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U Let Xy = [x;,j]1<ij<n be an X n matrix of distinct variables x; ;. Let
Sp={n | n:{1,...,n} — {1,...,n} such that r is bijective }. Define

n
i o= detxn) = 3 sen(m) [ [xie -

nEeS, i=1

U det is universal, i.e. any polynomial f(x) can be computed as a determinant of a
square matrix whose entries are polynomials of degree < 1.

O The minimum dimension of the matrix to compute f, is called the
determinantal complexity dc(f).

O E.g.dc(xq ---Xxp) = n, since

Xq 0 0

0 X2 0
Xy -+ Xp = det

0 0 ... Xxp

O VBP: The class VBP is defined as the set of all sequences of polynomials (),
with polynomially bounded dc(fy).
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Q For any I', we can define the border complexity measure T via:
T'(h) is the smallest n such that h(x) can be approximated arbitrarily closely by
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O We will work with ‘approximative circuits’.
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O Suppose, we assume the following:

> g(x,€) € F[xq,...,xn, €], i.e. it is a polynomial of the form

M
g(x.€) = > ikt xn) - €,
i=0

> (Can we say anything about the complexity of gg?
U Obvious attempt:

> Since, g(x,0) = gg, why not just set € = 0?! Setting € = 0 may not be
‘legal’ as it could be using 1/e€ in the wire. Though it is well-defined!

U Summary: g is really something non-trivial and being ‘approximated’ by the
circuit since lim¢_,0 g(x, €) = go.
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Border Waring rank

The border Waring rank WR(h), of a d-form h is defined as the smallest s such that
h=lime0 Yie[s) é’ld, where ¢; € F(e)[x], are homogeneous linear forms.

QO When ¢; are non-homogeneous, we will write this as h € Z[s] A X,

0 WR(x?'y) =2, since, d - x¥~ Ty + O(e) = (x + ey)? — x7.
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O They compute polynomials (not necessarily homogeneous) of the form
Zfﬂ Hf; Cjj, where {j; are linear polynomials (i.e. ag +a1X1 + ... +anpxn, for
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polynomial (X,y) = X1y¥1 + ...+ Xk+1Vk+1 cannot be written as a slkiTs
circuit, regardless of the product fan-in (even allowing exp(n) product fan-in!).

O The same holds if we replace by dety.
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polynomials.

> Pick ¢4 from Ty and consider 77 := ({1).
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non-zero (because k << n).

Q So, =kI1x ¢ vBP!

Q How about IKITTx?
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Power of border depth-3 circuits

Q Recall: h € SIKITIT of size s if there exists a polynomial g such that
g(x,e) =h(x) +e-S(x,€),
where g can be computed by a KIS circuit, over F(e), of size s.
Border depth-3 fan-in 2 circuits are ‘universal’ [Kumar 2020]

Let P be any n-variate degree d polynomial. Then, P € Z[2ITI[P1E, where
D :=exp(n,d).
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Q If h is approximated by a 22T circuit with product fanin, bounded
by poly(n), what’s the exact complexity of h?

Border of polynomial-sized depth-3 top-fanin-2 circuits are ’easy’
[Dutta-Dwivedi-Saxena FOCS 2021].

> [2ITIX ¢ VBP, for polynomial-sized Z[21TTX-circuits. In particular, any
polynomial in the border of top-fanin-2 size-s depth-3 circuits, can also be exactly
computed by a linear projection of a poly(s) X poly(s) determinant.

Remark. The result holds if one replaces the top-fanin-2 by arbitrary constant k.
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Q Can we separate ZIKITIX and VBP?
> [Limaye-Srinivasan-Tavenas, FOCS 2021] showed that IMM,, 4 with

d = o(log n) requires n®(")

-size depth-3 circuits.
> Rank-based lower bounds can be lifted in the border!

> Since, IMM, 4 € VBP, ZIKITIZ # VBP.
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Q Can we show an exponential gap between ZKITIE and VBP?

QO Ambitious goal: Can we separate TIKITTX and ZIk+1ITTE ?
O Note: This is already known (impossibility) in the classical setting!
Q X1 -yq+...+Xks1 - Ykt cannot be computed by IKIIE circuits!

Q Catch: xq - y1 + ...+ Xk+1 - Yk+1 does not work anymore since,
Xy Y1+ ...+ Xk41 " Yk+1 € Z[Z]HO(k)Z’

O What does work (if at all!)?
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[Dutta-Saxena 2022, Preprint]

Fix any constant k > 1. There is an explicit n-variate and < n degree polynomial f
such that f can be computed by a Z[K+1]TIX circuit of size O(n) such that f requires
22(n) _gize SIKITTS circuits.

