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The determinant polynomial

❑ Let Xn = [xi,j ]1≤i,j≤n be a n × n matrix of distinct variables xi,j . Let
Sn := {𝜋 | 𝜋 : {1, . . . , n} −→ {1, . . . , n} such that 𝜋 is bijective }. Define

fn := det(Xn) =
∑︁
𝜋∈Sn

sgn(𝜋)
n∏

i=1
xi, 𝜋 (i) .

❑ det is universal, i.e. any polynomial f (x) can be computed as a determinant of a
square matrix whose entries are polynomials of degree ≤ 1.

❑ The minimum dimension of the matrix to compute f , is called the
determinantal complexity dc(f ).

❑ E.g. dc(x1 · · · xn) = n, since

x1 · · · xn = det
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❑ VBP: The class VBP is defined as the set of all sequences of polynomials (fn)n
with polynomially bounded dc(fn).
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Border complexity

❑ Let Γ be any sensible measure. It can be size, dc and so on.

❑ For any Γ, we can define the border complexity measure Γ via:
Γ(h) is the smallest n such that h(x) can be approximated arbitrarily closely by
polynomials h𝜖 (x) with Γ(h𝜖 ) ≤ n. In other words,

lim
𝜖→0

h𝜖 = h (coefficient-wise) .

❑ We will work with ‘approximative circuits’.
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Approximative circuits

x1 x2 x3 1

+ + + + + +

× × ×

+

1
𝜖3

𝜖

𝜖3+1

g(x1, . . . , xn, 𝜖) ∈ F(𝜖) [x]

F(𝜖) := {p(𝜖)
q(𝜖) | p, q ∈ F[𝜖], q(𝜖) ≠ 0}
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Algebraic approximation

❑ Suppose, we assume the following:
➢ g(x, 𝜖) ∈ F[x1, . . . , xn, 𝜖], i.e. it is a polynomial of the form

g(x, 𝜖) =

M∑︁
i=0

gi (x1, . . . , xn) · 𝜖 i ,

➢ Can we say anything about the complexity of g0?

❑ Obvious attempt:

➢ Since, g(x, 0) = g0, why not just set 𝜖 = 0?! Setting 𝜖 = 0 may not be
‘legal’ as it could be using 1/𝜖 in the wire. Though it is well-defined!

❑ Summary: g0 is really something non-trivial and being ‘approximated’ by the
circuit since lim𝜖→0 g(x, 𝜖) = g0.
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Algebraic approximation

Algebraic Approximation [Bürgisser 2004]
A polynomial h(x) ∈ F[x] approximative complexity s, if there is a
g(x, 𝜖) ∈ F(𝜖) [x], of size s, over F(𝜖), and a polynomial S(x, 𝜖) ∈ F[𝜖] [x] such that
g(x, 𝜖) = h(x) + 𝜖 · S(x, 𝜖). In other words, lim𝜖→0 g = h.

❑ size(h) ≤ size(h). [h = h + 𝜖 · 0.]

❑ If g has circuit of size s over F(𝜖), then one can assume that the highest degree
of 𝜖 in g can be exponentially large 2s2 [Bürgisser 2004, 2020].

❑ Let us assume that g(x, 𝜖) = ∑M
i=0 gi𝜖

i , where M = 2s2 . Note: g0 = h.

➢ Pick M + 1 many distinct values from F randomly and interpolate;

➢ size(h) ≤ exp(size(h)).

❑ size(h) ≤ size(h) ≤ exp(size(h)).
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Border Waring Rank

Border Waring rank

The border Waring rank WR(h), of a d-form h is defined as the smallest s such that
h = lim𝜖→0

∑
i∈[s] ℓ

d
i , where ℓi ∈ F(𝜖) [x], are homogeneous linear forms.

❑ When ℓi are non-homogeneous, we will write this as h ∈ Σ [s] ∧ Σ.

❑ WR(xd−1y) = 2, since, d · xd−1y + O(𝜖) = (x + 𝜖y)d − xd .
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Lower bounds for border depth-2 circuits

❑ A few known upper bound/lower bound results on depth-2:

➢ Σ [s]Π = Σ [s]Π and ΠΣ = ΠΣ.

