Basics of algebraic geometry II
$n \geqslant 1$ integer; $\mathbb{C}^{n+1}-\{0\} / N=: \mathbb{P}^{n}$
Def: $\left(a_{0}, ., a_{n}\right) \sim\left(b_{0}, ., b_{n}\right)$ if $\exists \lambda \in \mathbb{C} \backslash\{0\}$ s.t

$$
b_{i}=\lambda a_{i} .
$$

Points of \mathbb{P}^{n} will be denote $\left[a_{0}: a_{1}: \ldots: a_{n}\right]$
eg: $[1: 2]=[3: 6]=[i: 2 i]=[\pi: 2 \pi] \in \mathbb{P}^{\prime}$

We want to talk about zeros of poly in $\mathbb{C}\left[x_{0}, \ldots, x_{n+1}\right]$ We first notice that we have to consider only "homogeneous polynomials".
Def: A polynomial $f \in \mathbb{C}\left[X_{0}, \ldots, X_{n}\right]$ is homogenears if every monomial in f has the same degree.

$$
\begin{aligned}
& f=x_{0}^{2}-x_{1} \\
& p=[1: 2] \\
& =[2: 4] \\
& f(p)=1-2 \\
& \\
& \neq 2^{2}-4
\end{aligned}
$$

eq. $X_{0}^{2}-X_{0} X_{1}+x_{2}^{2}$ homog
$x_{0}^{2}-x_{0} x_{1}+x_{2}$ not homog

If f is homogeneous of degree d, then

$$
f\left(a_{0},,, a_{n}\right)=\lambda^{d} f\left(\lambda a_{0}, ., \lambda a_{n}\right) \quad \forall \lambda \in \mathbb{C}, \lambda \neq 0 .
$$

\therefore whether $f(p)=0$ or $f(p) \neq 0$ is well-defired.
Def. A "projective variety" is a subset of P^{n} which is the common set of zeros of a collection of hamogeneans poly.
Just as in the affine case: we have $\left.\left\{\begin{array}{l}\text { radical homog hols in } \\ \text { ideals in }\left[x_{0}, x_{n}\right]\end{array}\right\} \begin{array}{c}\begin{array}{c}\text { infusion } \\ \text { revising } \\ \text { bijection }\end{array}\end{array} \begin{array}{r}\text { projective algetrenic } \\ \text { sets in } \mathbb{P}^{n}\end{array}\right\}$
Def. An ideal $I \subseteq \mathbb{C}\left[X_{0}, \ldots, X_{n}\right]$ is homog if it is generated by homogeneous poly.
eg: $\left(x_{1}^{2} x_{2}, x_{0}^{5}, x_{6} x_{1}\right)$ is a hamog ideal
Homogeneous Hilbert's Nullstellensatz: $I \subseteq \mathbb{C}\left[x_{0},, X_{n}\right]$ homos

$$
I(z(I))=\sqrt{I} \text { (radical of } I \text {) }
$$

Useful fact: Define $U_{i}:=\left\{\left[a_{0}: \ldots, a_{n}\right] \in \mathbb{P}^{n} \mid a_{i} \neq 0\right\}$
Zaviski top on \mathbb{P}^{n} :
eg: $U_{1}=\left\{\left[a_{0} ; a_{1}\right] \mid a_{1} \neq 0\right\} \subseteq \mathbb{P}^{\prime}$ $1=$ proj alg Sets

$$
\begin{aligned}
& a_{1} \neq 0 \Rightarrow\left[a_{0}: a_{1}\right]=\left[\frac{a_{0}}{a_{1}}: 1\right] \text { in } \mathbb{P}^{n} \\
& U_{1}=\left\{\left[a_{0}: 1\right] \mid a_{0} \in \mathbb{C}\right\} \stackrel{\text { bijection }}{\longleftrightarrow} \mathbb{C} \\
& b_{i j}
\end{aligned}
$$

More generally:

Later: this is actually an isomorphism of varieties.

Note: $\mathbb{P}^{n}=\begin{array}{lllll}U_{0} & \cup & U_{1} & \cdots & \cdots \\ & & V_{n} \\ & & 15 & & 1^{n} \\ & A^{n} & & & A^{n}\end{array}$
A remark about "Varieties":
A 'variety' is either:

- affine variety (i.e., a closed subset in An)
- proj variety (ie, a closed subset in \mathbb{P}^{n})
- quasi-affine variety (i.e; open subset of an affine var?
- quasi- projective variety (i.e;, open subset of a projective variety)
eg. $A^{n}-\{0\}, n \geqslant 2$ is a variety ; but it is not an affine or a projective variety.

