Exponential-gap fanin-hierarchy for border depth-3 circuits

Joint work with Nitin Saxena (IIT Kanpur).

Pranjal Dutta Google Ph.D. Fellow, CMI & Visiting Research Scholar, IIT Kanpur

> 27th January, 2022 GCT 2022 (Online)

- 1. Basic definitions and terminologies
- 2. Border depth-3 circuits
- 3. Hierarchy theorem
- 4. Proof sketch for k = 2
- 5. Conclusion

Basic definitions and terminologies

Size of the circuit = number of nodes + edges

size(*f*) = min size of the circuit computing *f*

□ Let $X_n = [x_{i,j}]_{1 \le i,j \le n}$ be a $n \times n$ matrix of distinct variables $x_{i,j}$. Let $S_n := \{\pi \mid \pi : \{1, ..., n\} \longrightarrow \{1, ..., n\}$ such that π is bijective $\}$. Define

$$f_n := \det(X_n) = \sum_{\pi \in S_n} \operatorname{sgn}(\pi) \prod_{i=1}^n x_{i,\pi(i)}$$
.

□ Let $X_n = [x_{i,j}]_{1 \le i,j \le n}$ be a $n \times n$ matrix of distinct variables $x_{i,j}$. Let $S_n := \{\pi \mid \pi : \{1, ..., n\} \longrightarrow \{1, ..., n\}$ such that π is bijective $\}$. Define

$$f_n := \det(X_n) = \sum_{\pi \in S_n} \operatorname{sgn}(\pi) \prod_{i=1}^n x_{i,\pi(i)} .$$

□ det is *universal*, i.e. any polynomial $f(\mathbf{x})$ can be computed as a determinant of a square matrix whose entries are polynomials of degree ≤ 1 .

□ Let $X_n = [x_{i,j}]_{1 \le i,j \le n}$ be a $n \times n$ matrix of distinct variables $x_{i,j}$. Let $S_n := \{\pi \mid \pi : \{1, ..., n\} \longrightarrow \{1, ..., n\}$ such that π is bijective $\}$. Define

$$f_n := \det(X_n) = \sum_{\pi \in S_n} \operatorname{sgn}(\pi) \prod_{i=1}^n x_{i,\pi(i)} .$$

- □ det is *universal*, i.e. any polynomial $f(\mathbf{x})$ can be computed as a determinant of a square matrix whose entries are polynomials of degree ≤ 1 .
- □ The minimum dimension of the matrix to compute *f*, is called the determinantal complexity dc(*f*).

□ Let $X_n = [x_{i,j}]_{1 \le i,j \le n}$ be a $n \times n$ matrix of distinct variables $x_{i,j}$. Let $S_n := \{\pi \mid \pi : \{1, ..., n\} \longrightarrow \{1, ..., n\}$ such that π is bijective $\}$. Define

$$f_n := \det(X_n) = \sum_{\pi \in S_n} \operatorname{sgn}(\pi) \prod_{i=1}^n x_{i,\pi(i)} .$$

- □ det is *universal*, i.e. any polynomial $f(\mathbf{x})$ can be computed as a determinant of a square matrix whose entries are polynomials of degree ≤ 1 .
- □ The minimum dimension of the matrix to compute *f*, is called the determinantal complexity dc(*f*).
- \Box E.g. dc($x_1 \cdots x_n$) = n, since

$$x_1 \cdots x_n = \det \begin{pmatrix} x_1 & 0 & \dots & 0 \\ 0 & x_2 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & x_n \end{pmatrix}.$$

□ Let $X_n = [x_{i,j}]_{1 \le i,j \le n}$ be a $n \times n$ matrix of distinct variables $x_{i,j}$. Let $S_n := \{\pi \mid \pi : \{1, ..., n\} \longrightarrow \{1, ..., n\}$ such that π is bijective $\}$. Define

$$f_n := \det(X_n) = \sum_{\pi \in S_n} \operatorname{sgn}(\pi) \prod_{i=1}^n x_{i,\pi(i)} .$$

- □ det is *universal*, i.e. any polynomial $f(\mathbf{x})$ can be computed as a determinant of a square matrix whose entries are polynomials of degree ≤ 1 .
- □ The minimum dimension of the matrix to compute *f*, is called the determinantal complexity dc(*f*).
- \Box E.g. dc($x_1 \cdots x_n$) = n, since

$$x_1 \cdots x_n = \det \begin{pmatrix} x_1 & 0 & \dots & 0 \\ 0 & x_2 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & x_n \end{pmatrix}.$$

□ VBP: The class VBP is defined as the set of all sequences of polynomials $(f_n)_n$ with polynomially bounded dc (f_n) .