➢ detn is irreducible and exp(n)-sparse. So, detn requires exponential-size
border depth-2 circuits!

➢ What about border depth-3 circuits?
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Border depth-3 circuits



Depth-3 circuits

❑ Depth-3 circuits with top fan-in k, are denoted as Σ [k ]ΠΣ.

❑ They compute polynomials (not necessarily homogeneous) of the form∑k
i=1

∏di
j=1 ℓij , where ℓij are linear polynomials (i.e. a0 + a1x1 + . . . + anxn, for

ai ∈ F).

❑ Product fan-in = max di .

❑ How powerful are Σ [k ]ΠΣ circuits, for constant k? Are they universal?

❑ Impossibility result: The Inner Product
polynomial ⟨x, y⟩ = x1y1 + . . . + xk+1yk+1 cannot be written as a Σ [k ]ΠΣ

circuit, regardless of the product fan-in (even allowing exp(n) product fan-in!).

❑ The same holds if we replace by detn.
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Lower bound for Constant fanin depth-3 circuits

❑ detn cannot be computed by a Σ [k ]ΠΣ-circuit, regardless of the product fan-in.

Proof sketch: Let
∑

i∈[k ] Ti = detn, where Ti ∈ ΠΣ, product of linear
polynomials.

➢ Pick ℓ1 from T1 and consider I1 := ⟨ℓ1⟩.

➢ LHS mod I1, becomes
∑

i∈[k−1] T ′
i while detn mod I1 ≠ 0.

➢ Keep repeating and each time include an independent ℓi in the ideal Ii .

➢ At the end, there is some Ik such that RHS has become 0 while LHS is
non-zero (because k << n).

❑ So, Σ [k ]ΠΣ ⊊ VBP!

❑ How about Σ [k ]ΠΣ?
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Power of border depth-3 circuits

❑ Recall: h ∈ Σ [k ]ΠΣ of size s if there exists a polynomial g such that

g(x, 𝜖) = h(x) + 𝜖 · S(x, 𝜖) ,

where g can be computed by a Σ [k ]ΠΣ circuit, over F(𝜖), of size s.

Border depth-3 fan-in 2 circuits are ‘universal’ [Kumar 2020]

Let P be any n-variate degree d polynomial. Then, P ∈ Σ [2]Π [D]Σ, where
D := exp(n, d).
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De-bordering Σ [2]ΠΣ circuits

❑ If h is approximated by a Σ [2]ΠΣ circuit with product fanin, bounded
by poly(n), what’s the exact complexity of h?

Border of polynomial-sized depth-3 top-fanin-2 circuits are ’easy’
[Dutta-Dwivedi-Saxena FOCS 2021].

Σ [2]ΠΣ ⊆ VBP, for polynomial-sized Σ [2]ΠΣ-circuits. In particular, any
polynomial in the border of top-fanin-2 size-s depth-3 circuits, can also be exactly
computed by a linear projection of a poly(s) × poly(s) determinant.

Remark. The result holds if one replaces the top-fanin-2 by arbitrary constant k.
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Lifting classical lower bound in the border

❑ Can we separate Σ [k ]ΠΣ and VBP?
➢ [Limaye-Srinivasan-Tavenas, FOCS 2021] showed that IMMn,d with

d = o(log n) requires n𝜔 (1) -size depth-3 circuits.

➢ Rank-based lower bounds can be lifted in the border!

➢ Since, IMMn,d ∈ VBP, Σ [k ]ΠΣ ≠ VBP.
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Looking for finer lower bounds

❑ Can we show an exponential gap between Σ [k ]ΠΣ and VBP?

❑ Ambitious goal: Can we separate Σ [k ]ΠΣ and Σ [k+1]ΠΣ ?

❑ Note: This is already known (impossibility) in the classical setting!

❑ x1 · y1 + . . . + xk+1 · yk+1 cannot be computed by Σ [k ]ΠΣ circuits!

❑ Catch: x1 · y1 + . . . + xk+1 · yk+1 does not work anymore since,
x1 · y1 + . . . + xk+1 · yk+1 ∈ Σ [2]ΠO (k)Σ!

