 bijective & radical ideals in 2 in An S $\chi \mapsto I(\chi)$ This is an inclusion - reversing $Z(I) \leftarrow I$ bijective correspondence.

Def: An ideal
$$T \subseteq R$$
 is prime if
 $f, g \in R, fg \in I$, then $f \in I$ or $g \in I$.
 $eg: (XY) \subseteq C[X,Y]$ is not prime.
 $\therefore XY \in (XY)$, but $X \notin (XY)$.
 $(XY) = \{f \cdot (XY) | f \in R\}$
 $Z(XY):$ is not irreducible.
 $\{f_{n,b} \in C \mid ab=0\}$
You can check (XY) is a randical ideal, though it
is not prime.
Examples:
 $(D \land A^{n}$ is an affire variety (if is also irreducible)
 $(2 \land X = \{(t, t^{2}, t^{3}) \mid t \in C\} \subseteq A^{3}$.
 $Ts \land algebraic ?$
polynomials that vanish an $X \therefore X_{1}^{2} - X_{2}, X_{1}^{2}X_{3}$.

Consider
$$X = A' - Eo3 \xrightarrow{\phi} A^2$$

 $a \mapsto (a, a^{-1})$
Let $Y = image of $Y = \Psi(X) \subseteq A^2$.
Qui Is Y a closed subset of A^2 ?
And $Yes: Y = Z(X_1X_2-1)$.
check $\psi: X \to Y$ is a bijection.
In fact, more is true: ψ is a "homeomorphism".
Co we can identify X with Y .
This way we can consider X as an affine variety.
Rink: $A^{-1} = Eo3$ down not have a structure of an
affine variety for $n \ge 2$.
(5) $M_n(C) = Enxin matrices over C.$?
So with this identification, $M_n(C)$ is an
affine space.$

Consider
$$GL_n(C) \subseteq M_n(C) = C^n$$

fall now invertible matrices?
We want to think of $GL_n(C)$ as an affine
Variety. But $GL_n(C)$ is an open subset of
 $M_n(C)$.
But $GL_n(C) \longrightarrow C^{n+1}$
 $A \longmapsto (a_n, ..., a_{nn,n}(det A)^T)$
Then the image is a closed subset of C^{n+1} .
So it is an affine variety. Hence So is
 $GL_n(C)$.
Similarly, $SL_n(C) = \{A \in M_n(C) \mid det A = 1\}$
is also an affine Variety.
 G Sym^d $C^n := \{homogeneous polynomials in n Naioldes of degree d \}$
 $Can be = C^{(n+d-1)}$