 \Box Let Γ be any sensible measure. It can be size, dc and so on.

- \Box Let Γ be any sensible measure. It can be size, dc and so on.
- □ For any Γ , we can define the border complexity measure $\overline{\Gamma}$ via: $\overline{\Gamma}(h)$ is the *smallest n* such that $h(\mathbf{x})$ can be approximated arbitrarily closely by polynomials $h_{\epsilon}(\mathbf{x})$ with $\Gamma(h_{\epsilon}) \leq n$.

- \Box Let Γ be any sensible measure. It can be size, dc and so on.
- □ For any Γ , we can define the border complexity measure $\overline{\Gamma}$ via: $\overline{\Gamma}(h)$ is the *smallest n* such that $h(\mathbf{x})$ can be approximated arbitrarily closely by polynomials $h_{\epsilon}(\mathbf{x})$ with $\Gamma(h_{\epsilon}) \leq n$. In other words,

 $\lim_{\epsilon \to 0} h_{\epsilon} = h \text{ (coefficient-wise)}.$

- \Box Let Γ be any sensible measure. It can be size, dc and so on.
- □ For any Γ , we can define the border complexity measure $\overline{\Gamma}$ via: $\overline{\Gamma}(h)$ is the *smallest n* such that $h(\mathbf{x})$ can be approximated arbitrarily closely by polynomials $h_{\epsilon}(\mathbf{x})$ with $\Gamma(h_{\epsilon}) \leq n$. In other words,

 $\lim_{\epsilon \to 0} h_{\epsilon} = h \text{ (coefficient-wise)}.$

□ We will work with *'approximative circuits'*.

Approximative circuits

□ Suppose, we assume the following:

> $g(\mathbf{x}, \epsilon) \in \mathbb{F}[x_1, ..., x_n, \epsilon]$, i.e. it is a polynomial of the form

$$g(\mathbf{x},\epsilon) = \sum_{i=0}^{M} g_i(x_1,\ldots,x_n) \cdot \epsilon^i$$
,

 \Box Suppose, we assume the following:

> $g(\mathbf{x}, \epsilon) \in \mathbb{F}[x_1, ..., x_n, \epsilon]$, i.e. it is a polynomial of the form

$$g(\mathbf{x},\epsilon) = \sum_{i=0}^{M} g_i(x_1,\ldots,x_n) \cdot \epsilon^i$$
,

> Can we say anything about the complexity of g_0 ?

 \Box Suppose, we assume the following:

> $g(\mathbf{x}, \epsilon) \in \mathbb{F}[x_1, ..., x_n, \epsilon]$, i.e. it is a polynomial of the form

$$g(\mathbf{x},\epsilon) = \sum_{i=0}^{M} g_i(x_1,\ldots,x_n) \cdot \epsilon^i$$
,

> Can we say anything about the complexity of g_0 ?

□ Obvious attempt:

> Since, $g(\mathbf{x}, 0) = g_0$, why not just set $\epsilon = 0$?!

□ Suppose, we assume the following:

> $g(\mathbf{x}, \epsilon) \in \mathbb{F}[x_1, ..., x_n, \epsilon]$, i.e. it is a polynomial of the form

$$g(\mathbf{x},\epsilon) = \sum_{i=0}^{M} g_i(x_1,\ldots,x_n) \cdot \epsilon^i$$
,

> Can we say anything about the complexity of g_0 ?

□ Obvious attempt:

> Since, $g(\mathbf{x}, 0) = g_0$, why not just set $\epsilon = 0$?! Setting $\epsilon = 0$ may not be 'legal' as it could be using $1/\epsilon$ in the wire. Though it is well-defined!

□ Suppose, we assume the following:

> $g(\mathbf{x}, \epsilon) \in \mathbb{F}[x_1, ..., x_n, \epsilon]$, i.e. it is a polynomial of the form

$$g(\mathbf{x},\epsilon) = \sum_{i=0}^{M} g_i(x_1,\ldots,x_n) \cdot \epsilon^i$$
,

> Can we say anything about the complexity of g_0 ?