❑ What does work (if at all!)?
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Our results

[Dutta-Saxena 2022, Preprint]
Fix any constant k ≥ 1. There is an explicit n-variate and < n degree polynomial f
such that f can be computed by a Σ [k+1]ΠΣ circuit of size O(n) such that f requires
2Ω(n) -size Σ [k ]ΠΣ circuits.

❑ Fix k = 2. Define the polynomial Pd := x1 · · · xd + y1 · · · yd + z1 · · · zd , a
degree-d polynomial on n = 3d-variables.

❑ Pd has trivial fanin-3 depth-3 circuit (and hence in border too!).

❑ We will show that Pd requires 2Ω(d) -size Σ [2]ΠΣ circuits.

❑ Kumar’s proof establishes that Pd has a 2O (d) -size Σ [2]ΠΣ circuits, showing
optimality!

❑ Classical is about impossibility while in border, it is about optimality.
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Why k = 2 is hard to analyze?

❑ Non-trivial cancellations for k = 2 make things harder.

❑ E.g., T1 := 𝜖−3 (1+ 𝜖x1 + 𝜖2x2 + 𝜖3x3 + . . .), T2 := 𝜖−3 (1+ 𝜖x1 + 𝜖2x2 + 𝜖3x4 + . . .).
Note, lim𝜖→0 (T1 − T2) = (x3 − x4).

❑ Note x2 ≡ (x − 𝜖M/2 · a) (x + 𝜖M/2 · a) mod 𝜖M , for any a ∈ F.

❑ Moreover,

lim
𝜖→0

1
𝜖M ·

(
x2 − (x − 𝜖M/2 · a) (x + 𝜖M/2 · a)

)
= a2 .

❑ Infinitely many factorizations may give infinitely many limits.
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Non-homogeneity is ‘bad’

❑ Let ℓ1 := 1 + 𝜖x1. What does taking mod ℓ1 in the ‘border’ (𝜖 → 0) mean?
Essentially we are eventually setting x1 = −1/𝜖 (and then 𝜖 → 0)!

❑ In other words, work with I := ⟨ℓ1, 𝜖⟩ = ⟨1⟩!

❑ Lesson: Taking mod blindly fails miserably!

❑ The worst case:
f + 𝜖S = T1 + T2 ,

where Ti has each linear factor of the form 1 + 𝜖ℓ!

18
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Non-homogeneity is all we need to care

❑ Three cases to consider:
➢ Case I: Each T1 and T2 has one linear form ℓi ∈ F(𝜖) [x] as a factor,

➢ Case II (intermediate): T1 has one linear form has factor, (ℓ1) and all
factors in T2 is non-homogeneous (in x),

➢ Case III (all-non-homogeneous): Each Ti has all the factors
non-homogeneous.

❑ For the first case, take I := ⟨ℓ1, ℓ2, 𝜖⟩ (and 1 ∉ I) and show that
x1 · · · xd + y1 · · · yd + z1 · · · zd = Pd mod I ≠ 0,
while RHS ≡ 0 mod I.

❑ For the second case, take I := ⟨ℓ1, 𝜖⟩. Then, RHS mod I = ΠΣ = ΠΣ, while
Pd mod I ∉ ΠΣ.

❑ So, all-non-homogeneous is all we have to care!

❑ For k > 2, we need a technical lemma, but still can be reduced!
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Lower bound for all-non-homogeneous k = 2

❑ T1 + T2 = Pd (x) + 𝜖 · S(x, 𝜖), where Ti ∈ ΠΣ ∈ F(𝜖) [x] have
all-non-homogeneous factors.

❑ Very broad idea: reduce fanin 2 to 1 with a ‘nice’ form.

❑ Apply a scaling map Φ, defined by Φ : xi ↦→ z · xi .

➢ The variable z is the “degree counter”.

❑ We use DiDIL - Divide, Derive, Interpolate with Limit, introduced in
[Dutta-Dwivedi-Saxena, FOCS 2021].

