Exponential-gap fanin-hierarchy for border depth-3 circuits

Joint work with Nitin Saxena (IIT Kanpur).

Pranjal Dutta
Google Ph.D. Fellow, CMI \& Visiting Research Scholar, IIT Kanpur

$$
27^{\text {th }} \text { January, } 2022
$$

GCT 2022 (Online)

Table of Contents

1. Basic definitions and terminologies
2. Border depth-3 circuits
3. Hierarchy theorem
4. Proof sketch for $k=2$
5. Conclusion

Basic definitions and terminologies

Algebraic circuits

Algebraic circuits

Algebraic circuits

Algebraic circuits

The determinant polynomial

The determinant polynomial

\square Let $X_{n}=\left[x_{i, j}\right]_{1 \leq i, j \leq n}$ be a $n \times n$ matrix of distinct variables $x_{i, j}$. Let $S_{n}:=\{\pi \mid \pi:\{1, \ldots, n\} \longrightarrow\{1, \ldots, n\}$ such that π is bijective $\}$. Define

$$
f_{n}:=\operatorname{det}\left(X_{n}\right)=\sum_{\pi \in S_{n}} \operatorname{sgn}(\pi) \prod_{i=1}^{n} x_{i, \pi(i)}
$$

The determinant polynomial

Let $X_{n}=\left[x_{i, j}\right]_{1 \leq i, j \leq n}$ be a $n \times n$ matrix of distinct variables $x_{i, j}$. Let $S_{n}:=\{\pi \mid \pi:\{1, \ldots, n\} \longrightarrow\{1, \ldots, n\}$ such that π is bijective $\}$. Define

$$
f_{n}:=\operatorname{det}\left(X_{n}\right)=\sum_{\pi \in S_{n}} \operatorname{sgn}(\pi) \prod_{i=1}^{n} x_{i, \pi(i)}
$$

\square det is universal, i.e. any polynomial $f(\boldsymbol{x})$ can be computed as a determinant of a square matrix whose entries are polynomials of degree ≤ 1.

The determinant polynomial

Let $X_{n}=\left[x_{i, j}\right]_{1 \leq i, j \leq n}$ be a $n \times n$ matrix of distinct variables $x_{i, j}$. Let $S_{n}:=\{\pi \mid \pi:\{1, \ldots, n\} \longrightarrow\{1, \ldots, n\}$ such that π is bijective $\}$. Define

$$
f_{n}:=\operatorname{det}\left(X_{n}\right)=\sum_{\pi \in S_{n}} \operatorname{sgn}(\pi) \prod_{i=1}^{n} x_{i, \pi(i)}
$$

\square det is universal, i.e. any polynomial $f(\boldsymbol{x})$ can be computed as a determinant of a square matrix whose entries are polynomials of degree ≤ 1.

The minimum dimension of the matrix to compute f, is called the determinantal complexity $\mathrm{dc}(f)$.

The determinant polynomial

\square Let $X_{n}=\left[x_{i, j}\right]_{1 \leq i, j \leq n}$ be a $n \times n$ matrix of distinct variables $x_{i, j}$. Let $S_{n}:=\{\pi \mid \pi:\{1, \ldots, n\} \longrightarrow\{1, \ldots, n\}$ such that π is bijective $\}$. Define

$$
f_{n}:=\operatorname{det}\left(X_{n}\right)=\sum_{\pi \in S_{n}} \operatorname{sgn}(\pi) \prod_{i=1}^{n} x_{i, \pi(i)}
$$

\square det is universal, i.e. any polynomial $f(\boldsymbol{x})$ can be computed as a determinant of a square matrix whose entries are polynomials of degree ≤ 1.
The minimum dimension of the matrix to compute f, is called the determinantal complexity $\mathrm{dc}(f)$.
\square E.g. $\operatorname{dc}\left(x_{1} \cdots x_{n}\right)=n$, since

$$
x_{1} \cdots x_{n}=\operatorname{det}\left(\begin{array}{cccc}
x_{1} & 0 & \ldots & 0 \\
0 & x_{2} & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots \\
0 & 0 & \ldots & x_{n}
\end{array}\right)
$$

The determinant polynomial

Let $X_{n}=\left[x_{i, j}\right]_{1 \leq i, j \leq n}$ be a $n \times n$ matrix of distinct variables $x_{i, j}$. Let $S_{n}:=\{\pi \mid \pi:\{1, \ldots, n\} \longrightarrow\{1, \ldots, n\}$ such that π is bijective $\}$. Define

$$
f_{n}:=\operatorname{det}\left(X_{n}\right)=\sum_{\pi \in S_{n}} \operatorname{sgn}(\pi) \prod_{i=1}^{n} x_{i, \pi(i)}
$$

\square det is universal, i.e. any polynomial $f(\boldsymbol{x})$ can be computed as a determinant of a square matrix whose entries are polynomials of degree ≤ 1.
The minimum dimension of the matrix to compute f, is called the determinantal complexity $\mathrm{dc}(f)$.
\square E.g. $\operatorname{dc}\left(x_{1} \cdots x_{n}\right)=n$, since

$$
x_{1} \cdots x_{n}=\operatorname{det}\left(\begin{array}{cccc}
x_{1} & 0 & \ldots & 0 \\
0 & x_{2} & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots \\
0 & 0 & \ldots & x_{n}
\end{array}\right)
$$

VBP: The class VBP is defined as the set of all sequences of polynomials $\left(f_{n}\right)_{n}$ with polynomially bounded $\mathrm{dc}\left(f_{n}\right)$.

Border complexity

Border complexity

Let Γ be any sensible measure. It can be size, dc and so on.

Border complexity

Let Γ be any sensible measure. It can be size, dc and so on.
For any Γ, we can define the border complexity measure $\bar{\Gamma}$ via: $\bar{\Gamma}(h)$ is the smallest n such that $h(\boldsymbol{x})$ can be approximated arbitrarily closely by polynomials $h_{\epsilon}(\boldsymbol{x})$ with $\Gamma\left(h_{\epsilon}\right) \leq n$.

Border complexity

Let Γ be any sensible measure. It can be size, dc and so on.
For any Γ, we can define the border complexity measure $\bar{\Gamma}$ via: $\bar{\Gamma}(h)$ is the smallest n such that $h(\boldsymbol{x})$ can be approximated arbitrarily closely by polynomials $h_{\epsilon}(\boldsymbol{x})$ with $\Gamma\left(h_{\epsilon}\right) \leq n$. In other words,

$$
\lim _{\epsilon \rightarrow 0} h_{\epsilon}=h \text { (coefficient-wise) }
$$

Border complexity

Let Γ be any sensible measure. It can be size, dc and so on.
For any Γ, we can define the border complexity measure $\bar{\Gamma}$ via: $\bar{\Gamma}(h)$ is the smallest n such that $h(\boldsymbol{x})$ can be approximated arbitrarily closely by polynomials $h_{\epsilon}(\boldsymbol{x})$ with $\Gamma\left(h_{\epsilon}\right) \leq n$. In other words,

$$
\lim _{\epsilon \rightarrow 0} h_{\epsilon}=h \text { (coefficient-wise) }
$$

\square We will work with 'approximative circuits'.

Approximative circuits

Algebraic approximation

Algebraic approximation

\square Suppose, we assume the following:
$>g(\boldsymbol{x}, \epsilon) \in \mathbb{F}\left[x_{1}, \ldots, x_{n}, \epsilon\right]$, i.e. it is a polynomial of the form

$$
g(\boldsymbol{x}, \epsilon)=\sum_{i=0}^{M} g_{i}\left(x_{1}, \ldots, x_{n}\right) \cdot \epsilon^{i}
$$

Algebraic approximation

\square Suppose, we assume the following:
$>g(\boldsymbol{x}, \epsilon) \in \mathbb{F}\left[x_{1}, \ldots, x_{n}, \epsilon\right]$, i.e. it is a polynomial of the form

$$
g(\boldsymbol{x}, \epsilon)=\sum_{i=0}^{M} g_{i}\left(x_{1}, \ldots, x_{n}\right) \cdot \epsilon^{i}
$$

$>$ Can we say anything about the complexity of g_{0} ?

Algebraic approximation

- Suppose, we assume the following:
$>g(\boldsymbol{x}, \epsilon) \in \mathbb{F}\left[x_{1}, \ldots, x_{n}, \epsilon\right]$, i.e. it is a polynomial of the form

$$
g(\boldsymbol{x}, \epsilon)=\sum_{i=0}^{M} g_{i}\left(x_{1}, \ldots, x_{n}\right) \cdot \epsilon^{i}
$$

$>$ Can we say anything about the complexity of g_{0} ?

- Obvious attempt:
$>$ Since, $g(\boldsymbol{x}, 0)=g_{0}$, why not just set $\epsilon=0$?!

Algebraic approximation

- Suppose, we assume the following:
$>g(\boldsymbol{x}, \epsilon) \in \mathbb{F}\left[x_{1}, \ldots, x_{n}, \epsilon\right]$, i.e. it is a polynomial of the form

$$
g(\boldsymbol{x}, \epsilon)=\sum_{i=0}^{M} g_{i}\left(x_{1}, \ldots, x_{n}\right) \cdot \epsilon^{i}
$$

$>$ Can we say anything about the complexity of g_{0} ?

- Obvious attempt:
$>$ Since, $g(\boldsymbol{x}, 0)=g_{0}$, why not just set $\epsilon=0$?! Setting $\epsilon=0$ may not be 'legal' as it could be using $1 / \epsilon$ in the wire. Though it is well-defined!

Algebraic approximation

- Suppose, we assume the following:
$>g(\boldsymbol{x}, \epsilon) \in \mathbb{F}\left[x_{1}, \ldots, x_{n}, \epsilon\right]$, i.e. it is a polynomial of the form

$$
g(\boldsymbol{x}, \epsilon)=\sum_{i=0}^{M} g_{i}\left(x_{1}, \ldots, x_{n}\right) \cdot \epsilon^{i}
$$

$>$ Can we say anything about the complexity of g_{0} ?

- Obvious attempt:
$>$ Since, $g(\boldsymbol{x}, 0)=g_{0}$, why not just set $\epsilon=0$?! Setting $\epsilon=0$ may not be 'legal' as it could be using $1 / \epsilon$ in the wire. Though it is well-defined!

Summary: g_{0} is really something non-trivial and being 'approximated' by the circuit since $\lim _{\epsilon \rightarrow 0} g(\boldsymbol{x}, \epsilon)=g_{0}$.