□ Obvious attempt:

> Since, $g(\mathbf{x}, 0) = g_0$, why not just set $\epsilon = 0$?! Setting $\epsilon = 0$ may not be 'legal' as it could be using $1/\epsilon$ in the wire. Though it is well-defined!

□ Summary: g_0 is really something **non-trivial** and being 'approximated' by the circuit since $\lim_{\epsilon \to 0} g(\mathbf{x}, \epsilon) = g_0$.

A polynomial $h(x) \in \mathbb{F}[x]$ approximative complexity s, if there is a $g(x, \epsilon) \in \mathbb{F}(\epsilon)[x]$, of size s, over $\mathbb{F}(\epsilon)$, and a polynomial $S(x, \epsilon) \in \mathbb{F}[\epsilon][x]$ such that $g(x, \epsilon) = h(x) + \epsilon \cdot S(x, \epsilon)$. In other words, $\lim_{\epsilon \to 0} g = h$.

A polynomial $h(x) \in \mathbb{F}[x]$ approximative complexity s, if there is a $g(x, \epsilon) \in \mathbb{F}(\epsilon)[x]$, of size s, over $\mathbb{F}(\epsilon)$, and a polynomial $S(x, \epsilon) \in \mathbb{F}[\epsilon][x]$ such that $g(x, \epsilon) = h(x) + \epsilon \cdot S(x, \epsilon)$. In other words, $\lim_{\epsilon \to 0} g = h$.

 $\Box \ \overline{\text{size}}(h) \leq \text{size}(h).$

A polynomial $h(x) \in \mathbb{F}[x]$ approximative complexity s, if there is a $g(x, \epsilon) \in \mathbb{F}(\epsilon)[x]$, of size s, over $\mathbb{F}(\epsilon)$, and a polynomial $S(x, \epsilon) \in \mathbb{F}[\epsilon][x]$ such that $g(x, \epsilon) = h(x) + \epsilon \cdot S(x, \epsilon)$. In other words, $\lim_{\epsilon \to 0} g = h$.

 $\Box \ \overline{\text{size}}(h) \le \text{size}(h). \ [h = h + \epsilon \cdot 0.]$

A polynomial $h(x) \in \mathbb{F}[x]$ approximative complexity s, if there is a $g(x, \epsilon) \in \mathbb{F}(\epsilon)[x]$, of size s, over $\mathbb{F}(\epsilon)$, and a polynomial $S(x, \epsilon) \in \mathbb{F}[\epsilon][x]$ such that $g(x, \epsilon) = h(x) + \epsilon \cdot S(x, \epsilon)$. In other words, $\lim_{\epsilon \to 0} g = h$.

 $\Box \ \overline{\text{size}}(h) \le \text{size}(h). \ [h = h + \epsilon \cdot 0.]$

□ If *g* has circuit of size *s* over $\mathbb{F}(\epsilon)$, then one can assume that the highest degree of ϵ in *g* can be *exponentially large* 2^{s^2} [Bürgisser 2004, 2020].

A polynomial $h(x) \in \mathbb{F}[x]$ approximative complexity s, if there is a $g(x, \epsilon) \in \mathbb{F}(\epsilon)[x]$, of size s, over $\mathbb{F}(\epsilon)$, and a polynomial $S(x, \epsilon) \in \mathbb{F}[\epsilon][x]$ such that $g(x, \epsilon) = h(x) + \epsilon \cdot S(x, \epsilon)$. In other words, $\lim_{\epsilon \to 0} g = h$.

 $\Box \ \overline{\text{size}}(h) \le \text{size}(h). \ [h = h + \epsilon \cdot 0.]$

□ If *g* has circuit of size *s* over $\mathbb{F}(\epsilon)$, then one can assume that the highest degree of ϵ in *g* can be *exponentially large* 2^{s^2} [Bürgisser 2004, 2020].

 \Box Let us assume that $g(\mathbf{x}, \epsilon) = \sum_{i=0}^{M} g_i \epsilon^i$, where $M = 2^{s^2}$. Note: $g_0 = h$.