❑ DiDIL shows: If Pd has s-size (comes from product fanin) border depth-3
fanin-2 all-non-homogeneous circuit, then Pd has poly(s) border-waring rank.

❑ Partial-derivative measure shows that WR(Pd ) = 2Ω(d) .

❑ Thus, s ≥ 2Ω(d) !

20



Lower bound for all-non-homogeneous k = 2

❑ T1 + T2 = Pd (x) + 𝜖 · S(x, 𝜖), where Ti ∈ ΠΣ ∈ F(𝜖) [x] have
all-non-homogeneous factors.

❑ Very broad idea: reduce fanin 2 to 1 with a ‘nice’ form.

❑ Apply a scaling map Φ, defined by Φ : xi ↦→ z · xi .

➢ The variable z is the “degree counter”.

❑ We use DiDIL - Divide, Derive, Interpolate with Limit, introduced in
[Dutta-Dwivedi-Saxena, FOCS 2021].

❑ DiDIL shows: If Pd has s-size (comes from product fanin) border depth-3
fanin-2 all-non-homogeneous circuit, then Pd has poly(s) border-waring rank.

❑ Partial-derivative measure shows that WR(Pd ) = 2Ω(d) .

❑ Thus, s ≥ 2Ω(d) !

20



Lower bound for all-non-homogeneous k = 2

❑ T1 + T2 = Pd (x) + 𝜖 · S(x, 𝜖), where Ti ∈ ΠΣ ∈ F(𝜖) [x] have
all-non-homogeneous factors.

❑ Very broad idea: reduce fanin 2 to 1 with a ‘nice’ form.

❑ Apply a scaling map Φ, defined by Φ : xi ↦→ z · xi .

➢ The variable z is the “degree counter”.

❑ We use DiDIL - Divide, Derive, Interpolate with Limit, introduced in
[Dutta-Dwivedi-Saxena, FOCS 2021].

❑ DiDIL shows: If Pd has s-size (comes from product fanin) border depth-3
fanin-2 all-non-homogeneous circuit, then Pd has poly(s) border-waring rank.

❑ Partial-derivative measure shows that WR(Pd ) = 2Ω(d) .

❑ Thus, s ≥ 2Ω(d) !

20



Lower bound for all-non-homogeneous k = 2

❑ T1 + T2 = Pd (x) + 𝜖 · S(x, 𝜖), where Ti ∈ ΠΣ ∈ F(𝜖) [x] have
all-non-homogeneous factors.

❑ Very broad idea: reduce fanin 2 to 1 with a ‘nice’ form.

❑ Apply a scaling map Φ, defined by Φ : xi ↦→ z · xi .

➢ The variable z is the “degree counter”.

❑ We use DiDIL - Divide, Derive, Interpolate with Limit, introduced in
[Dutta-Dwivedi-Saxena, FOCS 2021].

❑ DiDIL shows: If Pd has s-size (comes from product fanin) border depth-3
fanin-2 all-non-homogeneous circuit, then Pd has poly(s) border-waring rank.

❑ Partial-derivative measure shows that WR(Pd ) = 2Ω(d) .

❑ Thus, s ≥ 2Ω(d) !

20



Lower bound for all-non-homogeneous k = 2

❑ T1 + T2 = Pd (x) + 𝜖 · S(x, 𝜖), where Ti ∈ ΠΣ ∈ F(𝜖) [x] have
all-non-homogeneous factors.

❑ Very broad idea: reduce fanin 2 to 1 with a ‘nice’ form.

❑ Apply a scaling map Φ, defined by Φ : xi ↦→ z · xi .

➢ The variable z is the “degree counter”.

❑ We use DiDIL - Divide, Derive, Interpolate with Limit, introduced in
[Dutta-Dwivedi-Saxena, FOCS 2021].

❑ DiDIL shows: If Pd has s-size (comes from product fanin) border depth-3
fanin-2 all-non-homogeneous circuit, then Pd has poly(s) border-waring rank.

❑ Partial-derivative measure shows that WR(Pd ) = 2Ω(d) .

❑ Thus, s ≥ 2Ω(d) !