Algebraic approximation

Algebraic approximation

Algebraic Approximation [Bürgisser 2004]

A polynomial $h(x) \in \mathbb{F}[\boldsymbol{x}]$ approximative complexity s, if there is a $g(\boldsymbol{x}, \epsilon) \in \mathbb{F}(\epsilon)[\boldsymbol{x}]$, of size s, over $\mathbb{F}(\epsilon)$, and a polynomial $S(\boldsymbol{x}, \epsilon) \in \mathbb{F}[\epsilon][\boldsymbol{x}]$ such that $g(\boldsymbol{x}, \epsilon)=h(\boldsymbol{x})+\epsilon \cdot S(\boldsymbol{x}, \epsilon)$. In other words, $\lim _{\epsilon \rightarrow 0} g=h$.

Algebraic approximation

Algebraic Approximation [Bürgisser 2004]

A polynomial $h(x) \in \mathbb{F}[\boldsymbol{x}]$ approximative complexity s, if there is a $g(\boldsymbol{x}, \epsilon) \in \mathbb{F}(\epsilon)[\boldsymbol{x}]$, of size s, over $\mathbb{F}(\epsilon)$, and a polynomial $S(\boldsymbol{x}, \epsilon) \in \mathbb{F}[\epsilon][\boldsymbol{x}]$ such that $g(\boldsymbol{x}, \epsilon)=h(\boldsymbol{x})+\epsilon \cdot S(\boldsymbol{x}, \epsilon)$. In other words, $\lim _{\epsilon \rightarrow 0} g=h$.

- $\overline{\operatorname{size}}(h) \leq \operatorname{size}(h)$.

Algebraic approximation

Algebraic Approximation [Bürgisser 2004]

A polynomial $h(x) \in \mathbb{F}[\boldsymbol{x}]$ approximative complexity s, if there is a $g(\boldsymbol{x}, \epsilon) \in \mathbb{F}(\epsilon)[\boldsymbol{x}]$, of size s, over $\mathbb{F}(\epsilon)$, and a polynomial $S(\boldsymbol{x}, \epsilon) \in \mathbb{F}[\epsilon][\boldsymbol{x}]$ such that $g(\boldsymbol{x}, \epsilon)=h(\boldsymbol{x})+\epsilon \cdot S(\boldsymbol{x}, \epsilon)$. In other words, $\lim _{\epsilon \rightarrow 0} g=h$.

- $\overline{\operatorname{size}}(h) \leq \operatorname{size}(h) .[h=h+\epsilon \cdot 0$.

Algebraic approximation

Algebraic Approximation [Bürgisser 2004]

A polynomial $h(x) \in \mathbb{F}[\boldsymbol{x}]$ approximative complexity s, if there is a $g(\boldsymbol{x}, \epsilon) \in \mathbb{F}(\epsilon)[\boldsymbol{x}]$, of size s, over $\mathbb{F}(\epsilon)$, and a polynomial $S(\boldsymbol{x}, \epsilon) \in \mathbb{F}[\epsilon][\boldsymbol{x}]$ such that $g(\boldsymbol{x}, \epsilon)=h(\boldsymbol{x})+\epsilon \cdot S(\boldsymbol{x}, \epsilon)$. In other words, $\lim _{\epsilon \rightarrow 0} g=h$.
$\overline{\operatorname{size}}(h) \leq \operatorname{size}(h) .[h=h+\epsilon \cdot 0$.]
If g has circuit of size s over $\mathbb{F}(\epsilon)$, then one can assume that the highest degree of ϵ in g can be exponentially large $2^{s^{2}}$ [Bürgisser 2004, 2020].

Algebraic approximation

Algebraic Approximation [Bürgisser 2004]

A polynomial $h(x) \in \mathbb{F}[\boldsymbol{x}]$ approximative complexity s, if there is a $g(\boldsymbol{x}, \epsilon) \in \mathbb{F}(\epsilon)[\boldsymbol{x}]$, of size s, over $\mathbb{F}(\epsilon)$, and a polynomial $S(\boldsymbol{x}, \epsilon) \in \mathbb{F}[\epsilon][\boldsymbol{x}]$ such that $g(\boldsymbol{x}, \epsilon)=h(\boldsymbol{x})+\epsilon \cdot S(\boldsymbol{x}, \epsilon)$. In other words, $\lim _{\epsilon \rightarrow 0} g=h$.
$\overline{\operatorname{size}}(h) \leq \operatorname{size}(h) .[h=h+\epsilon \cdot 0$.]
If g has circuit of size s over $\mathbb{F}(\epsilon)$, then one can assume that the highest degree of ϵ in g can be exponentially large $2^{s^{2}}$ [Bürgisser 2004, 2020].

Let us assume that $g(\boldsymbol{x}, \epsilon)=\sum_{i=0}^{M} g_{i} \epsilon^{i}$, where $M=2^{s^{2}}$. Note: $g_{0}=h$.

Algebraic approximation

Algebraic Approximation [Bürgisser 2004]

A polynomial $h(x) \in \mathbb{F}[\boldsymbol{x}]$ approximative complexity s, if there is a $g(\boldsymbol{x}, \epsilon) \in \mathbb{F}(\epsilon)[\boldsymbol{x}]$, of size s, over $\mathbb{F}(\epsilon)$, and a polynomial $S(\boldsymbol{x}, \epsilon) \in \mathbb{F}[\epsilon][\boldsymbol{x}]$ such that $g(\boldsymbol{x}, \epsilon)=h(\boldsymbol{x})+\epsilon \cdot S(\boldsymbol{x}, \epsilon)$. In other words, $\lim _{\epsilon \rightarrow 0} g=h$.
$\overline{\operatorname{size}}(h) \leq \operatorname{size}(h) .[h=h+\epsilon \cdot 0$.]
If g has circuit of size s over $\mathbb{F}(\epsilon)$, then one can assume that the highest degree of ϵ in g can be exponentially large $2^{s^{2}}$ [Bürgisser 2004, 2020].

Let us assume that $g(\boldsymbol{x}, \epsilon)=\sum_{i=0}^{M} g_{i} \epsilon^{i}$, where $M=2^{s^{2}}$. Note: $g_{0}=h$.
$>$ Pick $M+1$ many distinct values from \mathbb{F} randomly and interpolate;

Algebraic approximation

Algebraic Approximation [Bürgisser 2004]

A polynomial $h(x) \in \mathbb{F}[\boldsymbol{x}]$ approximative complexity s, if there is a $g(\boldsymbol{x}, \epsilon) \in \mathbb{F}(\epsilon)[\boldsymbol{x}]$, of size s, over $\mathbb{F}(\epsilon)$, and a polynomial $S(\boldsymbol{x}, \epsilon) \in \mathbb{F}[\epsilon][\boldsymbol{x}]$ such that $g(\boldsymbol{x}, \epsilon)=h(\boldsymbol{x})+\epsilon \cdot S(\boldsymbol{x}, \epsilon)$. In other words, $\lim _{\epsilon \rightarrow 0} g=h$.
$\overline{\operatorname{size}}(h) \leq \operatorname{size}(h) .[h=h+\epsilon \cdot 0$.]
If g has circuit of size s over $\mathbb{F}(\epsilon)$, then one can assume that the highest degree of ϵ in g can be exponentially large $2^{s^{2}}$ [Bürgisser 2004, 2020].

Let us assume that $g(\boldsymbol{x}, \epsilon)=\sum_{i=0}^{M} g_{i} \epsilon^{i}$, where $M=2^{s^{2}}$. Note: $g_{0}=h$.
$>$ Pick $M+1$ many distinct values from \mathbb{F} randomly and interpolate;
$>\operatorname{size}(h) \leq \exp (\overline{\operatorname{size}}(h))$.

Algebraic approximation

Algebraic Approximation [Bürgisser 2004]

A polynomial $h(x) \in \mathbb{F}[\boldsymbol{x}]$ approximative complexity s, if there is a $g(\boldsymbol{x}, \epsilon) \in \mathbb{F}(\epsilon)[\boldsymbol{x}]$, of size s, over $\mathbb{F}(\epsilon)$, and a polynomial $S(\boldsymbol{x}, \epsilon) \in \mathbb{F}[\epsilon][\boldsymbol{x}]$ such that $g(\boldsymbol{x}, \epsilon)=h(\boldsymbol{x})+\epsilon \cdot S(\boldsymbol{x}, \epsilon)$. In other words, $\lim _{\epsilon \rightarrow 0} g=h$.
$\overline{\operatorname{size}}(h) \leq \operatorname{size}(h) .[h=h+\epsilon \cdot 0$.
If g has circuit of size s over $\mathbb{F}(\epsilon)$, then one can assume that the highest degree of ϵ in g can be exponentially large $2^{s^{2}}$ [Bürgisser 2004, 2020].

Let us assume that $g(\boldsymbol{x}, \epsilon)=\sum_{i=0}^{M} g_{i} \epsilon^{i}$, where $M=2^{s^{2}}$. Note: $g_{0}=h$.
$>$ Pick $M+1$ many distinct values from \mathbb{F} randomly and interpolate;
$>\operatorname{size}(h) \leq \exp (\overline{\operatorname{size}}(h))$.

- $\overline{\operatorname{size}}(h) \leq \operatorname{size}(h) \leq \exp (\overline{\operatorname{size}}(h))$.

Border Waring Rank

Border Waring Rank

Border Waring rank

The border Waring rank $\overline{\mathrm{WR}}(h)$, of a d-form h is defined as the smallest s such that $h=\lim _{\epsilon \rightarrow 0} \sum_{i \in[s]} \ell_{i}^{d}$, where $\ell_{i} \in \mathbb{F}(\epsilon)[\boldsymbol{x}]$, are homogeneous linear forms.

Border Waring Rank

Border Waring rank

The border Waring rank $\overline{\mathrm{WR}}(h)$, of a d-form h is defined as the smallest s such that $h=\lim _{\epsilon \rightarrow 0} \sum_{i \in[s]} \ell_{i}^{d}$, where $\ell_{i} \in \mathbb{F}(\epsilon)[\boldsymbol{x}]$, are homogeneous linear forms.

- When ℓ_{i} are non-homogeneous, we will write this as $h \in \overline{\Sigma^{[s]} \wedge \Sigma}$.

Border Waring Rank

Border Waring rank

The border Waring rank $\overline{\mathrm{WR}}(h)$, of a d-form h is defined as the smallest s such that $h=\lim _{\epsilon \rightarrow 0} \sum_{i \in[s]} \ell_{i}^{d}$, where $\ell_{i} \in \mathbb{F}(\epsilon)[\boldsymbol{x}]$, are homogeneous linear forms.