A polynomial $h(x) \in \mathbb{F}[x]$ approximative complexity s, if there is a $g(x, \epsilon) \in \mathbb{F}(\epsilon)[x]$, of size s, over $\mathbb{F}(\epsilon)$, and a polynomial $S(x, \epsilon) \in \mathbb{F}[\epsilon][x]$ such that $g(x, \epsilon) = h(x) + \epsilon \cdot S(x, \epsilon)$. In other words, $\lim_{\epsilon \to 0} g = h$.

 $\Box \ \overline{\text{size}}(h) \le \text{size}(h). \ [h = h + \epsilon \cdot 0.]$

□ If *g* has circuit of size *s* over $\mathbb{F}(\epsilon)$, then one can assume that the highest degree of ϵ in *g* can be *exponentially large* 2^{s^2} [Bürgisser 2004, 2020].

 \Box Let us assume that $g(\mathbf{x}, \epsilon) = \sum_{i=0}^{M} g_i \epsilon^i$, where $M = 2^{s^2}$. Note: $g_0 = h$.

> Pick M + 1 many distinct values from \mathbb{F} randomly and interpolate;

A polynomial $h(x) \in \mathbb{F}[x]$ approximative complexity s, if there is a $g(x, \epsilon) \in \mathbb{F}(\epsilon)[x]$, of size s, over $\mathbb{F}(\epsilon)$, and a polynomial $S(x, \epsilon) \in \mathbb{F}[\epsilon][x]$ such that $g(x, \epsilon) = h(x) + \epsilon \cdot S(x, \epsilon)$. In other words, $\lim_{\epsilon \to 0} g = h$.

 $\Box \ \overline{\text{size}}(h) \le \text{size}(h). \ [h = h + \epsilon \cdot 0.]$

□ If *g* has circuit of size *s* over $\mathbb{F}(\epsilon)$, then one can assume that the highest degree of ϵ in *g* can be *exponentially large* 2^{s^2} [Bürgisser 2004, 2020].

 \Box Let us assume that $g(\mathbf{x}, \epsilon) = \sum_{i=0}^{M} g_i \epsilon^i$, where $M = 2^{s^2}$. Note: $g_0 = h$.

> Pick M + 1 many distinct values from \mathbb{F} randomly and interpolate;

 \succ size(*h*) ≤ exp($\overline{\text{size}}(h)$).

A polynomial $h(x) \in \mathbb{F}[x]$ approximative complexity s, if there is a $g(x, \epsilon) \in \mathbb{F}(\epsilon)[x]$, of size s, over $\mathbb{F}(\epsilon)$, and a polynomial $S(x, \epsilon) \in \mathbb{F}[\epsilon][x]$ such that $g(x, \epsilon) = h(x) + \epsilon \cdot S(x, \epsilon)$. In other words, $\lim_{\epsilon \to 0} g = h$.

 $\Box \ \overline{\text{size}}(h) \le \text{size}(h). \ [h = h + \epsilon \cdot 0.]$

□ If *g* has circuit of size *s* over $\mathbb{F}(\epsilon)$, then one can assume that the highest degree of ϵ in *g* can be *exponentially large* 2^{s^2} [Bürgisser 2004, 2020].

 \Box Let us assume that $g(\mathbf{x}, \epsilon) = \sum_{i=0}^{M} g_i \epsilon^i$, where $M = 2^{s^2}$. Note: $g_0 = h$.

> Pick M + 1 many distinct values from \mathbb{F} randomly and interpolate;

➤ size(h) ≤ exp($\overline{size}(h)$).

 $\Box \ \overline{\text{size}}(h) \le \text{size}(h) \le \exp(\overline{\text{size}}(h)).$

Border Waring rank

The border Waring rank $\overline{WR}(h)$, of a *d*-form *h* is defined as the smallest *s* such that $h = \lim_{\epsilon \to 0} \sum_{i \in [s]} \ell_i^d$, where $\ell_i \in \mathbb{F}(\epsilon)[\mathbf{x}]$, are homogeneous linear forms.
Border Waring rank

The border Waring rank $\overline{WR}(h)$, of a *d*-form *h* is defined as the smallest *s* such that $h = \lim_{\epsilon \to 0} \sum_{i \in [s]} \ell_i^d$, where $\ell_i \in \mathbb{F}(\epsilon)[\mathbf{x}]$, are homogeneous linear forms.

□ When ℓ_i are non-homogeneous, we will write this as $h \in \overline{\Sigma^{[s]} \land \Sigma}$.