20



Lower bound for all-non-homogeneous k = 2

❑ T1 + T2 = Pd (x) + 𝜖 · S(x, 𝜖), where Ti ∈ ΠΣ ∈ F(𝜖) [x] have
all-non-homogeneous factors.

❑ Very broad idea: reduce fanin 2 to 1 with a ‘nice’ form.

❑ Apply a scaling map Φ, defined by Φ : xi ↦→ z · xi .

➢ The variable z is the “degree counter”.

❑ We use DiDIL - Divide, Derive, Interpolate with Limit, introduced in
[Dutta-Dwivedi-Saxena, FOCS 2021].

❑ DiDIL shows: If Pd has s-size (comes from product fanin) border depth-3
fanin-2 all-non-homogeneous circuit, then Pd has poly(s) border-waring rank.

❑ Partial-derivative measure shows that WR(Pd ) = 2Ω(d) .

❑ Thus, s ≥ 2Ω(d) !

20



Lower bound for all-non-homogeneous k = 2

❑ T1 + T2 = Pd (x) + 𝜖 · S(x, 𝜖), where Ti ∈ ΠΣ ∈ F(𝜖) [x] have
all-non-homogeneous factors.

❑ Very broad idea: reduce fanin 2 to 1 with a ‘nice’ form.

❑ Apply a scaling map Φ, defined by Φ : xi ↦→ z · xi .

➢ The variable z is the “degree counter”.

❑ We use DiDIL - Divide, Derive, Interpolate with Limit, introduced in
[Dutta-Dwivedi-Saxena, FOCS 2021].

❑ DiDIL shows: If Pd has s-size (comes from product fanin) border depth-3
fanin-2 all-non-homogeneous circuit, then Pd has poly(s) border-waring rank.

❑ Partial-derivative measure shows that WR(Pd ) = 2Ω(d) .

❑ Thus, s ≥ 2Ω(d) !

20



Lower bound for all-non-homogeneous k = 2

❑ T1 + T2 = Pd (x) + 𝜖 · S(x, 𝜖), where Ti ∈ ΠΣ ∈ F(𝜖) [x] have
all-non-homogeneous factors.

❑ Very broad idea: reduce fanin 2 to 1 with a ‘nice’ form.

❑ Apply a scaling map Φ, defined by Φ : xi ↦→ z · xi .

➢ The variable z is the “degree counter”.

❑ We use DiDIL - Divide, Derive, Interpolate with Limit, introduced in
[Dutta-Dwivedi-Saxena, FOCS 2021].

❑ DiDIL shows: If Pd has s-size (comes from product fanin) border depth-3
fanin-2 all-non-homogeneous circuit, then Pd has poly(s) border-waring rank.

❑ Partial-derivative measure shows that WR(Pd ) = 2Ω(d) .

❑ Thus, s ≥ 2Ω(d) !

20



Lower bound for all-non-homogeneous k = 2

❑ T1 + T2 = Pd (x) + 𝜖 · S(x, 𝜖), where Ti ∈ ΠΣ ∈ F(𝜖) [x] have
all-non-homogeneous factors.

❑ Very broad idea: reduce fanin 2 to 1 with a ‘nice’ form.

❑ Apply a scaling map Φ, defined by Φ : xi ↦→ z · xi .

➢ The variable z is the “degree counter”.

❑ We use DiDIL - Divide, Derive, Interpolate with Limit, introduced in
[Dutta-Dwivedi-Saxena, FOCS 2021].

❑ DiDIL shows: If Pd has s-size (comes from product fanin) border depth-3
fanin-2 all-non-homogeneous circuit, then Pd has poly(s) border-waring rank.

❑ Partial-derivative measure shows that WR(Pd ) = 2Ω(d) .

❑ Thus, s ≥ 2Ω(d) !

20



Why direct DiDIL fails

❑ DiDIL works with Φ : xi ↦→ z · xi + 𝛼i , for random 𝛼i .

❑ Shifting is required for non-homogenity for DiDIL to succeed, since
1/(1 − z) mod zd exists but 1/z mod zd does not!

❑ If one blindly does that, we get 𝜕z (Pd/ΠΣ) ≡ (ΠΣ) · (Σ ∧ Σ) mod zd . How to
show lower bound?

