School an GCT, Ang-Dec 2021
Basics of algebraic geometry
\rightarrow Affine varieties, projective varieties, morphism. (R. Hartshorne, chapter I, sections 1-3)
§1: Affine varieties: Work over complex numbers \mathbb{C}.
Geometry $\mathbb{C}^{n}=\left\{\left(a_{1,}, a_{n}\right) \mid a_{i} \in \mathbb{C}\right\}=\mathbb{A}^{n}$
"Affine n-space"
Algebra $R:=\mathbb{C}\left[X_{0}, \ldots, X_{n}\right]=\{$ poly in n variables over $\mathbb{C}\}$
Given a polynomial $f \in R$ and $p=\left(a_{1},, a_{n}\right) \in A^{n}$,
We say " p is a zero of f " if $f\left(a_{1},, a_{n}\right)=0$
eg: $(1,1)$ is a zero of $x^{2}-y^{2}$.
Def: Let $S \subseteq R$ be a set. The zero set of S,

$$
Z(S):=\left\{p \in \mathbb{A}^{n} \mid f(p)=0 \quad \forall f \in S\right\} \subseteq A^{n}
$$

is an "algebraic set".
In other words: A subset $X \subseteq A$ " is an "alyebaric set"
if $\exists S \subseteq R$ st $X=Z(S)$.
Rok: If I is the ideal i, R generated by S, then $Z(I)=Z(S)$. Very easy to check.

$$
\left.\begin{array}{rl}
f, g \in R \\
p \in \mathbb{A}^{n}
\end{array}\right\} \begin{aligned}
(f g)(p) & =f(p) g(p) \\
(f+g) p & =f(p)+g(p)
\end{aligned}
$$

Fact: R is a noetherian ring, ie; every ideal is finitely generated.
So: if $Z(S)$ is an algebvaicset, then

$$
Z(s)=Z\left(f_{1},, f_{r}\right) \text { for } f_{1}, \ldots, f_{r} \in R
$$

Lemma. Algebraic sets are closed under finite unions and arbitrary intersections; Φ, A^{n} are algebraic.
Pf:

$$
\begin{aligned}
& =Z\left(S_{1}\right) \cup z\left(S_{2}\right)=z\left(S_{1} S_{2}\right) \\
& \cap Z\left(S_{\alpha}\right)=z\left(\cup S_{\alpha \in \Lambda}\right) \\
& \cdots(1)=\oint_{\alpha} \\
& =Z(0)=\mathbb{A}^{n}
\end{aligned}
$$

Conclusion: Algebraic sets are closed sets in a topology on A^{n}. This is called the Zariski topology on A^{n}.

Since $A^{n}=C^{n}$, it admits another topology, the Euclidean topology.
Note: Zariski closed \Rightarrow Euclidean-closed.
Converse is not true!
Example: If $X \leq A^{\prime}$ is zariski closed, then X is finite or $X=A^{\prime}$.
Reason: A nonzero poly in $\mathbb{C}[X]$ has only finitely many zeros. But in the Euclidean top, there are many infinite closed Subsets of \mathbb{C} that are not equal to \mathbb{C}.
eg: $\{z \in \mathbb{C}||z| \leq 1\}$.
Def: If $y \subseteq A^{n}$ is a subset then the ideal of Y is

$$
I(y):=\{f \in R \mid f(p)=0 \forall p \in Y\}
$$

Hilbert's vullstellensatz: Let I be an ideal in R. If $f \in R$ vanishes on all of $z(I)$, then $f^{r} \in I$ for some $r \geqslant 1$.
So: $I(Z(I))=\left\{f \in R \mid f^{r} \in I\right.$ for same $\left.r \geqslant 1\right\}$ "radical of $I ", \sqrt{I}$.
eg: $I\left(Z\left(x_{0}^{2}\right)\right)=\left(x_{0}\right)=\sqrt{\left(x_{0}^{2}\right)}$

Cor: $V(I)=\phi \Rightarrow I=R$.
Reason: $V(I)=\phi \Rightarrow I(V(I))=I(\phi)=(1)$

$$
\Rightarrow 1 \in \sqrt{I} \Rightarrow 1 \in I \Rightarrow I=R
$$

This is not true for other fields:

$$
\begin{aligned}
& I=\left(x^{2}+y^{2}+1\right) \in \mathbb{R}[x, y] \\
& V(I)=\phi, \text { but } I \neq(1) .
\end{aligned}
$$