Border Waring rank

The border Waring rank $\overline{WR}(h)$, of a *d*-form *h* is defined as the smallest *s* such that $h = \lim_{\epsilon \to 0} \sum_{i \in [s]} \ell_i^d$, where $\ell_i \in \mathbb{F}(\epsilon)[\mathbf{x}]$, are homogeneous linear forms.

- □ When ℓ_i are non-homogeneous, we will write this as $h \in \Sigma^{[s]} \land \Sigma$.
- $\square \overline{\mathsf{WR}}(x^{d-1}y) = 2, \text{ since, } d \cdot x^{d-1}y + O(\epsilon) = (x + \epsilon y)^d x^d.$

□ A few known upper bound/lower bound results on depth-2:

 \Box A few known upper bound/lower bound results on depth-2:

 $\succ \overline{\Sigma^{[s]}\Pi} = \Sigma^{[s]}\Pi$ and $\overline{\Pi\Sigma} = \Pi\Sigma$.

- \Box A few known upper bound/lower bound results on depth-2:
 - $\succ \overline{\Sigma^{[s]}\Pi} = \Sigma^{[s]}\Pi$ and $\overline{\Pi\Sigma} = \Pi\Sigma$.
 - det_n is irreducible and exp(n)-sparse. So, det_n requires exponential-size border depth-2 circuits!

- \Box A few known upper bound/lower bound results on depth-2:
 - $\succ \overline{\Sigma^{[s]}\Pi} = \Sigma^{[s]}\Pi$ and $\overline{\Pi\Sigma} = \Pi\Sigma$.
 - det_n is irreducible and exp(n)-sparse. So, det_n requires exponential-size border depth-2 circuits!
 - ➤ What about border depth-3 circuits?

Border depth-3 circuits

 \Box Depth-3 circuits with top fan-in *k*, are denoted as $\Sigma^{[k]}\Pi\Sigma$.

- □ Depth-3 circuits with top fan-in *k*, are denoted as $\Sigma^{[k]}\Pi\Sigma$.
- □ They compute polynomials (*not necessarily* homogeneous) of the form $\sum_{i=1}^{k} \prod_{j=1}^{d_i} \ell_{ij}$, where ℓ_{ij} are linear polynomials (i.e. $a_0 + a_1x_1 + \ldots + a_nx_n$, for $a_i \in \mathbb{F}$).

- □ Depth-3 circuits with top fan-in *k*, are denoted as $\Sigma^{[k]}\Pi\Sigma$.
- □ They compute polynomials (*not necessarily* homogeneous) of the form $\sum_{i=1}^{k} \prod_{j=1}^{d_i} \ell_{ij}$, where ℓ_{ij} are linear polynomials (i.e. $a_0 + a_1x_1 + \ldots + a_nx_n$, for $a_i \in \mathbb{F}$).
- **D** Product fan-in = $\max d_i$.

- □ Depth-3 circuits with top fan-in *k*, are denoted as $\Sigma^{[k]}\Pi\Sigma$.
- □ They compute polynomials (*not necessarily* homogeneous) of the form $\sum_{i=1}^{k} \prod_{j=1}^{d_i} \ell_{ij}$, where ℓ_{ij} are linear polynomials (i.e. $a_0 + a_1x_1 + \ldots + a_nx_n$, for $a_i \in \mathbb{F}$).
- **D** Product fan-in = $\max d_i$.
- □ How powerful are $\Sigma^{[k]}\Pi\Sigma$ circuits, for constant *k*? Are they *universal*?

- □ Depth-3 circuits with top fan-in *k*, are denoted as $\Sigma^{[k]}\Pi\Sigma$.
- □ They compute polynomials (*not necessarily* homogeneous) of the form $\sum_{i=1}^{k} \prod_{j=1}^{d_i} \ell_{ij}$, where ℓ_{ij} are linear polynomials (i.e. $a_0 + a_1x_1 + \ldots + a_nx_n$, for $a_i \in \mathbb{F}$).
- **D** Product fan-in = $\max d_i$.
- □ How powerful are $\Sigma^{[k]}\Pi\Sigma$ circuits, for constant *k*? Are they *universal*?
- □ Impossibility result: The *Inner Product* polynomial $\langle \mathbf{x}, \mathbf{y} \rangle = x_1 y_1 + \ldots + x_{k+1} y_{k+1}$ cannot be written as a $\Sigma^{[k]} \Pi \Sigma$ circuit, *regardless* of the product fan-in (even allowing exp(*n*) product fan-in!).