Regular functions:

- X affine variety; $U \subseteq X$ open subset ; $p \in U$ A function $f: U \rightarrow \mathbb{C}$ is regular at p if

$$
\begin{array}{r}
\exists g_{1} h \in \mathbb{C}\left[X_{1}, ., x_{n}\right] \text { st. } \\
\cdot h(p) \neq 0 \text {, and }
\end{array}
$$

- $f=\frac{h}{g}$ on a small neighbwhood of p in U.
Regular functions $=$ ratios of polynomials.
- We say that f is regular on U if it is regular at all points in U
Def: $Q(X):=\{f: X \rightarrow \mathbb{C} \mid f$ regular on $X\}$
eg.: $\theta\left(A^{n}\right)=\mathbb{C}\left[x_{1}, ., x_{n}\right]$
- $X \subseteq A^{n}$ affine variety:

$$
\theta(x)=\frac{k\left[x_{1},, x_{n}\right]}{I(x)}=\Gamma(x)
$$

There are lots of global $\stackrel{\downarrow}{\text { coordinate ring of } X \text {. }}$ regular functions

Def: $X \subseteq \mathbb{P}^{n}$ projective variety; $U \subseteq X$ open, $p \in U$ A function $f: U \rightarrow \mathbb{C}$ is regular at p if I homing poly of same degree g, h s.t

$$
f=\frac{g}{h} \text { "locally" at } p \text {. }
$$

Deft: $\theta(X):=\{f: X \rightarrow \mathbb{C} \mid f$ is reg on $x\}$
Rum: $\theta\left(\mathbb{P}^{n}\right)=\mathbb{C}$; more generally: $\theta(x)=\mathbb{C}$ for any projective variety.

Def: X, Y are varieties. A continuous function $\varphi: X \rightarrow Y$ is a "morphism of varieties" if for every open set $V \subseteq Y$ and a regular function $f: V \rightarrow \mathbb{C}$, the function fou: $Y^{-1}(V) \rightarrow \mathbb{C}$ is $\xrightarrow{\substack{\text { regular. } \\ \varphi^{-1}(v) \xrightarrow{\varphi} \vee \\ f_{0} \varphi}}$

Def: X, Y are varieties.
A_{n} isomorphism $\varphi: X \rightarrow Y$ is a mophism sit \exists a maphism $\psi: y \rightarrow x$ st $\varphi \cdot \psi=i d \psi$ $\psi_{0} \varphi=i_{X}$
Eg. $U_{i} \xrightarrow[\substack{\text { iso of } \\ \text { varies }}]{\sim} A^{n} \quad$ (U_{i} as above)

Rink: The above is not tue for projective varieties. There is no intrinsic notion of coordinate ring fer projective varieties. But we have the following:
Let $X \subseteq \mathbb{P}^{n}$ be a projective variety. We have a "homogeneous coordinate ring" $\Gamma(x):=\frac{\mathbb{C}\left[x_{0},, x_{n}\right]}{I(x)}$.
But this depends an the embedding $X \subseteq \mathbb{P}^{n}$
eg: $\mathbb{P}^{\prime} \xrightarrow{\varphi_{2}} \mathbb{P}^{2} \quad(2$-uple embedding)

$$
[a: b] \mapsto\left[a^{2}: a b: b^{2}\right]
$$

Then φ_{2} is an isomaphism $\mathbb{P}^{\prime} \xrightarrow{\sim} \varphi(\mathbb{P})=X \subseteq \mathbb{P}^{2}$ $\mathbb{P}^{\prime} \hookrightarrow \mathbb{P}^{\prime} \leadsto \mathcal{C}^{\prime} \leadsto$ homog coons ring $\mathbb{C}\left[x_{0}, x_{1}\right]$

$$
\begin{array}{rlr}
\mathbb{P}^{\prime} \rightarrow & X \hookrightarrow \mathbb{P}^{2} \leadsto \text { hong coons ring } & \frac{\mathbb{C}\left[x_{0}, x_{1}, x_{2}\right]}{I(X)} \\
\mathbb{C}\left[x_{0}, x_{1}\right] \nsim & \frac{\mathbb{C}\left[X_{0}, x_{1}, x_{2}\right]}{\left(X_{0} x_{2}-x_{1}^{2}\right)} & \frac{\mathbb{C}\left[x_{0}, x_{1}, x_{2}\right]}{\left(x_{0} x_{2}-x_{1}^{2}\right)}
\end{array}
$$

Coustmutible sets, Chevalley's the:
X a variety; a subset $Y \subseteq X$ is constanctible if it is a finite union of "locally closed" Sets.