- When ℓ_{i} are non-homogeneous, we will write this as $h \in \overline{\Sigma^{[s]} \wedge \Sigma}$.
- $\overline{\mathrm{WR}}\left(x^{d-1} y\right)=2$, since, $d \cdot x^{d-1} y+O(\epsilon)=(x+\epsilon y)^{d}-x^{d}$.

Lower bounds for border depth-2 circuits

Lower bounds for border depth-2 circuits

A few known upper bound/lower bound results on depth-2:

Lower bounds for border depth-2 circuits

A few known upper bound/lower bound results on depth-2:

$$
>\overline{\Sigma^{[s]} \Pi}=\Sigma^{[s]} \Pi \text { and } \overline{\Pi \Sigma}=\Pi \Sigma .
$$

Lower bounds for border depth-2 circuits

A few known upper bound/lower bound results on depth-2:
$>\overline{\Sigma^{[s]} \Pi}=\Sigma^{[s]} \Pi$ and $\overline{\Pi \Sigma}=\Pi \Sigma$.
$>\operatorname{det}_{n}$ is irreducible and $\exp (n)$-sparse. So, det_{n} requires exponential-size border depth- 2 circuits!

Lower bounds for border depth-2 circuits

A few known upper bound/lower bound results on depth-2:
$>\overline{\Sigma^{[s]} \Pi}=\Sigma^{[s]} \Pi$ and $\overline{\Pi \Sigma}=\Pi \Sigma$.
$>\operatorname{det}_{n}$ is irreducible and $\exp (n)$-sparse. So, det_{n} requires exponential-size border depth- 2 circuits!
$>$ What about border depth- 3 circuits?

Border depth-3 circuits

Depth-3 circuits

Depth-3 circuits

Depth-3 circuits with top fan-in k, are denoted as $\Sigma^{[k]} \Pi \Sigma$.

Depth-3 circuits

- Depth-3 circuits with top fan-in k, are denoted as $\Sigma^{[k]} \Pi \Sigma$.
- They compute polynomials (not necessarily homogeneous) of the form $\sum_{i=1}^{k} \prod_{j=1}^{d_{i}} \ell_{i j}$, where $\ell_{i j}$ are linear polynomials (i.e. $a_{0}+a_{1} x_{1}+\ldots+a_{n} x_{n}$, for $\left.a_{i} \in \mathbb{F}\right)$.

Depth-3 circuits

Depth-3 circuits with top fan-in k, are denoted as $\Sigma^{[k]} \Pi \Sigma$.

- They compute polynomials (not necessarily homogeneous) of the form $\sum_{i=1}^{k} \prod_{j=1}^{d_{i}} \ell_{i j}$, where $\ell_{i j}$ are linear polynomials (i.e. $a_{0}+a_{1} x_{1}+\ldots+a_{n} x_{n}$, for $\left.a_{i} \in \mathbb{F}\right)$.
\square Product fan-in $=\max d_{i}$.

Depth-3 circuits

Depth-3 circuits with top fan-in k, are denoted as $\Sigma^{[k]} \Pi \Sigma$.

- They compute polynomials (not necessarily homogeneous) of the form $\sum_{i=1}^{k} \prod_{j=1}^{d_{i}} \ell_{i j}$, where $\ell_{i j}$ are linear polynomials (i.e. $a_{0}+a_{1} x_{1}+\ldots+a_{n} x_{n}$, for $\left.a_{i} \in \mathbb{F}\right)$.
\square Product fan-in $=\max d_{i}$.
How powerful are $\Sigma^{[k]} \Pi \Sigma$ circuits, for constant k ? Are they universal?

Depth-3 circuits

Depth-3 circuits with top fan-in k, are denoted as $\Sigma^{[k]} \Pi \Sigma$.

- They compute polynomials (not necessarily homogeneous) of the form $\sum_{i=1}^{k} \prod_{j=1}^{d_{i}} \ell_{i j}$, where $\ell_{i j}$ are linear polynomials (i.e. $a_{0}+a_{1} x_{1}+\ldots+a_{n} x_{n}$, for $\left.a_{i} \in \mathbb{F}\right)$.
\square Product fan-in $=\max d_{i}$.
How powerful are $\Sigma^{[k]} \Pi \Sigma$ circuits, for constant k ? Are they universal?
I Impossibility result: The Inner Product
polynomial $\langle\boldsymbol{x}, \boldsymbol{y}\rangle=x_{1} y_{1}+\ldots+x_{k+1} y_{k+1}$ cannot be written as a $\Sigma^{[k]} \Pi \Sigma$ circuit, regardless of the product fan-in (even allowing $\exp (n)$ product fan-in!).

Depth-3 circuits

Depth-3 circuits with top fan-in k, are denoted as $\Sigma^{[k]} \Pi \Sigma$.

- They compute polynomials (not necessarily homogeneous) of the form $\sum_{i=1}^{k} \prod_{j=1}^{d_{i}} \ell_{i j}$, where $\ell_{i j}$ are linear polynomials (i.e. $a_{0}+a_{1} x_{1}+\ldots+a_{n} x_{n}$, for $\left.a_{i} \in \mathbb{F}\right)$.
\square Product fan-in $=\max d_{i}$.
How powerful are $\Sigma^{[k]} \Pi \Sigma$ circuits, for constant k ? Are they universal?
I. Impossibility result: The Inner Product
polynomial $\langle\boldsymbol{x}, \boldsymbol{y}\rangle=x_{1} y_{1}+\ldots+x_{k+1} y_{k+1}$ cannot be written as a $\Sigma^{[k]} \Pi \Sigma$ circuit, regardless of the product fan-in (even allowing $\exp (n)$ product fan-in!).

The same holds if we replace by det_{n}.

Lower bound for Constant fanin depth-3 circuits

- det ${ }_{n}$ cannot be computed by a $\Sigma^{[k]} \Pi \Sigma$-circuit, regardless of the product fan-in.

Lower bound for Constant fanin depth-3 circuits

- det_{n} cannot be computed by a $\Sigma^{[k]} \Pi \Sigma$-circuit, regardless of the product fan-in. Proof sketch: Let $\sum_{i \in[k]} T_{i}=\operatorname{det}_{n}$, where $T_{i} \in \Pi \Sigma$, product of linear polynomials.

Lower bound for Constant fanin depth- $\mathbf{3}$ circuits

- det_{n} cannot be computed by a $\Sigma^{[k]} \Pi \Sigma$-circuit, regardless of the product fan-in. Proof sketch: Let $\sum_{i \in[k]} T_{i}=\operatorname{det}_{n}$, where $T_{i} \in \Pi \Sigma$, product of linear polynomials.
$>$ Pick ℓ_{1} from T_{1} and consider $I_{1}:=\left\langle\ell_{1}\right\rangle$.

Lower bound for Constant fanin depth- $\mathbf{3}$ circuits

- det_{n} cannot be computed by a $\Sigma^{[k]} \Pi \Sigma$-circuit, regardless of the product fan-in. Proof sketch: Let $\sum_{i \in[k]} T_{i}=\operatorname{det}_{n}$, where $T_{i} \in \Pi \Sigma$, product of linear polynomials.
$>$ Pick ℓ_{1} from T_{1} and consider $I_{1}:=\left\langle\ell_{1}\right\rangle$.
$>$ LHS $\bmod I_{1}$, becomes $\sum_{i \in[k-1]} T_{i}^{\prime}$ while $\operatorname{det}_{n} \bmod I_{1} \neq 0$.

Lower bound for Constant fanin depth- $\mathbf{3}$ circuits

- det_{n} cannot be computed by a $\Sigma^{[k]} \Pi \Sigma$-circuit, regardless of the product fan-in. Proof sketch: Let $\sum_{i \in[k]} T_{i}=\operatorname{det}_{n}$, where $T_{i} \in \Pi \Sigma$, product of linear polynomials.
$>$ Pick ℓ_{1} from T_{1} and consider $I_{1}:=\left\langle\ell_{1}\right\rangle$.
$>$ LHS $\bmod I_{1}$, becomes $\sum_{i \in[k-1]} T_{i}^{\prime}$ while $\operatorname{det}_{n} \bmod I_{1} \neq 0$.
$>$ Keep repeating and each time include an independent ℓ_{i} in the ideal \mathcal{I}_{i}.

Lower bound for Constant fanin depth- $\mathbf{3}$ circuits

- det_{n} cannot be computed by a $\Sigma^{[k]} \Pi \Sigma$-circuit, regardless of the product fan-in. Proof sketch: Let $\sum_{i \in[k]} T_{i}=\operatorname{det}_{n}$, where $T_{i} \in \Pi \Sigma$, product of linear polynomials.
$>$ Pick ℓ_{1} from T_{1} and consider $I_{1}:=\left\langle\ell_{1}\right\rangle$.
$>$ LHS $\bmod I_{1}$, becomes $\sum_{i \in[k-1]} T_{i}^{\prime}$ while $\operatorname{det}_{n} \bmod I_{1} \neq 0$.
$>$ Keep repeating and each time include an independent ℓ_{i} in the ideal I_{i}.
$>$ At the end, there is some I_{k} such that RHS has become 0 while LHS is non-zero (because $k \ll n$).

Lower bound for Constant fanin depth- $\mathbf{3}$ circuits

- det_{n} cannot be computed by a $\Sigma^{[k]} \Pi \Sigma$-circuit, regardless of the product fan-in. Proof sketch: Let $\sum_{i \in[k]} T_{i}=\operatorname{det}_{n}$, where $T_{i} \in \Pi \Sigma$, product of linear polynomials.
$>$ Pick ℓ_{1} from T_{1} and consider $I_{1}:=\left\langle\ell_{1}\right\rangle$.
$>$ LHS $\bmod I_{1}$, becomes $\sum_{i \in[k-1]} T_{i}^{\prime}$ while $\operatorname{det}_{n} \bmod I_{1} \neq 0$.
$>$ Keep repeating and each time include an independent ℓ_{i} in the ideal \mathcal{I}_{i}.
$>$ At the end, there is some I_{k} such that RHS has become 0 while LHS is non-zero (because $k \ll n$).
- So, $\Sigma^{[k]} \Pi \Sigma \subsetneq \mathrm{VBP}$!