- □ Depth-3 circuits with top fan-in *k*, are denoted as $\Sigma^{[k]}\Pi\Sigma$.
- □ They compute polynomials (*not necessarily* homogeneous) of the form $\sum_{i=1}^{k} \prod_{j=1}^{d_i} \ell_{ij}$, where ℓ_{ij} are linear polynomials (i.e. $a_0 + a_1x_1 + \ldots + a_nx_n$, for $a_i \in \mathbb{F}$).
- **D** Product fan-in = $\max d_i$.
- □ How powerful are $\Sigma^{[k]}\Pi\Sigma$ circuits, for constant *k*? Are they *universal*?
- □ Impossibility result: The *Inner Product* polynomial $\langle \mathbf{x}, \mathbf{y} \rangle = x_1y_1 + \ldots + x_{k+1}y_{k+1}$ cannot be written as a $\Sigma^{[k]}\Pi\Sigma$ circuit, *regardless* of the product fan-in (even allowing exp(*n*) product fan-in!).
- \Box The same holds if we replace by det_{*n*}.

 \Box det_n *cannot* be computed by a $\Sigma^{[k]}\Pi\Sigma$ -circuit, *regardless* of the product fan-in.

□ det_n *cannot* be computed by a $\Sigma^{[k]}\Pi\Sigma$ -circuit, *regardless* of the product fan-in. Proof sketch: Let $\sum_{i \in [k]} T_i = \det_n$, where $T_i \in \Pi\Sigma$, product of linear polynomials.

- □ det_n *cannot* be computed by a $\Sigma^{[k]}\Pi\Sigma$ -circuit, *regardless* of the product fan-in. Proof sketch: Let $\sum_{i \in [k]} T_i = \det_n$, where $T_i \in \Pi\Sigma$, product of linear polynomials.
 - ▷ Pick ℓ_1 from T_1 and consider $I_1 := \langle \ell_1 \rangle$.

- □ det_n *cannot* be computed by a $\Sigma^{[k]}\Pi\Sigma$ -circuit, *regardless* of the product fan-in. Proof sketch: Let $\sum_{i \in [k]} T_i = \det_n$, where $T_i \in \Pi\Sigma$, product of linear polynomials.
 - \succ Pick ℓ_1 from T_1 and consider $I_1 := \langle \ell_1 \rangle$.
 - > LHS mod I_1 , becomes $\sum_{i \in [k-1]} T'_i$ while det_n mod $I_1 \neq 0$.

- □ det_n *cannot* be computed by a $\Sigma^{[k]}\Pi\Sigma$ -circuit, *regardless* of the product fan-in. Proof sketch: Let $\sum_{i \in [k]} T_i = \det_n$, where $T_i \in \Pi\Sigma$, product of linear polynomials.
 - ▷ Pick ℓ_1 from T_1 and consider $I_1 := \langle \ell_1 \rangle$.
 - > LHS mod I_1 , becomes $\sum_{i \in [k-1]} T'_i$ while det_n mod $I_1 \neq 0$.
 - > Keep repeating and each time include an independent ℓ_i in the ideal I_i .

- □ det_n *cannot* be computed by a $\Sigma^{[k]}\Pi\Sigma$ -circuit, *regardless* of the product fan-in. Proof sketch: Let $\sum_{i \in [k]} T_i = \det_n$, where $T_i \in \Pi\Sigma$, product of linear polynomials.
 - > Pick ℓ_1 from T_1 and consider $I_1 := \langle \ell_1 \rangle$.
 - > LHS mod \mathcal{I}_1 , becomes $\sum_{i \in [k-1]} T'_i$ while det_n mod $\mathcal{I}_1 \neq 0$.
 - > Keep repeating and each time include an independent ℓ_i in the ideal I_i .
 - At the end, there is some I_k such that RHS has become 0 while LHS is non-zero (because k << n).</p>