Q Fix k = 2. Define the polynomial Py :=X{ -+ Xg+ Y1 - -Yg+21- 24,2
degree-d polynomial on n = 3d-variables.

U Py has trivial fanin-3 depth-3 circuit (and hence in border too!).
O We will show that Py requires 22(d) gize 32113 circuits.

O Kumar’s proof establishes that Py has a 20(d) sjze T I2ITTX circuits, showing
optimality!

U Classical is about impossibility while in border, it is about optimality.
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Why k = 2 is hard to analyze?

O Non-trivial cancellations for k = 2 make things harder.

3 3

Q Eg, Ty =€ 3(1+ex1+€2X0+€3x3+...), To i= € 3(1+€x1 +€2Xo+€3X4+. . ).
g, Ty 1 2 3 2 1

Note, lime_9 (T4 = To) = (X3 — Xx4).
O Note x2 = (x — M2 . a)(x + eM/2 . 2) mod €M, forany a € F.
U Moreover,
lim lM . (x2 —- (x—€eM?.a)(x+eM/? »a)) = a°.

e—0 €

Q Infinitely many factorizations may give infinitely many limits.
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Non-homogeneity is ‘bad’

O Let ¢4 := 1+ exq. What does taking mod ¢4 in the ‘border’ (¢ — 0) mean?
Essentially we are eventually setting x; = —1/¢€ (and then € — 0)!

Q In other words, work with 7 := ({1, €) = (1)!
O Lesson: Taking mod blindly fails miserably!

U The worst case:
f+eS = T1 + T2 R

where T; has each linear factor of the form 1 + ef!
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U Three cases to consider:

> Case I: Each Ty and Ty has one linear form ¢; € F(e)[x] as a factor,

> Case II (intermediate): Tq has one linear form has factor, (¢1) and all
factors in T is non-homogeneous (in X),

> Case III (all-non-homogeneous): Each T; has all the factors
non-homogeneous.

Q For the first case, take I := ({1, {2, €) (and 1 ¢ ') and show that
X{  Xg+Y1-Yg+21--24g=Pgmod I #0,
while RHS = 0 mod 7.

O For the second case, take 7 := ({1, €). Then, RHS mod 7 = T2 = 1%, while
Pd mod I ¢ I1x.

Q So, all-non-homogeneous is all we have to care!

O For k > 2, we need a technical lemma, but still can be reduced!
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Q Ty + T2 =Py(x) +€-S(x,€), where T; € TIZ € F(e)[x] have
all-non-homogeneous factors.

O Very broad idea: reduce fanin 2 to 1 with a ‘nice’ form.
O Apply a scaling map @, defined by @ : x; = z - x;.
> The variable z is the “degree counter”.

O We use DiDIL - Divide, Derive, Interpolate with Limit, introduced in
[Dutta-Dwivedi-Saxena, FOCS 2021].

O DiDIL shows: If Py has s-size (comes from product fanin) border depth-3
fanin-2 all-non-homogeneous circuit, then Py has poly(s) border-waring rank.

Q Partial-derivative measure shows that WR(Py) = 22(d),

Q Thus, s > 229}

20
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Why direct DiDIL fails

O DiDIL works with @ : x; > z - xj + «;, for random «;.

QO Shifting is required for non-homogenity for DiDIL to succeed, since
1/(1 - z) mod z9 exists but 1/z mod z? does not!

Q If one blindly does that, we get 8, (Py/IIE) = (IIX) - (£ A 2) mod z9. How to
show lower bound?

Q For k > 2, lifting the lower bound via interpolation makes it even harder!
O Shifting is problematic for showing lower bound!

Q So, the current proof is about pre-processing (technical lemma, reducing to
all-non-homogeneous) & DiDIL.

21



Proof sketch for k = 2




k = 2 lower bound proof: Divide and Derive
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Q Let ®(T;) =: €% - T;, for i € [2], where a; := vale (D(T)).
Q vale () denotes the highest power of € dividing it.

U Divide and Derive:

Pd+E'S= T1 +T2
= O(Py)+e- - D(S)= O(Tq)+D(To)
= O(Py)/To + €-®(S)/To= €2 + O(T)/T>

— 0 (O(Pg)/Ta) + € 0: (©(8)/T2) = 0z (@(T1)/Ta) =01 . (1)
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k = 2 lower bound proof: Divide and Derive

Q Let ®(T;) =: €% - T;, for i € [2], where a; := vale (D(T)).
Q vale () denotes the highest power of € dividing it.