Lower bound for Constant fanin depth- $\mathbf{3}$ circuits

- det_{n} cannot be computed by a $\Sigma^{[k]} \Pi \Sigma$-circuit, regardless of the product fan-in. Proof sketch: Let $\sum_{i \in[k]} T_{i}=\operatorname{det}_{n}$, where $T_{i} \in \Pi \Sigma$, product of linear polynomials.
$>$ Pick ℓ_{1} from T_{1} and consider $I_{1}:=\left\langle\ell_{1}\right\rangle$.
$>$ LHS $\bmod I_{1}$, becomes $\sum_{i \in[k-1]} T_{i}^{\prime}$ while $\operatorname{det}_{n} \bmod I_{1} \neq 0$.
$>$ Keep repeating and each time include an independent ℓ_{i} in the ideal \mathcal{I}_{i}.
$>$ At the end, there is some I_{k} such that RHS has become 0 while LHS is non-zero (because $k \ll n$).
- So, $\Sigma^{[k]} \Pi \Sigma \subsetneq \mathrm{VBP}$!
\square How about $\overline{\Sigma^{[k]} \Pi \Sigma}$?

Power of border depth-3 circuits

Power of border depth-3 circuits

- Recall: $h \in \overline{\Sigma^{[k]} \Pi \Sigma}$ of size s if there exists a polynomial g such that

Power of border depth-3 circuits

- Recall: $h \in \overline{\Sigma^{[k]} \Pi \Sigma}$ of size s if there exists a polynomial g such that

$$
g(\boldsymbol{x}, \epsilon)=h(\boldsymbol{x})+\epsilon \cdot S(\boldsymbol{x}, \epsilon),
$$

Power of border depth-3 circuits

Recall: $h \in \overline{\Sigma^{[k]} \Pi \Sigma}$ of size s if there exists a polynomial g such that

$$
g(\boldsymbol{x}, \epsilon)=h(\boldsymbol{x})+\epsilon \cdot S(\boldsymbol{x}, \epsilon),
$$

where g can be computed by a $\Sigma^{[k]} \Pi \Sigma$ circuit, over $\mathbb{F}(\epsilon)$, of size s.

Power of border depth-3 circuits

Recall: $h \in \overline{\Sigma^{[k]} \Pi \Sigma}$ of size s if there exists a polynomial g such that

$$
g(\boldsymbol{x}, \epsilon)=h(\boldsymbol{x})+\epsilon \cdot S(\boldsymbol{x}, \epsilon),
$$

where g can be computed by a $\Sigma^{[k]} \Pi \Sigma$ circuit, over $\mathbb{F}(\epsilon)$, of size s.

Border depth-3 fan-in 2 circuits are 'universal' [Kumar 2020]

Let P be any n-variate degree d polynomial. Then, $P \in \overline{\Sigma^{[2]} \Pi^{[D]} \Sigma}$, where $D:=\exp (n, d)$.

De-bordering $\overline{\Sigma^{[2]} \Pi \Sigma}$ circuits

- If h is approximated by a $\Sigma^{[2]} \Pi \Sigma$ circuit with product fanin, bounded by poly (n), what's the exact complexity of h ?

If h is approximated by a $\Sigma^{[2]} \Pi \Sigma$ circuit with product fanin, bounded by poly (n), what's the exact complexity of h ?

Border of polynomial-sized depth-3 top-fanin-2 circuits are 'easy' [Dutta-Dwivedi-Saxena FOCS 2021].

$\overline{\Sigma^{[2]} \Pi \Sigma} \subseteq$ VBP, for polynomial-sized $\overline{\Sigma^{[2]} \Pi \Sigma}$-circuits. In particular, any polynomial in the border of top-fanin-2 size-s depth-3 circuits, can also be exactly computed by a linear projection of a poly $(s) \times \operatorname{poly}(s)$ determinant.

De-bordering $\overline{\Sigma^{[2]} \Pi \Sigma}$ circuits

If h is approximated by a $\Sigma^{[2]} \Pi \Sigma$ circuit with product fanin, bounded by poly (n), what's the exact complexity of h ?

Border of polynomial-sized depth-3 top-fanin-2 circuits are 'easy' [Dutta-Dwivedi-Saxena FOCS 2021].

$\overline{\Sigma^{[2]} \Pi \Sigma} \subseteq \mathrm{VBP}$, for polynomial-sized $\overline{\Sigma^{[2]} \Pi \Sigma}$-circuits. In particular, any polynomial in the border of top-fanin-2 size-s depth-3 circuits, can also be exactly computed by a linear projection of a poly $(s) \times$ poly (s) determinant.

Remark. The result holds if one replaces the top-fanin-2 by arbitrary constant k.

Lifting classical lower bound in the border

Lifting classical lower bound in the border

Can we separate $\overline{\Sigma^{[k]} \Pi \Sigma}$ and VBP?

Lifting classical lower bound in the border

C Can we separate $\overline{\Sigma^{[k]} \Pi \Sigma}$ and VBP?
$>$ [Limaye-Srinivasan-Tavenas, FOCS 2021] showed that $\mathrm{IMM}_{n, d}$ with $d=o(\log n)$ requires $n^{\omega(1)}$-size depth-3 circuits.

Lifting classical lower bound in the border

C Can we separate $\overline{\Sigma^{[k]} \Pi \Sigma}$ and VBP?
$>$ [Limaye-Srinivasan-Tavenas, FOCS 2021] showed that $\mathrm{IMM}_{n, d}$ with $d=o(\log n)$ requires $n^{\omega(1)}$-size depth-3 circuits.
$>$ Rank-based lower bounds can be lifted in the border!

Lifting classical lower bound in the border

C Can we separate $\overline{\Sigma^{[k]} \Pi \Sigma}$ and VBP?
$>$ [Limaye-Srinivasan-Tavenas, FOCS 2021] showed that $\mathrm{IMM}_{n, d}$ with $d=o(\log n)$ requires $n^{\omega(1)}$-size depth-3 circuits.
$>$ Rank-based lower bounds can be lifted in the border!
$>$ Since, $\mathrm{IMM}_{n, d} \in \mathrm{VBP}, \overline{\Sigma^{[k]} \Pi \Sigma} \neq \mathrm{VBP}$.

Looking for finer lower bounds

Looking for finer lower bounds

Can we show an exponential gap between $\overline{\Sigma^{[k]} \Pi \Sigma}$ and VBP?

Looking for finer lower bounds

\square Can we show an exponential gap between $\overline{\Sigma^{[k]} \Pi \Sigma}$ and VBP?
Ambitious goal: Can we separate $\overline{\Sigma^{[k]} \Pi \Sigma}$ and $\overline{\Sigma^{[k+1]} \Pi \Sigma}$?

Looking for finer lower bounds

Can we show an exponential gap between $\overline{\sum^{[k]} \Pi \Sigma}$ and VBP?
Ambitious goal: Can we separate $\overline{\Sigma^{[k]} \Pi \Sigma}$ and $\overline{\Sigma^{[k+1]} \Pi \Sigma}$?
Dote: This is already known (impossibility) in the classical setting!

Looking for finer lower bounds

Can we show an exponential gap between $\overline{\sum^{[k]} \Pi \Sigma}$ and VBP?
Ambitious goal: Can we separate $\overline{\Sigma^{[k]} \Pi \Sigma}$ and $\overline{\Sigma^{[k+1]} \Pi \Sigma}$?
Note: This is already known (impossibility) in the classical setting!

- $x_{1} \cdot y_{1}+\ldots+x_{k+1} \cdot y_{k+1}$ cannot be computed by $\Sigma^{[k]} \Pi \Sigma$ circuits!

Looking for finer lower bounds

Can we show an exponential gap between $\overline{\Sigma^{[k]} \Pi \Sigma}$ and VBP?
Ambitious goal: Can we separate $\overline{\Sigma^{[k]} \Pi \Sigma}$ and $\overline{\Sigma^{[k+1]} \Pi \Sigma}$?
Note: This is already known (impossibility) in the classical setting!

- $x_{1} \cdot y_{1}+\ldots+x_{k+1} \cdot y_{k+1}$ cannot be computed by $\Sigma^{[k]} \Pi \Sigma$ circuits!

Catch: $x_{1} \cdot y_{1}+\ldots+x_{k+1} \cdot y_{k+1}$ does not work anymore since, $x_{1} \cdot y_{1}+\ldots+x_{k+1} \cdot y_{k+1} \in \overline{\Sigma^{[2]} \Pi^{O(k)} \Sigma}$!

Looking for finer lower bounds

Can we show an exponential gap between $\overline{\Sigma^{[k]} \Pi \Sigma}$ and VBP?
Ambitious goal: Can we separate $\overline{\Sigma^{[k]} \Pi \Sigma}$ and $\overline{\Sigma^{[k+1]} \Pi \Sigma}$?
Note: This is already known (impossibility) in the classical setting!

- $x_{1} \cdot y_{1}+\ldots+x_{k+1} \cdot y_{k+1}$ cannot be computed by $\Sigma^{[k]} \Pi \Sigma$ circuits!

Catch: $x_{1} \cdot y_{1}+\ldots+x_{k+1} \cdot y_{k+1}$ does not work anymore since, $x_{1} \cdot y_{1}+\ldots+x_{k+1} \cdot y_{k+1} \in \overline{\Sigma^{[2]} \Pi^{O(k)} \Sigma}$!

- What does work (if at all!)?

Hierarchy theorem

Our results

Our results

[Dutta-Saxena 2022, Preprint]

Fix any constant $k \geq 1$. There is an explicit n-variate and $<n$ degree polynomial f such that f can be computed by a $\overline{\sum^{[k+1]} \Pi \Sigma}$ circuit of size $O(n)$ such that f requires $2^{\Omega(n)}$-size $\overline{\Sigma^{[k]} \Pi \Sigma}$ circuits.

Our results

[Dutta-Saxena 2022, Preprint]

Fix any constant $k \geq 1$. There is an explicit n-variate and $<n$ degree polynomial f such that f can be computed by a $\overline{\Sigma^{[k+1]} \Pi \Sigma}$ circuit of size $O(n)$ such that f requires $2^{\Omega(n)}$-size $\overline{\Sigma^{[k]} \Pi \Sigma}$ circuits.
\square Fix $k=2$. Define the polynomial $P_{d}:=x_{1} \cdots x_{d}+y_{1} \cdots y_{d}+z_{1} \cdots z_{d}$, a degree- d polynomial on $n=3 d$-variables.