Prop: (1) If $X_{1}, x_{2} \subseteq A^{n}$ and $X_{1} \subseteq X_{2}$, then

$$
I\left(x_{1}\right) \supseteq I\left(x_{2}\right) .
$$

(2) If $I_{1} \subseteq I_{2} \subseteq R$, then $Z\left(I_{1}\right) \supseteq Z\left(I_{2}\right)$.
(3) If $I \subset R$ is an ideal, $I(Z(I))=\sqrt{I}$.
(4) If $X \subset A^{n}$ is any subset, $Z(I(x))=\bar{X}$, the closure of X in the zariski top logy.
Pf: (1), (2) trivial; (3) is Hilbert's vullstellensatz;
(4) : easy
(Def: An ideal ICR is 'radical')
Upshot:

$$
\left\{\begin{array}{c}
\text { Algebraic sets } \\
\text { in } A^{n}
\end{array}\right\} \underset{ }{\text { bijective }}\left\{\begin{array}{c}
\text { radical ideals in } \\
R
\end{array}\right\}
$$

This is an

$$
X \longmapsto I(x)
$$ inclusion-reversing bijective bigecrespondence.

cores

Def: An affine variety is a zariski closed Subset of A^{n}. (So it is simply an alg set.)

Rok: Many authors require affine variety to be irreducible'.
Def: An algebraic set X is "irreducible" if it cannot be written as a union of two proper closed subsets.
Def: Let X be an affine variety. So it is a closed suloset of some affine space \mathbb{A}^{n}. Then the "coordinate ring of X " is the quotient ring $\frac{\mathbb{C}\left[X_{1,2}, X_{n}\right]}{I(x)}=: \Gamma(x)$.

Rok: X irreducible $\Leftrightarrow I(X)$ is prime
Iv easy algebraic fact.
$\Gamma(x)$ is an integral domain.
Def: A ring A is an int. domain if $a_{1} b \in A, a b=0$, then $a=0$ or $b=0$.

Def: An ideal $I \subseteq R$ is prime if $f, g \in R, f g \in I$, then $f \in I$ or $g \in I$.
eg: $(x y) \subseteq \mathbb{C}[x, y]$ is not prime.

$$
\begin{array}{ll}
\because x y \in(x y), \text { but } & x \notin(x y) . \\
\hline(x y)=\{f \cdot(x y) \mid f \in R\} & y \notin(x y) .
\end{array}
$$

$Z(x y):$ is not irreducible.

$$
\left\{(a, b) \in \mathbb{C}^{2} \mid a b=0\right\}
$$

you can check $(X Y)$ is a radical ideal, though it is not prime.

Examples:
(1) A^{n} is an affine varicty (it is also irreducible)
(2) $X=\left\{\left(t, t^{2}, t^{3}\right) \mid t \in \mathbb{C}\right\} \subseteq A^{3}$.

Is X algebraic?
polynomials that vanish on $X: X_{1}^{2}-X_{2}, X_{1}^{3}-X_{3}$.

Let $I=\left(x_{1}^{2}-x_{2}, x_{1}^{3}-x_{3}\right) \subseteq \mathbb{C}\left[x_{1}, x_{2}, x_{3}\right]$
Then $X=Z(I)$
So X is algebraic.
check: (1) $I(X)=I$ because

$$
\left\lvert\, \begin{aligned}
& (a, b, c) \in Z(I) \\
& \Rightarrow a^{2}=b \\
& \\
& \Rightarrow a^{3}=c \\
& \Rightarrow \\
& (a, b, c) \in X .
\end{aligned}\right.
$$

I is prime.
(2) $\Gamma(x)=\frac{\mathbb{C}\left[x_{1}, x_{2}, x_{3}\right]}{I} \simeq \mathbb{C}\left[x_{1}\right]$
(3) We will see later that X is is maphic to A^{\prime}.
X is called a "twisted ubbic curve".
(3) $Y=\left\{\left(t^{2}, t^{3}\right) \mid t \in \mathbb{C}\right\} \subset \mathbb{A}^{2}$ is an algebraic variety, with $I(Y)=\left(X_{1}^{3}-X_{2}^{2}\right)$
(4) Let $X=A^{\prime}-\{0\} \subseteq \mathbb{A}^{\prime}$.