U Divide and Derive:

Pd+E'S= T1 +T2
= O(Py)+e- - D(S)= O(Tq)+D(To)
= O(Py)/To + €-®(S)/To= €2 + O(T)/T>

— 0 (O(Pg)/Ta) + € 0: (©(8)/T2) = 0z (@(T1)/Ta) =01 . (1)

Q limeogy = 1/t - 82(®(Py)), where F 3 tp := lim¢_,q T2, because
lime_o [T(1 +€6) = 1.

22



k = 2 proof continued



k = 2 proof continued

Q Target: Compute limg_,0g1 = 1/to - 0z(P(Py)).



k = 2 proof continued

Q Target: Compute limg_,0g1 = 1/to - 0z(P(Py)).

Q Logarithmic derivative: dlog,(h) := d,(h)/h.



k = 2 proof continued

U Target: Compute lime_0g1 = 1/t2 - 92(D(Pyg)).
Q Logarithmic derivative: dlog,(h) := d,(h)/h.

Q dlog linearizes product: dlog(hyhs) = dlog(hy) + dlog(hy).



k = 2 proof continued

Q Target: Compute limg_,0g1 = 1/to - 0z(P(Py)).
Q Logarithmic derivative: dlog,(h) := d,(h)/h.
U dlog linearizes product: dlog(hyhs) = dlog(hy) + dlog(hs). Note:

8z (©(T1)/T2) = (T1)/T5 - dlog (@(T1)/To)
= (TMIZ/T1Y) - dlog (TIZ/TIX)
= /I - (iZdIog(Z)).



k = 2 proof continued

Q Target: Compute limg_,0g1 = 1/to - 0z(P(Py)).
Q Logarithmic derivative: dlog,(h) := d,(h)/h.
U dlog linearizes product: dlog(hyhs) = dlog(hy) + dlog(hs). Note:

8z (©(T1)/T2) = (T1)/T5 - dlog (@(T1)/To)
= (TMIZ/T1Y) - dlog (TIZ/TIX)
= /I - (iZdIog(Z)).

U Here X means just a linear polynomial £.
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k = 2 proof continued: Quick recap

Q Recap: 1/tp - 0;(P(Py)) = lime_0g1 = lime_g (IIZ/TX) - (+ Y dlog(X)).

Q deg(Py) =d = deg,(®(f)) =d = deg,(9,(D(Py))) =d — 1.
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k = 2 proof continued: Quick recap

QO Recap: 1/ty - 92(®(Py)) = lime_0g1 = lime_o (ITZ/IIX) - (£ Y, dlog(X)).
0 deg(Pg) =d = deg,(®(f) =d = deg,(3:(D(Py))) =d — 1.

O Suffices to compute lim¢_,9 g1 mod Z9.

24
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k = 2 proof: dlog strikes!

O What is dlog(¢) for a linear polynomial £ =1 —z - £?

4
1-z-0)

d-1 ‘
=Z€~(z-€)’ mod 29
j=0

dlog(1 —z¢t) = —

€ ZAZ.

Thus,

. d q . d
lim g/ mod 2/ = lim (ILZ/IZ) (Zdlog(E)) mod z

|im0 (IZ/IE) - (EAZ) mod 29
€—

(MZ/I) - (TAZ) mod 29 .

m
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Finishing the proof

Q C-D=C-D. Therefore,

(TIZ/IX) - (ZAZ) = (IZ/IX) - (EAZ)
CTAZ.

Q The above is because lim¢_o [T(1 + €f) = 1.
Q Thus, 1/to - 3. (P(Pg)) =lime_0 g1 € ZAZ.

0 Thus, ®(Pg) ETAL = Py €S AX.
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Concluding remarks

O Can we show exponential lower bound for X[0(MITTZ-circuits? The current
method gives subexponential lower bound only as long as k = o(log n).

O Can we show exponential lower bound for ZIKITIX A-circuits (i.e. rather special
depth-4)?

U Can we extend the hierarchy theorem to bounded (top & bottom fanin) depth-4
circuits? i.e., for a fixed constant ¢, is
sltinznlsl ¢ xl2lnznlel ¢ BII=lol. .. where the respective gaps
are exponential? Clearly, 6 = 1 holds, from this work.

Thank you! Questions?
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