Our results

[Dutta-Saxena 2022, Preprint]

Fix any constant $k \geq 1$. There is an explicit n-variate and $<n$ degree polynomial f such that f can be computed by a $\overline{\Sigma^{[k+1]} \Pi \Sigma}$ circuit of size $O(n)$ such that f requires $2^{\Omega(n)}$-size $\overline{\Sigma^{[k]} \Pi \Sigma}$ circuits.

Fix $k=2$. Define the polynomial $P_{d}:=x_{1} \cdots x_{d}+y_{1} \cdots y_{d}+z_{1} \cdots z_{d}$, a degree- d polynomial on $n=3 d$-variables.
$\square P_{d}$ has trivial fanin-3 depth-3 circuit (and hence in border too!).

Our results

[Dutta-Saxena 2022, Preprint]

Fix any constant $k \geq 1$. There is an explicit n-variate and $<n$ degree polynomial f such that f can be computed by a $\overline{\Sigma^{[k+1]} \Pi \Sigma}$ circuit of size $O(n)$ such that f requires $2^{\Omega(n)}$-size $\overline{\Sigma^{[k]} \Pi \Sigma}$ circuits.
\square Fix $k=2$. Define the polynomial $P_{d}:=x_{1} \cdots x_{d}+y_{1} \cdots y_{d}+z_{1} \cdots z_{d}$, a degree- d polynomial on $n=3 d$-variables.
$\square P_{d}$ has trivial fanin-3 depth-3 circuit (and hence in border too!).

- We will show that P_{d} requires $2^{\Omega(d)}$-size $\overline{\sum^{[2]} \Pi \Sigma}$ circuits.

Our results

[Dutta-Saxena 2022, Preprint]

Fix any constant $k \geq 1$. There is an explicit n-variate and $<n$ degree polynomial f such that f can be computed by a $\overline{\Sigma^{[k+1]} \Pi \Sigma}$ circuit of size $O(n)$ such that f requires $2^{\Omega(n)}$-size $\overline{\Sigma^{[k]} \Pi \Sigma}$ circuits.
\square Fix $k=2$. Define the polynomial $P_{d}:=x_{1} \cdots x_{d}+y_{1} \cdots y_{d}+z_{1} \cdots z_{d}$, a degree- d polynomial on $n=3 d$-variables.

- P_{d} has trivial fanin-3 depth-3 circuit (and hence in border too!).
- We will show that P_{d} requires $2^{\Omega(d)}$-size $\overline{\Sigma^{[2]} \Pi \Sigma}$ circuits.

Kumar's proof establishes that P_{d} has a $2^{O(d)}$-size $\overline{\Sigma^{[2]} \Pi \Sigma}$ circuits, showing optimality!

Our results

[Dutta-Saxena 2022, Preprint]

Fix any constant $k \geq 1$. There is an explicit n-variate and $<n$ degree polynomial f such that f can be computed by a $\overline{\Sigma^{[k+1]} \Pi \Sigma}$ circuit of size $O(n)$ such that f requires $2^{\Omega(n)}$-size $\overline{\Sigma^{[k]} \Pi \Sigma}$ circuits.
\square Fix $k=2$. Define the polynomial $P_{d}:=x_{1} \cdots x_{d}+y_{1} \cdots y_{d}+z_{1} \cdots z_{d}$, a degree- d polynomial on $n=3 d$-variables.
$\square P_{d}$ has trivial fanin-3 depth-3 circuit (and hence in border too!).

- We will show that P_{d} requires $2^{\Omega(d)}$-size $\overline{\Sigma^{[2]} \Pi \Sigma}$ circuits.

Kumar's proof establishes that P_{d} has a $2^{O(d)}$-size $\overline{\Sigma^{[2]} \Pi \Sigma}$ circuits, showing optimality!

Classical is about impossibility while in border, it is about optimality.

Why $k=2$ is hard to analyze?

Why $k=2$ is hard to analyze?

Non-trivial cancellations for $k=2$ make things harder.

Why $k=2$ is hard to analyze?

. Non-trivial cancellations for $k=2$ make things harder.
\square E.g., $T_{1}:=\epsilon^{-3}\left(1+\epsilon x_{1}+\epsilon^{2} x_{2}+\epsilon^{3} x_{3}+\ldots\right), T_{2}:=\epsilon^{-3}\left(1+\epsilon x_{1}+\epsilon^{2} x_{2}+\epsilon^{3} x_{4}+\ldots\right)$.

Why $k=2$ is hard to analyze?

Don-trivial cancellations for $k=2$ make things harder.
E.g., $T_{1}:=\epsilon^{-3}\left(1+\epsilon x_{1}+\epsilon^{2} x_{2}+\epsilon^{3} x_{3}+\ldots\right), T_{2}:=\epsilon^{-3}\left(1+\epsilon x_{1}+\epsilon^{2} x_{2}+\epsilon^{3} x_{4}+\ldots\right)$. Note, $\lim _{\epsilon \rightarrow 0}\left(T_{1}-T_{2}\right)=\left(x_{3}-x_{4}\right)$.

Why $k=2$ is hard to analyze?

Don-trivial cancellations for $k=2$ make things harder.
E.g., $T_{1}:=\epsilon^{-3}\left(1+\epsilon x_{1}+\epsilon^{2} x_{2}+\epsilon^{3} x_{3}+\ldots\right), T_{2}:=\epsilon^{-3}\left(1+\epsilon x_{1}+\epsilon^{2} x_{2}+\epsilon^{3} x_{4}+\ldots\right)$. Note, $\lim _{\epsilon \rightarrow 0}\left(T_{1}-T_{2}\right)=\left(x_{3}-x_{4}\right)$.

- Note $x^{2} \equiv\left(x-\epsilon^{M / 2} \cdot a\right)\left(x+\epsilon^{M / 2} \cdot a\right) \bmod \epsilon^{M}$, for any $a \in \mathbb{F}$.

Why $k=2$ is hard to analyze?

. Non-trivial cancellations for $k=2$ make things harder.

- E.g., $T_{1}:=\epsilon^{-3}\left(1+\epsilon x_{1}+\epsilon^{2} x_{2}+\epsilon^{3} x_{3}+\ldots\right), T_{2}:=\epsilon^{-3}\left(1+\epsilon x_{1}+\epsilon^{2} x_{2}+\epsilon^{3} x_{4}+\ldots\right)$. Note, $\lim _{\epsilon \rightarrow 0}\left(T_{1}-T_{2}\right)=\left(x_{3}-x_{4}\right)$.
- Note $x^{2} \equiv\left(x-\epsilon^{M / 2} \cdot a\right)\left(x+\epsilon^{M / 2} \cdot a\right) \bmod \epsilon^{M}$, for any $a \in \mathbb{F}$.
- Moreover,

$$
\lim _{\epsilon \rightarrow 0} \frac{1}{\epsilon^{M}} \cdot\left(x^{2}-\left(x-\epsilon^{M / 2} \cdot a\right)\left(x+\epsilon^{M / 2} \cdot a\right)\right)=a^{2}
$$

Why $k=2$ is hard to analyze?

. Non-trivial cancellations for $k=2$ make things harder.

- E.g., $T_{1}:=\epsilon^{-3}\left(1+\epsilon x_{1}+\epsilon^{2} x_{2}+\epsilon^{3} x_{3}+\ldots\right), T_{2}:=\epsilon^{-3}\left(1+\epsilon x_{1}+\epsilon^{2} x_{2}+\epsilon^{3} x_{4}+\ldots\right)$. Note, $\lim _{\epsilon \rightarrow 0}\left(T_{1}-T_{2}\right)=\left(x_{3}-x_{4}\right)$.
- Note $x^{2} \equiv\left(x-\epsilon^{M / 2} \cdot a\right)\left(x+\epsilon^{M / 2} \cdot a\right) \bmod \epsilon^{M}$, for any $a \in \mathbb{F}$.
- Moreover,

$$
\lim _{\epsilon \rightarrow 0} \frac{1}{\epsilon^{M}} \cdot\left(x^{2}-\left(x-\epsilon^{M / 2} \cdot a\right)\left(x+\epsilon^{M / 2} \cdot a\right)\right)=a^{2}
$$

Infinitely many factorizations may give infinitely many limits.

Non-homogeneity is 'bad'

Non-homogeneity is 'bad'

Let $\ell_{1}:=1+\epsilon X_{1}$. What does taking $\bmod \ell_{1}$ in the 'border' $(\epsilon \rightarrow 0)$ mean? Essentially we are eventually setting $x_{1}=-1 / \epsilon$ (and then $\epsilon \rightarrow 0$)!

Non-homogeneity is 'bad'

Let $\ell_{1}:=1+\epsilon x_{1}$. What does taking mod ℓ_{1} in the 'border' $(\epsilon \rightarrow 0)$ mean? Essentially we are eventually setting $x_{1}=-1 / \epsilon($ and then $\epsilon \rightarrow 0)$!

In other words, work with $I:=\left\langle\ell_{1}, \epsilon\right\rangle=\langle 1\rangle$!

Non-homogeneity is 'bad'

Let $\ell_{1}:=1+\epsilon x_{1}$. What does taking mod ℓ_{1} in the 'border' $(\epsilon \rightarrow 0)$ mean? Essentially we are eventually setting $x_{1}=-1 / \epsilon($ and then $\epsilon \rightarrow 0)$!

In other words, work with $I:=\left\langle\ell_{1}, \epsilon\right\rangle=\langle 1\rangle$!
Lesson: Taking mod blindly fails miserably!

Non-homogeneity is 'bad'

Let $\ell_{1}:=1+\epsilon X_{1}$. What does taking $\bmod \ell_{1}$ in the 'border' $(\epsilon \rightarrow 0)$ mean? Essentially we are eventually setting $x_{1}=-1 / \epsilon($ and then $\epsilon \rightarrow 0)$!

In other words, work with $I:=\left\langle\ell_{1}, \epsilon\right\rangle=\langle 1\rangle$!
Lesson: Taking mod blindly fails miserably!
The worst case:

$$
f+\epsilon S=T_{1}+T_{2},
$$

where T_{i} has each linear factor of the form $1+\epsilon \ell$!