Then X is an open Suloset of A^{\prime};
but X is an affine variety!

Consider $\quad X=A^{1}-\{0\} \xrightarrow{\varphi} \mathbb{A}^{2}$

$$
a \mapsto\left(a, a^{-1}\right)
$$

Let $y=$ image of $\varphi=\varphi(x) \subseteq \mathbb{A}^{2}$.
Qu: Is Y a closed subset of A^{2} ?
Ans: Yes: $y=Z\left(x_{1} x_{2}-1\right)$.
check: $\varphi: X \rightarrow Y$ is a bijection.
In fact, more is tue: φ is a "homeomaphism".
So we can identify X with Y.
This way we can consider X as an affine variety.
Rok: $A^{n}-\{0\}$ does not have a structure of an affine variety for $n \geqslant 2$.
(5)

$$
\begin{aligned}
M_{n}(\mathbb{C}) & =\{n \times n \text { matrices over } \mathbb{C}\} \\
& =\mathbb{C}^{n^{2}}
\end{aligned}
$$

So with this identification, $M_{n}(\mathbb{)}$ is an affine space.

Consider $\quad G L_{n}(\mathbb{C}) \subseteq M_{n}(\mathbb{C})=\mathbb{C}^{n^{2}}$ \{all $n \times n$ invertible matrices \} ~
We want to think of $G L_{n}(\mathbb{C})$ as an affine variety. But $G L_{n}(\mathbb{C})$ is an open subset of $M_{n}(\mathbb{C})$
But

$$
\begin{aligned}
& \text { (1) } \\
& G L_{n}(\mathbb{C}) \longrightarrow \mathbb{C}^{n^{2}+1} \\
& A \longrightarrow\left(a_{11}, \ldots, a_{n n},(\operatorname{det} A)^{-1}\right)
\end{aligned}
$$

Then the image is a closed subset of $\mathbb{1}^{n^{2}+1}$.
So it is an affine variety. Hence so is $G L_{n}(\mathbb{L})$.
Similarly, $\quad S L_{n}(\mathbb{C})=\left\{A \in M_{n}(C) \mid \operatorname{det} A=1\right\}$ is also an affine variety.
(6) Sym $\mathbb{C}^{n}:=\{$ homogeneous polynomials in n variables of degree $d\}$
$(n+d-1)$
can be

$$
=\mathbb{C}^{\binom{n+d-1}{d}}
$$

identified with an affine space.
§2: Projective varieties.
"Projective n-space" \mathbb{P}^{n}
Consider $\mathbb{C}^{n+1}-\{(0,0, \ldots, 0)\}$ and the following equivalence relation on it:

$$
\begin{aligned}
& \left(a_{0}, \ldots, a_{n}\right) \sim\left(b_{0}, \ldots, b_{n}\right) \text { if } \exists \lambda \in \mathbb{C},\{0\} \text { s.t. } \\
& b_{i}=\lambda a_{i} \forall i=0, \ldots, n . \\
& \mathbb{P}^{n}=\text { equivalence classes }=\mathbb{C}^{n+1}-\{0\}
\end{aligned}
$$

set of lines through the origin in \mathbb{C}^{n+1}.
\therefore A point $p \in \mathbb{P}^{n}$ is a line in C^{n+1} through the origin.
If can be represented by $\left[a_{0}: a_{1}: \cdots: a_{n}\right], a_{i} \in \mathbb{C}$.

$$
\text { eg. } \mathbb{P}^{2} \rightarrow[1: 2: 3]=[i: 2 i: 3 i]
$$

We want to view points of \mathbb{P}^{n} as zero of polynomials in $\mathbb{C}\left[X_{0}, \ldots X_{n}\right]$.

$$
\begin{array}{r}
f=X_{0}^{2}+X_{1} ; \quad[1: 2] \in \mathbb{P}^{\prime} ; \quad f([1: 2])=1+2=3 \\
11 \\
f([2: 4])=8
\end{array}
$$