❑ For k > 2, lifting the lower bound via interpolation makes it even harder!

❑ Shifting is problematic for showing lower bound!

❑ So, the current proof is about pre-processing (technical lemma, reducing to
all-non-homogeneous) & DiDIL.
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Proof sketch for k = 2



k = 2 lower bound proof: Divide and Derive

❑ Let Φ(Ti ) =: 𝜖ai · T̃i , for i ∈ [2], where ai := val𝜖 (Φ(Ti )).

❑ val𝜖 (·) denotes the highest power of 𝜖 dividing it.

❑ Divide and Derive:

Pd + 𝜖 · S = T1 + T2

=⇒ Φ(Pd ) + 𝜖 · Φ(S) = Φ(T1) +Φ(T2)
=⇒ Φ(Pd )/T̃2 + 𝜖 · Φ(S)/T̃2 = 𝜖a2 + Φ(T1)/T̃2

=⇒ 𝜕z
(
Φ(Pd )/T̃2

)
+ 𝜖 · 𝜕z

(
Φ(S)/T̃2

)
= 𝜕z

(
Φ(T1)/T̃2

)
=: g1 . (1)

❑ lim𝜖→0 g1 = 1/t2 · 𝜕z (Φ(Pd )), where F ∋ t2 := lim𝜖→0 T̃2, because
lim𝜖→0

∏(1 + 𝜖ℓi ) = 1.
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k = 2 proof continued

❑ Target: Compute lim𝜖→0 g1 = 1/t2 · 𝜕z (Φ(Pd )).

❑ Logarithmic derivative: dlogz (h) := 𝜕z (h)/h.

❑ dlog linearizes product: dlog(h1h2) = dlog(h1) + dlog(h2). Note:

𝜕z
(
Φ(T1)/T̃2

)
= Φ(T1)/T̃2 · dlog

(
Φ(T1)/T̃2

)
= (ΠΣ/ΠΣ) · dlog (ΠΣ/ΠΣ)

= ΠΣ/ΠΣ ·
(
±
∑︁

dlog(Σ)
)
.

❑ Here Σ means just a linear polynomial ℓ.
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k = 2 proof continued: Quick recap

❑ Recap: 1/t2 · 𝜕z (Φ(Pd )) = lim𝜖→0 g1 = lim𝜖→0 (ΠΣ/ΠΣ) · (±∑
dlog(Σ)).

❑ deg(Pd ) = d =⇒ degz (Φ(f )) = d =⇒ degz (𝜕z (Φ(Pd ))) = d − 1.

❑ Suffices to compute lim𝜖→0 g1 mod zd .
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❑ deg(Pd ) = d =⇒ degz (Φ(f )) = d =⇒ degz (𝜕z (Φ(Pd ))) = d − 1.

❑ Suffices to compute lim𝜖→0 g1 mod zd .
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k = 2 proof: dlog strikes!

❑ What is dlog(ℓ) for a linear polynomial ℓ = 1 − z · ℓ?

dlog(1 − zℓ) = − ℓ

(1 − z · ℓ)

=

d−1∑︁
j=0

ℓ · (z · ℓ) j mod zd

∈ Σ ∧ Σ .

Thus,

lim
𝜖→0

g1 mod zd ≡ lim
𝜖→0

(ΠΣ/ΠΣ) ·
(∑︁

dlog(Σ)
)

mod zd

≡ lim
𝜖→0

(ΠΣ/ΠΣ) · (Σ ∧ Σ) mod zd

∈ (ΠΣ/ΠΣ) · (Σ ∧ Σ) mod zd .
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Finishing the proof

❑ C · D = C · D. Therefore,

(ΠΣ/ΠΣ) · (Σ ∧ Σ) = (ΠΣ/ΠΣ) · (Σ ∧ Σ)
⊆ Σ ∧ Σ .

❑ The above is because lim𝜖→0
∏(1 + 𝜖ℓ) = 1.

❑ Thus, 1/t2 · 𝜕z (Φ(Pd )) = lim𝜖→0 g1 ∈ Σ ∧ Σ.

