Basics of algebraic geometry II Sep 7, 2021 $h \ge 1$ integer; $\mathbb{C}^{h+1} - \{0\}_{N} = :\mathbb{P}^{h}$ Det: (a.,., an) ~ (bo,., bn) if J XEC \ for S.t bi= dai. Points of IP" will be demoted [ao: a,:...: an] $\underbrace{e_{g}}_{:} [1:2] = [3:6] = [1:2i]] = [\pi:2ii] \in \mathbb{P}'$ Shines through the origin in Cⁿ⁺¹ ? We want to talk about zeros of poly in C[Xo,., Xu+1] We first notice that we have to consider only $f = \chi_0^2 - \chi_1$ "homogeneous polynomials". P = [1:2]Def: A polynomial f E C[xo,., Xn] is = [2:4] f(p) = 1 - 2homogeneous if every monomial in f ≠2²-4 has the same degree. \underline{eg} . $X_0^2 - X_0 X_1 + X_2^2$ homog Xo-XoX, +X2 not homog

$$a_{1} \neq 0 \Rightarrow [a_{0}: a_{1}] = \sum_{a_{1}}^{a_{0}} : 1] \text{ in } \mathbb{P}^{n}$$

$$U_{1} = \sum_{i}^{n} [a_{0}: 1] | a_{0} \in \mathbb{C}_{i}^{2} \qquad \text{bijechin} \mathbb{C}$$
More generally: $U_{i} \Leftrightarrow \mathbb{C}^{n}$

$$\lim_{i \neq i}^{n} [\text{Later : this is actually} an isomorphism of Unrefiel.$$

$$\underbrace{Nole: \mathbb{P}^{n} = U_{i} \cup U_{i} \cup \dots \cup U_{n}$$

$$\lim_{i \neq i}^{n} A^{n} \qquad A^{n}$$
A remark about "tarieties" ·

A 'vanishy' is either :

• affine Unriety (i.e., a closed subset in Aⁿ)

• proj vanishy (i.e., o closed subset in \mathbb{P}^{n})

• quali-affine vanishy (i.e., open subset of an affine van')

• quali-affine vanishy (i.e., open subset of an affine van')

• quali-affine vanishy (i.e., open subset of an affine van')

• quali-affine vanishy (i.e., open subset of an affine van')

• quali-affine vanishy (i.e., open subset of an affine van')

• quali-affine vanishy (i.e., open subset of an affine van')

• quali-affine van's (i.e., open subset of an affine van')

• quali-affine van's (i.e., open subset of an affine van')

• quali-affine or a projective van's (i.e., open subset of an affine or a projective van's (i.e., open subset of an affine van's (i.e., open su

Regular functions: $X \leq A^{n}$ · X affine variety; $U \leq X$ open subset; $p \in U$ A function $f: U \rightarrow C$ is regular at P if $\exists g, h \in \mathbb{C}[X_1, .., X_n]$ s.t. • $h(p) \neq 0$, and • $f = \frac{h}{g}$ on a small neighborhood of p in U. Regular functions = ratios of polynomials. · We say that f is regular on U if it is regular at all points in U $Q(X) := \{f: X \rightarrow C \mid f \text{ negular on } X \}$ Def: • $O(A^n) = C[X_{1,2}, X_n]$ eg. · X ⊆ A affire variety: $O(X) = \frac{V}{I(X)} = \Gamma(X)$ There are late of global There are late of global regular functions

Rink: The above is not five for projective varieties.
There is no intrinsic notion of coordinate ring for
projective varieties. But we have the following:
Let
$$X \subseteq \mathbb{P}^n$$
 be a projective variety. We have a
"homogeneous coordinate ring" $\Gamma(X) := \frac{C[X_{0,N}, X_N]}{T(X)}$.
But this depends on the embedding $(X \subseteq \mathbb{P}^n)$
So: $\mathbb{P}^1 \xrightarrow{Q_{\infty}} \mathbb{P}^2$ (2-uple embedding)
 $[a:b] \mapsto [a^2:ab:b^2]$
Then \mathbb{Q}_2 is an isomorphism $\mathbb{P}^1 \xrightarrow{\sim} \mathbb{P}(\mathbb{P}^1) = X \subseteq \mathbb{P}^2$
 $\mathbb{P}^1 \subseteq \mathbb{P}^1$ may homog coord ring $C[X_0, X_1]$
 $\mathbb{P}^1 \cong X \subseteq \mathbb{P}^2$ may homog coord ring $\frac{C[X_0, X_1, X_2]}{T(X)}$
 $C[X_0, X_1] \xrightarrow{\sim} \frac{C[X_0, X_1, X_2]}{(X_0X_2 - X_1^2)}$ $\frac{C[X_0, X_1, X_2]}{(X_0X_2 - X_1^2)}$
Countermultible sets, Chevally's flem:
 X a variety; a subset $Y \subseteq X$ is constructible if

it is a finite union of "locally closed" sets.

$$G = SL_{k}(C) \quad acts \quad n \quad \forall \qquad deg \quad n \quad fams \\ SL_{k}(C) \quad acts \quad a \quad W \quad \neg \quad \forall \qquad deg \quad m \quad fams \\ We have \quad a \quad map \quad \varphi : \quad W \quad c \quad \neg \quad \forall \qquad \qquad m \geq n \\ W \quad w \quad \mapsto \quad \forall_{o}^{m-n} \\ w \quad \mapsto \quad w \quad \mapsto_{o}^{m-n} \\ w \quad \mapsto \quad \forall_{o}^{m-n} \\ w \quad \mapsto_{o}^{m-n} \\ w$$

$$\begin{split} & & \forall \varphi : \mathsf{P}(\mathsf{W}) \hookrightarrow \mathsf{P}(\mathsf{V}) \\ & g = \det(\mathsf{Y}) \in \mathsf{P}\mathsf{V} \\ & & \mathsf{h} = \operatorname{perm}(\mathsf{X}) \in \mathsf{P}\mathsf{W} \\ & & f = \phi(\mathsf{h}) \in \mathsf{P}\mathsf{V} \\ & & f = \phi(\mathsf{h}) \in \mathsf{P}\mathsf{V} \\ \end{split}$$

→
$$U \subseteq X$$
 open , X irr
 $dim U = dim X$.
→ $Z(f) \subseteq A^{n} \bigcup dim Z(f) = n-1$.
 $Z(f) \subseteq P^{n} \bigcup C[X_{in}, X_{n}]$
Signantizes: $X \subseteq A^{n}$ affine variefy, $dim X = r$
 $I(X) = (f_{in}, f_{f})$ p $\in X$.
³ Jacobian matrix ": $\begin{bmatrix} \partial f_{i} \\ \partial X_{j} \end{bmatrix} f_{X_{n}}$
X is nonsingular at p if $\begin{bmatrix} \partial f_{i} \\ \partial X_{j} \end{bmatrix} f_{X_{n}}$
X is nonsingular at p if $\begin{bmatrix} \partial f_{i} \\ \partial X_{j} \end{bmatrix}$
how rank $n-r$.
Eq: $I(X) = (f)$, $\dim X = n-1$.
X is nonsingular at p if
 $\begin{bmatrix} \partial f_{i}(p) \\ \partial X_{i} \end{bmatrix}$ has
 $Vank \quad h-(n-i) = 1$