Non-homogeneity is all we need to care

Non-homogeneity is all we need to care

- Three cases to consider:
$>$ Case I: Each T_{1} and T_{2} has one linear form $\ell_{i} \in \mathbb{F}(\epsilon)[\boldsymbol{x}]$ as a factor,

Non-homogeneity is all we need to care

- Three cases to consider:
$>$ Case I: Each T_{1} and T_{2} has one linear form $\ell_{i} \in \mathbb{F}(\epsilon)[\boldsymbol{x}]$ as a factor,
$>$ Case II (intermediate): T_{1} has one linear form has factor, $\left(\ell_{1}\right)$ and all factors in T_{2} is non-homogeneous (in \boldsymbol{x}),

Non-homogeneity is all we need to care

- Three cases to consider:
$>$ Case I: Each T_{1} and T_{2} has one linear form $\ell_{i} \in \mathbb{F}(\epsilon)[\boldsymbol{x}]$ as a factor,
$>$ Case II (intermediate): T_{1} has one linear form has factor, $\left(\ell_{1}\right)$ and all factors in T_{2} is non-homogeneous (in \boldsymbol{x}),
$>$ Case III (all-non-homogeneous): Each T_{i} has all the factors non-homogeneous.

Non-homogeneity is all we need to care

Three cases to consider:
$>$ Case I: Each T_{1} and T_{2} has one linear form $\ell_{i} \in \mathbb{F}(\epsilon)[\boldsymbol{x}]$ as a factor,
$>$ Case II (intermediate): T_{1} has one linear form has factor, $\left(\ell_{1}\right)$ and all factors in T_{2} is non-homogeneous (in \boldsymbol{x}),
$>$ Case III (all-non-homogeneous): Each T_{i} has all the factors non-homogeneous.
\square For the first case, take $I:=\left\langle\ell_{1}, \ell_{2}, \epsilon\right\rangle$ (and $1 \notin \mathcal{I}$) and show that $x_{1} \cdots x_{d}+y_{1} \cdots y_{d}+z_{1} \cdots z_{d}=P_{d} \bmod I \neq 0$, while RHS $\equiv 0 \bmod I$.

Non-homogeneity is all we need to care

- Three cases to consider:
$>$ Case I: Each T_{1} and T_{2} has one linear form $\ell_{i} \in \mathbb{F}(\epsilon)[\boldsymbol{x}]$ as a factor,
$>$ Case II (intermediate): T_{1} has one linear form has factor, $\left(\ell_{1}\right)$ and all factors in T_{2} is non-homogeneous (in \boldsymbol{x}),
$>$ Case III (all-non-homogeneous): Each T_{i} has all the factors non-homogeneous.
\square For the first case, take $\mathcal{I}:=\left\langle\ell_{1}, \ell_{2}, \epsilon\right\rangle$ (and $1 \notin \mathcal{I}$) and show that $x_{1} \cdots x_{d}+y_{1} \cdots y_{d}+z_{1} \cdots z_{d}=P_{d} \bmod I \neq 0$, while RHS $\equiv 0 \bmod I$.
\square For the second case, take $I:=\left\langle\ell_{1}, \epsilon\right\rangle$. Then, RHS $\bmod I=\overline{\Pi \Sigma}=\Pi \Sigma$, while $P_{d} \bmod I \notin \Pi \Sigma$.

Non-homogeneity is all we need to care

- Three cases to consider:
$>$ Case I: Each T_{1} and T_{2} has one linear form $\ell_{i} \in \mathbb{F}(\epsilon)[\boldsymbol{x}]$ as a factor,
$>$ Case II (intermediate): T_{1} has one linear form has factor, $\left(\ell_{1}\right)$ and all factors in T_{2} is non-homogeneous (in \boldsymbol{x}),
$>$ Case III (all-non-homogeneous): Each T_{i} has all the factors non-homogeneous.
\square For the first case, take $\mathcal{I}:=\left\langle\ell_{1}, \ell_{2}, \epsilon\right\rangle$ (and $1 \notin \mathcal{I}$) and show that $x_{1} \cdots x_{d}+y_{1} \cdots y_{d}+z_{1} \cdots z_{d}=P_{d} \bmod I \neq 0$, while RHS $\equiv 0 \bmod I$.
\square For the second case, take $I:=\left\langle\ell_{1}, \epsilon\right\rangle$. Then, RHS $\bmod I=\overline{\Pi \Sigma}=\Pi \Sigma$, while $P_{d} \bmod I \notin \Pi \Sigma$.

So, all-non-homogeneous is all we have to care!

Non-homogeneity is all we need to care

- Three cases to consider:
$>$ Case I: Each T_{1} and T_{2} has one linear form $\ell_{i} \in \mathbb{F}(\epsilon)[\boldsymbol{x}]$ as a factor,
$>$ Case II (intermediate): T_{1} has one linear form has factor, $\left(\ell_{1}\right)$ and all factors in T_{2} is non-homogeneous (in \boldsymbol{x}),
$>$ Case III (all-non-homogeneous): Each T_{i} has all the factors non-homogeneous.
\square For the first case, take $I:=\left\langle\ell_{1}, \ell_{2}, \epsilon\right\rangle$ (and $1 \notin \mathcal{I}$) and show that $x_{1} \cdots x_{d}+y_{1} \cdots y_{d}+z_{1} \cdots z_{d}=P_{d} \bmod I \neq 0$, while RHS $\equiv 0 \bmod I$.
. For the second case, take $I:=\left\langle\ell_{1}, \epsilon\right\rangle$. Then, RHS $\bmod I=\overline{\Pi \Sigma}=\Pi \Sigma$, while $P_{d} \bmod I \notin \Pi \Sigma$.

So, all-non-homogeneous is all we have to care!
For $k>2$, we need a technical lemma, but still can be reduced!

Lower bound for all-non-homogeneous $k=2$

Lower bound for all-non-homogeneous $k=2$

- $T_{1}+T_{2}=P_{d}(\boldsymbol{x})+\epsilon \cdot S(\boldsymbol{x}, \epsilon)$, where $T_{i} \in \Pi \Sigma \in \mathbb{F}(\epsilon)[\boldsymbol{x}]$ have all-non-homogeneous factors.

Lower bound for all-non-homogeneous $k=2$

- $T_{1}+T_{2}=P_{d}(\boldsymbol{x})+\epsilon \cdot S(\boldsymbol{x}, \epsilon)$, where $T_{i} \in \Pi \Sigma \in \mathbb{F}(\epsilon)[\boldsymbol{x}]$ have all-non-homogeneous factors.
\square Very broad idea: reduce fanin 2 to 1 with a 'nice' form.

Lower bound for all-non-homogeneous $k=2$

- $T_{1}+T_{2}=P_{d}(\boldsymbol{x})+\epsilon \cdot S(\boldsymbol{x}, \epsilon)$, where $T_{i} \in \Pi \Sigma \in \mathbb{F}(\epsilon)[\boldsymbol{x}]$ have all-non-homogeneous factors.

V Very broad idea: reduce fanin 2 to 1 with a 'nice' form.
\square Apply a scaling map Φ, defined by $\Phi: x_{i} \mapsto z \cdot x_{i}$.

Lower bound for all-non-homogeneous $k=2$

- $T_{1}+T_{2}=P_{d}(\boldsymbol{x})+\epsilon \cdot S(\boldsymbol{x}, \epsilon)$, where $T_{i} \in \Pi \Sigma \in \mathbb{F}(\epsilon)[\boldsymbol{x}]$ have all-non-homogeneous factors.
\square Very broad idea: reduce fanin 2 to 1 with a 'nice' form.
\square Apply a scaling map Φ, defined by $\Phi: x_{i} \mapsto z \cdot x_{i}$.
$>$ The variable z is the "degree counter".

Lower bound for all-non-homogeneous $k=2$

- $T_{1}+T_{2}=P_{d}(\boldsymbol{x})+\epsilon \cdot S(\boldsymbol{x}, \epsilon)$, where $T_{i} \in \Pi \Sigma \in \mathbb{F}(\epsilon)[\boldsymbol{x}]$ have all-non-homogeneous factors.

V Very broad idea: reduce fanin 2 to 1 with a 'nice' form.
\square Apply a scaling map Φ, defined by $\Phi: x_{i} \mapsto z \cdot x_{i}$.
$>$ The variable z is the "degree counter".
\square We use DiDIL - Divide, Derive, Interpolate with Limit, introduced in [Dutta-Dwivedi-Saxena, FOCS 2021].

Lower bound for all-non-homogeneous $k=2$

- $T_{1}+T_{2}=P_{d}(\boldsymbol{x})+\epsilon \cdot S(\boldsymbol{x}, \epsilon)$, where $T_{i} \in \Pi \Sigma \in \mathbb{F}(\epsilon)[\boldsymbol{x}]$ have all-non-homogeneous factors.
\square Very broad idea: reduce fanin 2 to 1 with a 'nice' form.
\square Apply a scaling map Φ, defined by $\Phi: x_{i} \mapsto z \cdot x_{i}$.
$>$ The variable z is the "degree counter".
\square We use DiDIL - Divide, Derive, Interpolate with Limit, introduced in [Dutta-Dwivedi-Saxena, FOCS 2021].
\square DiDIL shows: If P_{d} has s-size (comes from product fanin) border depth-3 fanin-2 all-non-homogeneous circuit, then P_{d} has poly (s) border-waring rank.

Lower bound for all-non-homogeneous $k=2$

- $T_{1}+T_{2}=P_{d}(\boldsymbol{x})+\epsilon \cdot S(\boldsymbol{x}, \epsilon)$, where $T_{i} \in \Pi \Sigma \in \mathbb{F}(\epsilon)[\boldsymbol{x}]$ have all-non-homogeneous factors.
\square Very broad idea: reduce fanin 2 to 1 with a 'nice' form.
\square Apply a scaling map Φ, defined by $\Phi: x_{i} \mapsto z \cdot x_{i}$.
$>$ The variable z is the "degree counter".
\square We use DiDIL - Divide, Derive, Interpolate with Limit, introduced in [Dutta-Dwivedi-Saxena, FOCS 2021].
\square DiDIL shows: If P_{d} has s-size (comes from product fanin) border depth-3 fanin-2 all-non-homogeneous circuit, then P_{d} has poly (s) border-waring rank.
- Partial-derivative measure shows that $\overline{\mathrm{WR}}\left(P_{d}\right)=2^{\Omega(d)}$.