❑ Thus, Φ(Pd ) ∈ Σ ∧ Σ =⇒ Pd ∈ Σ ∧ Σ.

26



Finishing the proof

❑ C · D = C · D. Therefore,

(ΠΣ/ΠΣ) · (Σ ∧ Σ) = (ΠΣ/ΠΣ) · (Σ ∧ Σ)
⊆ Σ ∧ Σ .

❑ The above is because lim𝜖→0
∏(1 + 𝜖ℓ) = 1.

❑ Thus, 1/t2 · 𝜕z (Φ(Pd )) = lim𝜖→0 g1 ∈ Σ ∧ Σ.

❑ Thus, Φ(Pd ) ∈ Σ ∧ Σ =⇒ Pd ∈ Σ ∧ Σ.

26



Finishing the proof

❑ C · D = C · D. Therefore,

(ΠΣ/ΠΣ) · (Σ ∧ Σ) = (ΠΣ/ΠΣ) · (Σ ∧ Σ)
⊆ Σ ∧ Σ .

❑ The above is because lim𝜖→0
∏(1 + 𝜖ℓ) = 1.

❑ Thus, 1/t2 · 𝜕z (Φ(Pd )) = lim𝜖→0 g1 ∈ Σ ∧ Σ.

❑ Thus, Φ(Pd ) ∈ Σ ∧ Σ =⇒ Pd ∈ Σ ∧ Σ.

26



Finishing the proof

❑ C · D = C · D. Therefore,

(ΠΣ/ΠΣ) · (Σ ∧ Σ) = (ΠΣ/ΠΣ) · (Σ ∧ Σ)
⊆ Σ ∧ Σ .

❑ The above is because lim𝜖→0
∏(1 + 𝜖ℓ) = 1.

❑ Thus, 1/t2 · 𝜕z (Φ(Pd )) = lim𝜖→0 g1 ∈ Σ ∧ Σ.

❑ Thus, Φ(Pd ) ∈ Σ ∧ Σ =⇒ Pd ∈ Σ ∧ Σ.

26



Finishing the proof

❑ C · D = C · D. Therefore,

(ΠΣ/ΠΣ) · (Σ ∧ Σ) = (ΠΣ/ΠΣ) · (Σ ∧ Σ)
⊆ Σ ∧ Σ .

❑ The above is because lim𝜖→0
∏(1 + 𝜖ℓ) = 1.

❑ Thus, 1/t2 · 𝜕z (Φ(Pd )) = lim𝜖→0 g1 ∈ Σ ∧ Σ.

❑ Thus, Φ(Pd ) ∈ Σ ∧ Σ =⇒ Pd ∈ Σ ∧ Σ.

26



Finishing the proof

❑ C · D = C · D. Therefore,

(ΠΣ/ΠΣ) · (Σ ∧ Σ) = (ΠΣ/ΠΣ) · (Σ ∧ Σ)
⊆ Σ ∧ Σ .

❑ The above is because lim𝜖→0
∏(1 + 𝜖ℓ) = 1.

❑ Thus, 1/t2 · 𝜕z (Φ(Pd )) = lim𝜖→0 g1 ∈ Σ ∧ Σ.

❑ Thus, Φ(Pd ) ∈ Σ ∧ Σ =⇒ Pd ∈ Σ ∧ Σ.

26



Conclusion



Concluding remarks

❑ Can we show exponential lower bound for Σ [o(n) ]ΠΣ-circuits? The current
method gives subexponential lower bound only as long as k = o(log n).

❑ Can we show exponential lower bound for Σ [k ]ΠΣ∧-circuits (i.e. rather special
depth-4)?

❑ Can we extend the hierarchy theorem to bounded (top & bottom fanin) depth-4
circuits? i.e., for a fixed constant 𝛿, is
Σ [1]ΠΣΠ [𝛿 ] ⊊ Σ [2]ΠΣΠ [𝛿 ] ⊊ Σ [3]ΠΣΠ [𝛿 ] · · · , where the respective gaps
are exponential? Clearly, 𝛿 = 1 holds, from this work.

Thank you! Questions?
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