Def: locally closed $=$ (open Set) \cap (closed set)
Fact: The set of constructible sets in X is the smallest Subset of $P(X)$ containing closed sets which is closed under finite unions and complements.
Chevalley's the: $f: X \rightarrow Y$ maphism of varieties and $Z \subseteq X$ is constructible
$\Rightarrow f(z)$ is constructible.
Eg: Suppose G acts an X (G alg $g p, X$ variety)
Let $x \in X$. We have $G \xrightarrow{\varphi_{x}} X$

$$
g \mapsto g \cdot x
$$

$\operatorname{Im}\left(\varphi_{x}\right)=$ orbit of x is a constructible subset of X.
Fact: For constructible sets, the Euclidean closure is the same as the zaniski closme.
"Class variety"

$$
\begin{aligned}
& Y=\left(y_{0}, \ldots, y_{l-1}\right) \\
& X=\left(y_{1},-, y_{k}\right) \\
& \bar{X}=\left(y_{0}, y_{1},, y_{k}\right)
\end{aligned}
$$

Let $m>n$;

$$
l=m^{2}
$$

$$
k=n^{2}
$$

$V=$ Sym $^{m} Y=$ Space of homog fans of deg $m \mathrm{~m} l$ variables

$$
W=\operatorname{sym}^{n} X
$$

$G=S L_{2}(\mathbb{C})$ acts on V $S L_{k}(C)$ acts an W.

$$
\leadsto \phi: \mathbb{P}(W) \hookrightarrow \mathbb{P}(V)
$$

$g=\operatorname{det}(y) \in \mathbb{P} V \quad$ "class variety" of g

$$
h=\operatorname{perm}(X) \in \mathbb{P W}
$$

=close of the obit

$$
f=\phi(h) \in \mathbb{P V}
$$ of g under $S L_{l}$ action. $\Delta_{v}(g)$.

The geometric question: $\Delta_{V}(f) \notin \Delta_{V}(g)$

Dimension:
If X is a variety, there is a notion of "dimension" of X.
one way: topologically: length of the largest chain ir r closed subsets.
another way: algebraically.

$$
\rightarrow \operatorname{Dim}\left(A^{n}\right)=\operatorname{Dim}\left(\mathbb{P}^{n}\right)=n
$$

$\rightarrow U \subseteq X$ open, X ir

$$
\left.\begin{array}{l}
\operatorname{dim} u=\operatorname{dim} x \\
\rightarrow \quad z(f) \subseteq \mathbb{A}^{n} \\
z(f) \subseteq \mathbb{P}^{n}
\end{array}\right\} \operatorname{dim}_{-\mathbb{C}\left[x_{1,}, x_{n}\right]} z(f)=n-1
$$

Singularities: $X \subseteq A^{n}$ affine variety; $\operatorname{dim} X=r$

$$
I(X)=\left(f_{1}, ., f_{t}\right) \quad p \in X
$$

"Jacobian matrix": $\left[\frac{\partial f_{i}}{\partial x_{j}}\right]_{t \times n}$
X is nonsingular at p if $\left[\frac{\partial f_{i}}{\partial x_{j}}(p)\right]$
has rank $n-r$.
Eg: $I(X)=(f), \operatorname{dim} x=n-1$.
X is nonsingular at p if

$$
\left[\frac{\partial f}{\partial x_{1}}(p) \cdots \frac{\partial f}{\partial x_{n}}(p)\right] \text { has }
$$

$\operatorname{vank} n-(n-1)=1$
$\therefore X$ is nonsing at $P \Leftrightarrow \frac{\partial f}{\partial x_{i}}(P) \neq 0$ for
Some $1 \leq i \leq n$.
Eg: $(0,0)$ is a singular point of $X=Z\left(x_{1}^{2}-x_{2}^{3}\right)$ only singularity is $(0,0)$
Eg: $Z\left(X_{1}^{2}-X_{2}\right)$ is nonsingular.
"Singular locus of X
$\operatorname{Sing}(X)=\{p \in X \mid X$ is singular at $p\}$
Fact: $\operatorname{Sin}(X)$ is a proper closed subset of X.