Lower bound for all-non-homogeneous $k=2$

- $T_{1}+T_{2}=P_{d}(\boldsymbol{x})+\epsilon \cdot S(\boldsymbol{x}, \epsilon)$, where $T_{i} \in \Pi \Sigma \in \mathbb{F}(\epsilon)[\boldsymbol{x}]$ have all-non-homogeneous factors.
\square Very broad idea: reduce fanin 2 to 1 with a 'nice' form.
\square Apply a scaling map Φ, defined by $\Phi: x_{i} \mapsto z \cdot x_{i}$.
$>$ The variable z is the "degree counter".
\square We use DiDIL - Divide, Derive, Interpolate with Limit, introduced in [Dutta-Dwivedi-Saxena, FOCS 2021].
\square DiDIL shows: If P_{d} has s-size (comes from product fanin) border depth-3 fanin-2 all-non-homogeneous circuit, then P_{d} has poly (s) border-waring rank.
- Partial-derivative measure shows that $\overline{\mathrm{WR}}\left(P_{d}\right)=2^{\Omega(d)}$.
- Thus, $s \geq 2^{\Omega(d)}$!

Why direct DiDIL fails

\square DiDIL works with $\Phi: x_{i} \mapsto z \cdot x_{i}+\alpha_{i}$, for random α_{i}.

Why direct DiDIL fails

\square DiDIL works with $\Phi: x_{i} \mapsto z \cdot x_{i}+\alpha_{i}$, for random α_{i}.

- Shifting is required for non-homogenity for DiDIL to succeed, since $1 /(1-z) \bmod z^{d}$ exists but $1 / z \bmod z^{d}$ does not!

Why direct DiDIL fails

\square DiDIL works with $\Phi: x_{i} \mapsto z \cdot x_{i}+\alpha_{i}$, for random α_{i}.
Shifting is required for non-homogenity for DiDIL to succeed, since $1 /(1-z) \bmod z^{d}$ exists but $1 / z \bmod z^{d}$ does not!

- If one blindly does that, we get $\partial_{z}\left(P_{d} / \Pi \Sigma\right) \equiv(\Pi \Sigma) \cdot(\overline{\Sigma \wedge \Sigma}) \bmod z^{d}$. How to show lower bound?

Why direct DiDIL fails

\square DiDIL works with $\Phi: x_{i} \mapsto z \cdot x_{i}+\alpha_{i}$, for random α_{i}.
Shifting is required for non-homogenity for DiDIL to succeed, since $1 /(1-z) \bmod z^{d}$ exists but $1 / z \bmod z^{d}$ does not!

- If one blindly does that, we get $\partial_{z}\left(P_{d} / \Pi \Sigma\right) \equiv(\Pi \Sigma) \cdot(\overline{\Sigma \wedge \Sigma}) \bmod z^{d}$. How to show lower bound?

For $k>2$, lifting the lower bound via interpolation makes it even harder!

Why direct DiDIL fails

\square DiDIL works with $\Phi: x_{i} \mapsto z \cdot x_{i}+\alpha_{i}$, for random α_{i}.
Shifting is required for non-homogenity for DiDIL to succeed, since $1 /(1-z) \bmod z^{d}$ exists but $1 / z \bmod z^{d}$ does not!

- If one blindly does that, we get $\partial_{z}\left(P_{d} / \Pi \Sigma\right) \equiv(\Pi \Sigma) \cdot(\overline{\Sigma \wedge \Sigma}) \bmod z^{d}$. How to show lower bound?

For $k>2$, lifting the lower bound via interpolation makes it even harder!
Shifting is problematic for showing lower bound!

Why direct DiDIL fails

\square DiDIL works with $\Phi: x_{i} \mapsto z \cdot x_{i}+\alpha_{i}$, for random α_{i}.
Shifting is required for non-homogenity for DiDIL to succeed, since $1 /(1-z) \bmod z^{d}$ exists but $1 / z \bmod z^{d}$ does not!

- If one blindly does that, we get $\partial_{z}\left(P_{d} / \Pi \Sigma\right) \equiv(\Pi \Sigma) \cdot(\overline{\Sigma \wedge \Sigma}) \bmod z^{d}$. How to show lower bound?

For $k>2$, lifting the lower bound via interpolation makes it even harder!
Shifting is problematic for showing lower bound!

So, the current proof is about pre-processing (technical lemma, reducing to all-non-homogeneous) \& DiDIL.

Proof sketch for $k=2$

$k=2$ lower bound proof: Divide and Derive

$k=2$ lower bound proof: Divide and Derive

Let $\Phi\left(T_{i}\right)=: \epsilon^{a_{i}} \cdot \tilde{T}_{i}$, for $i \in[2]$, where $a_{i}:=\operatorname{val}_{\epsilon}\left(\Phi\left(T_{i}\right)\right)$.
val $l_{\epsilon}(\cdot)$ denotes the highest power of ϵ dividing it.

$k=2$ lower bound proof: Divide and Derive

Let $\Phi\left(T_{i}\right)=: \epsilon^{a_{i}} \cdot \tilde{T}_{i}$, for $i \in[2]$, where $a_{i}:=\operatorname{val}_{\epsilon}\left(\Phi\left(T_{i}\right)\right)$.
val $l_{\epsilon}(\cdot)$ denotes the highest power of ϵ dividing it.

- Divide and Derive:

$k=2$ lower bound proof: Divide and Derive

Let $\Phi\left(T_{i}\right)=: \epsilon^{a_{i}} \cdot \tilde{T}_{i}$, for $i \in[2]$, where $a_{i}:=\operatorname{val}_{\epsilon}\left(\Phi\left(T_{i}\right)\right)$.
$\square \operatorname{val}_{\epsilon}(\cdot)$ denotes the highest power of ϵ dividing it.
\square Divide and Derive:

$$
\begin{align*}
P_{d}+\epsilon \cdot S & =T_{1}+T_{2} \\
\Longrightarrow \Phi\left(P_{d}\right)+\epsilon \cdot \Phi(S) & =\Phi\left(T_{1}\right)+\Phi\left(T_{2}\right) \\
\Longrightarrow \Phi\left(P_{d}\right) / \tilde{T}_{2}+\epsilon \cdot \Phi(S) / \tilde{T}_{2} & =\epsilon^{a_{2}}+\Phi\left(T_{1}\right) / \tilde{T}_{2} \\
\Longrightarrow \partial_{z}\left(\Phi\left(P_{d}\right) / \tilde{T}_{2}\right)+\epsilon \cdot \partial_{z}\left(\Phi(S) / \tilde{T}_{2}\right) & =\partial_{z}\left(\Phi\left(T_{1}\right) / \tilde{T}_{2}\right)=: g_{1} . \tag{1}
\end{align*}
$$

$k=2$ lower bound proof: Divide and Derive

Let $\Phi\left(T_{i}\right)=: \epsilon^{a_{i}} \cdot \tilde{T}_{i}$, for $i \in[2]$, where $a_{i}:=\operatorname{val}_{\epsilon}\left(\Phi\left(T_{i}\right)\right)$.
$\square \operatorname{val}_{\epsilon}(\cdot)$ denotes the highest power of ϵ dividing it.
D Divide and Derive:

$$
\begin{align*}
P_{d}+\epsilon \cdot S & =T_{1}+T_{2} \\
\Longrightarrow \Phi\left(P_{d}\right)+\epsilon \cdot \Phi(S) & =\Phi\left(T_{1}\right)+\Phi\left(T_{2}\right) \\
\Longrightarrow \Phi\left(P_{d}\right) / \tilde{T}_{2}+\epsilon \cdot \Phi(S) / \tilde{T}_{2} & =\epsilon^{a_{2}}+\Phi\left(T_{1}\right) / \tilde{T}_{2} \\
\Longrightarrow \partial_{z}\left(\Phi\left(P_{d}\right) / \tilde{T}_{2}\right)+\epsilon \cdot \partial_{z}\left(\Phi(S) / \tilde{T}_{2}\right) & =\partial_{z}\left(\Phi\left(T_{1}\right) / \tilde{T}_{2}\right)=: g_{1} . \tag{1}
\end{align*}
$$

- $\lim _{\epsilon \rightarrow 0} g_{1}=1 / t_{2} \cdot \partial_{z}\left(\Phi\left(P_{d}\right)\right)$, where $\mathbb{F} \ni t_{2}:=\lim _{\epsilon \rightarrow 0} \tilde{T_{2}}$, because $\lim _{\epsilon \rightarrow 0} \Pi\left(1+\epsilon \ell_{i}\right)=1$.

$k=2$ proof continued

$k=2$ proof continued

Target: Compute $\lim _{\epsilon \rightarrow 0} g_{1}=1 / t_{2} \cdot \partial_{z}\left(\Phi\left(P_{d}\right)\right)$.

$k=2$ proof continued

- Target: Compute $\lim _{\epsilon \rightarrow 0} g_{1}=1 / t_{2} \cdot \partial_{z}\left(\Phi\left(P_{d}\right)\right)$.

Logarithmic derivative: $\operatorname{dlog}_{z}(h):=\partial_{z}(h) / h$.

$k=2$ proof continued

- Target: Compute $\lim _{\epsilon \rightarrow 0} g_{1}=1 / t_{2} \cdot \partial_{z}\left(\Phi\left(P_{d}\right)\right)$.

Logarithmic derivative: $\operatorname{dlog}_{z}(h):=\partial_{z}(h) / h$.
\square dlog linearizes product: $\operatorname{dlog}\left(h_{1} h_{2}\right)=\operatorname{dlog}\left(h_{1}\right)+\operatorname{dlog}\left(h_{2}\right)$.

$k=2$ proof continued

- Target: Compute $\lim _{\epsilon \rightarrow 0} g_{1}=1 / t_{2} \cdot \partial_{z}\left(\Phi\left(P_{d}\right)\right)$.

Logarithmic derivative: $\operatorname{dlog}_{z}(h):=\partial_{z}(h) / h$.
\square dlog linearizes product: $\operatorname{dlog}\left(h_{1} h_{2}\right)=\operatorname{dlog}\left(h_{1}\right)+\operatorname{dlog}\left(h_{2}\right)$. Note:

$$
\begin{aligned}
\partial_{z}\left(\Phi\left(T_{1}\right) / \tilde{T}_{2}\right) & =\Phi\left(T_{1}\right) / \tilde{T}_{2} \cdot \operatorname{dlog}\left(\Phi\left(T_{1}\right) / \tilde{T}_{2}\right) \\
& =(\Pi \Sigma / \Pi \Sigma) \cdot \operatorname{dlog}(\Pi \Sigma / \Pi \Sigma) \\
& =\Pi \Sigma / \Pi \Sigma \cdot\left(\pm \sum \operatorname{dlog}(\Sigma)\right)
\end{aligned}
$$

$k=2$ proof continued

- Target: Compute $\lim _{\epsilon \rightarrow 0} g_{1}=1 / t_{2} \cdot \partial_{z}\left(\Phi\left(P_{d}\right)\right)$.

Logarithmic derivative: $\operatorname{dlog}_{z}(h):=\partial_{z}(h) / h$.
\square dlog linearizes product: $\operatorname{dlog}\left(h_{1} h_{2}\right)=\operatorname{dlog}\left(h_{1}\right)+\operatorname{dlog}\left(h_{2}\right)$. Note:

$$
\begin{aligned}
\partial_{z}\left(\Phi\left(T_{1}\right) / \tilde{T}_{2}\right) & =\Phi\left(T_{1}\right) / \tilde{T}_{2} \cdot \operatorname{dlog}\left(\Phi\left(T_{1}\right) / \tilde{T}_{2}\right) \\
& =(\Pi \Sigma / \Pi \Sigma) \cdot \operatorname{dlog}(\Pi \Sigma / \Pi \Sigma) \\
& =\Pi \Sigma / \Pi \Sigma \cdot\left(\pm \sum \operatorname{dlog}(\Sigma)\right)
\end{aligned}
$$

\square Here Σ means just a linear polynomial ℓ.

$k=2$ proof continued: Quick recap

$k=2$ proof continued: Quick recap

\square Recap: $1 / t_{2} \cdot \partial_{z}\left(\Phi\left(P_{d}\right)\right)=\lim _{\epsilon \rightarrow 0} g_{1}=\lim _{\epsilon \rightarrow 0}(\Pi \Sigma / \Pi \Sigma) \cdot\left(\pm \sum \operatorname{dlog}(\Sigma)\right)$.

$k=2$ proof continued: Quick recap

\square Recap: $1 / t_{2} \cdot \partial_{z}\left(\Phi\left(P_{d}\right)\right)=\lim _{\epsilon \rightarrow 0} g_{1}=\lim _{\epsilon \rightarrow 0}(\Pi \Sigma / \Pi \Sigma) \cdot\left(\pm \sum \operatorname{dlog}(\Sigma)\right)$.
$\square \operatorname{deg}\left(P_{d}\right)=d \Longrightarrow \operatorname{deg}_{z}(\Phi(f))=d \Longrightarrow \operatorname{deg}_{z}\left(\partial_{z}\left(\Phi\left(P_{d}\right)\right)\right)=d-1$.

$k=2$ proof continued: Quick recap

\square Recap: $1 / t_{2} \cdot \partial_{z}\left(\Phi\left(P_{d}\right)\right)=\lim _{\epsilon \rightarrow 0} g_{1}=\lim _{\epsilon \rightarrow 0}(\Pi \Sigma / \Pi \Sigma) \cdot\left(\pm \sum \operatorname{dlog}(\Sigma)\right)$.
$\square \operatorname{deg}\left(P_{d}\right)=d \Longrightarrow \operatorname{deg}_{z}(\Phi(f))=d \Longrightarrow \operatorname{deg}_{z}\left(\partial_{z}\left(\Phi\left(P_{d}\right)\right)\right)=d-1$.

- Suffices to compute $\lim _{\epsilon \rightarrow 0} g_{1} \bmod z^{d}$.

$k=2$ proof: dlog strikes!

$k=2$ proof: dlog strikes!

What is $\operatorname{dlog}(\ell)$ for a linear polynomial $\ell=1-z \cdot \ell$?

$k=2$ proof: dlog strikes!

[. What is $\operatorname{dlog}(\ell)$ for a linear polynomial $\ell=1-z \cdot \ell$?

$$
\begin{aligned}
\operatorname{dlog}(1-z \ell) & =-\frac{\ell}{(1-z \cdot \ell)} \\
& =\sum_{j=0}^{d-1} \ell \cdot(z \cdot \ell)^{j} \bmod z^{d} \\
& \in \Sigma \wedge \Sigma
\end{aligned}
$$

$k=2$ proof: dlog strikes!

\square What is $\operatorname{dlog}(\ell)$ for a linear polynomial $\ell=1-z \cdot \ell$?

$$
\begin{aligned}
\operatorname{dlog}(1-z \ell) & =-\frac{\ell}{(1-z \cdot \ell)} \\
& =\sum_{j=0}^{d-1} \ell \cdot(z \cdot \ell)^{j} \bmod z^{d} \\
& \in \Sigma \wedge \Sigma
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\lim _{\epsilon \rightarrow 0} g_{1} \bmod z^{d} & \equiv \lim _{\epsilon \rightarrow 0}(\Pi \Sigma / \Pi \Sigma) \cdot\left(\sum \operatorname{dlog}(\Sigma)\right) \bmod z^{d} \\
& \equiv \lim _{\epsilon \rightarrow 0}(\Pi \Sigma / \Pi \Sigma) \cdot(\Sigma \wedge \Sigma) \bmod z^{d} \\
& \in \overline{(\Pi \Sigma / \Pi \Sigma) \cdot(\Sigma \wedge \Sigma)} \bmod z^{d}
\end{aligned}
$$

Finishing the proof

- $\overline{C \cdot \mathcal{D}}=\bar{C} \cdot \overline{\mathcal{D}}$. Therefore,

Finishing the proof

$\square \overline{C \cdot \mathcal{D}}=\bar{C} \cdot \overline{\mathcal{D}}$. Therefore,

$$
\begin{aligned}
\overline{(\Pi \Sigma / \Pi \Sigma) \cdot(\Sigma \wedge \Sigma)} & =\overline{(\Pi \Sigma / \Pi \Sigma)} \cdot(\overline{\Sigma \wedge \Sigma}) \\
& \subseteq \overline{\Sigma \wedge \Sigma} .
\end{aligned}
$$

Finishing the proof

$\square \overline{C \cdot \mathcal{D}}=\bar{C} \cdot \overline{\mathcal{D}}$. Therefore,

$$
\begin{aligned}
\overline{(\Pi \Sigma / \Pi \Sigma) \cdot(\Sigma \wedge \Sigma)} & =\overline{(\Pi \Sigma / \Pi \Sigma)} \cdot(\overline{\Sigma \wedge \Sigma}) \\
& \subseteq \overline{\Sigma \wedge \Sigma} .
\end{aligned}
$$

- The above is because $\lim _{\epsilon \rightarrow 0} \Pi(1+\epsilon \ell)=1$.

Finishing the proof

- $\overline{C \cdot \mathcal{D}}=\bar{C} \cdot \bar{D}$. Therefore,

$$
\begin{aligned}
\overline{(\Pi \Sigma / \Pi \Sigma) \cdot(\Sigma \wedge \Sigma)} & =\overline{(\Pi \Sigma / \Pi \Sigma)} \cdot(\overline{\Sigma \wedge \Sigma}) \\
& \subseteq \overline{\Sigma \wedge \Sigma} .
\end{aligned}
$$

- The above is because $\lim _{\epsilon \rightarrow 0} \Pi(1+\epsilon \ell)=1$.
- Thus, $1 / t_{2} \cdot \partial_{z}\left(\Phi\left(P_{d}\right)\right)=\lim _{\epsilon \rightarrow 0} g_{1} \in \overline{\Sigma \wedge \Sigma}$.

Finishing the proof

- $\overline{C \cdot \mathcal{D}}=\bar{C} \cdot \overline{\mathcal{D}}$. Therefore,

$$
\begin{aligned}
\overline{(\Pi \Sigma / \Pi \Sigma) \cdot(\Sigma \wedge \Sigma)} & =\overline{(\Pi \Sigma / \Pi \Sigma)} \cdot(\overline{\Sigma \wedge \Sigma}) \\
& \subseteq \overline{\Sigma \wedge \Sigma} .
\end{aligned}
$$

The above is because $\lim _{\epsilon \rightarrow 0} \Pi(1+\epsilon \ell)=1$.

- Thus, $1 / t_{2} \cdot \partial_{z}\left(\Phi\left(P_{d}\right)\right)=\lim _{\epsilon \rightarrow 0} g_{1} \in \overline{\Sigma \wedge \Sigma}$.
\square Thus, $\Phi\left(P_{d}\right) \in \overline{\Sigma \wedge \Sigma} \Longrightarrow P_{d} \in \overline{\Sigma \wedge \Sigma}$.

Conclusion

Concluding remarks

Concluding remarks

. Can we show exponential lower bound for $\overline{\Sigma^{[o(n)]} \Pi \Sigma}$-circuits? The current method gives subexponential lower bound only as long as $k=o(\log n)$.

Concluding remarks

Can we show exponential lower bound for $\overline{\Sigma^{[o(n)]} \Pi \Sigma}$-circuits? The current method gives subexponential lower bound only as long as $k=o(\log n)$.

Can we show exponential lower bound for $\overline{\Sigma^{[k]} \Pi \Sigma \wedge}$-circuits (i.e. rather special depth-4)?

Concluding remarks

Can we show exponential lower bound for $\overline{\Sigma^{[o(n)]} \Pi \Sigma}$-circuits? The current method gives subexponential lower bound only as long as $k=o(\log n)$.

Can we show exponential lower bound for $\overline{\Sigma^{[k]} \Pi \Sigma \wedge}$-circuits (i.e. rather special depth-4)?

Can we extend the hierarchy theorem to bounded (top \& bottom fanin) depth-4 circuits? i.e., for a fixed constant δ, is $\overline{\Sigma^{[1]} \Pi \Sigma \Pi^{[\delta]} \subsetneq \overline{\Sigma^{[2]} \Pi \Sigma \Pi^{[\delta]}} \subsetneq \overline{\Sigma^{[3]} \Pi \Sigma \Pi^{[\delta]}} \cdots \text {, where the respective gaps }}$ are exponential? Clearly, $\delta=1$ holds, from this work.

Concluding remarks

Can we show exponential lower bound for $\overline{\Sigma^{[o(n)]} \Pi \Sigma}$-circuits? The current method gives subexponential lower bound only as long as $k=o(\log n)$.

Can we show exponential lower bound for $\overline{\Sigma^{[k]} \Pi \Sigma \wedge}$-circuits (i.e. rather special depth-4)?

Can we extend the hierarchy theorem to bounded (top \& bottom fanin) depth-4 circuits? i.e., for a fixed constant δ, is $\overline{\Sigma^{[1]} \Pi \Sigma \Pi^{[\delta]} \subsetneq \overline{\Sigma^{[2]} \Pi \Sigma \Pi^{[\delta]}} \subsetneq \overline{\Sigma^{[3]} \Pi \Sigma \Pi^{[\delta]}} \cdots \text {, where the respective gaps }}$ are exponential? Clearly, $\delta=1$ holds, from this work.

Thank you! Questions?