- □ det_n *cannot* be computed by a $\Sigma^{[k]}\Pi\Sigma$ -circuit, *regardless* of the product fan-in. Proof sketch: Let $\sum_{i \in [k]} T_i = \det_n$, where $T_i \in \Pi\Sigma$, product of linear polynomials.
 - \succ Pick ℓ_1 from T_1 and consider $I_1 := \langle \ell_1 \rangle$.
 - > LHS mod \mathcal{I}_1 , becomes $\sum_{i \in [k-1]} T'_i$ while det_n mod $\mathcal{I}_1 \neq 0$.
 - > Keep repeating and each time include an independent ℓ_i in the ideal I_i .
 - At the end, there is some I_k such that RHS has become 0 while LHS is non-zero (because k << n).</p>

 $\Box \text{ So, } \Sigma^{[k]} \Pi \Sigma \subsetneq \mathsf{VBP!}$

- □ det_n *cannot* be computed by a $\Sigma^{[k]}\Pi\Sigma$ -circuit, *regardless* of the product fan-in. Proof sketch: Let $\sum_{i \in [k]} T_i = \det_n$, where $T_i \in \Pi\Sigma$, product of linear polynomials.
 - > Pick ℓ_1 from T_1 and consider $I_1 := \langle \ell_1 \rangle$.
 - > LHS mod I_1 , becomes $\sum_{i \in [k-1]} T'_i$ while det_n mod $I_1 \neq 0$.
 - > Keep repeating and each time include an independent ℓ_i in the ideal I_i .
 - At the end, there is some I_k such that RHS has become 0 while LHS is non-zero (because k << n).</p>

□ So, $\Sigma^{[k]}\Pi\Sigma \subsetneq \mathsf{VBP}!$

 \Box How about $\overline{\Sigma^{[k]}\Pi\Sigma}$?

Power of border depth-3 circuits

 $g(\boldsymbol{x}, \boldsymbol{\epsilon}) = h(\boldsymbol{x}) + \boldsymbol{\epsilon} \cdot S(\boldsymbol{x}, \boldsymbol{\epsilon}) \; ,$

 $g(\mathbf{x},\epsilon) = h(\mathbf{x}) + \epsilon \cdot S(\mathbf{x},\epsilon) ,$

where *g* can be computed by a $\Sigma^{[k]}\Pi\Sigma$ circuit, over $\mathbb{F}(\epsilon)$, of size *s*.

 $g(\boldsymbol{x},\epsilon) = h(\boldsymbol{x}) + \epsilon \cdot S(\boldsymbol{x},\epsilon) ,$

where g can be computed by a $\Sigma^{[k]}\Pi\Sigma$ circuit, over $\mathbb{F}(\epsilon)$, of size s.

Border depth-3 fan-in 2 circuits are 'universal' [Kumar 2020]

Let *P* be any *n*-variate degree *d* polynomial. Then, $P \in \overline{\Sigma^{[2]}\Pi^{[D]}\Sigma}$, where $D := \exp(n, d)$.

De-bordering $\overline{\Sigma^{[2]}\Pi\Sigma}$ circuits

□ If *h* is approximated by a $\Sigma^{[2]}\Pi\Sigma$ circuit with product fanin, bounded by poly(*n*), what's the *exact* complexity of *h*?

□ If *h* is approximated by a $\Sigma^{[2]}\Pi\Sigma$ circuit with product fanin, bounded by poly(*n*), what's the *exact* complexity of *h*?

Border of polynomial-sized depth-3 top-fanin-2 circuits are 'easy' [Dutta-Dwivedi-Saxena FOCS 2021].

 $\Sigma^{[2]}\Pi\Sigma \subseteq VBP$, for polynomial-sized $\Sigma^{[2]}\Pi\Sigma$ -circuits. In particular, any polynomial in the border of top-fanin-2 size-*s* depth-3 circuits, can also be exactly computed by a linear projection of a poly(*s*) × poly(*s*) determinant.

□ If *h* is approximated by a $\Sigma^{[2]}\Pi\Sigma$ circuit with product fanin, bounded by poly(*n*), what's the *exact* complexity of *h*?

Border of polynomial-sized depth-3 top-fanin-2 circuits are 'easy' [Dutta-Dwivedi-Saxena FOCS 2021].

 $\Sigma^{[2]}\Pi\Sigma \subseteq VBP$, for polynomial-sized $\Sigma^{[2]}\Pi\Sigma$ -circuits. In particular, any polynomial in the border of top-fanin-2 size-*s* depth-3 circuits, can also be exactly computed by a linear projection of a poly(*s*) × poly(*s*) determinant.

Remark. The result holds if one replaces the top-fanin-2 by arbitrary constant *k*.

 \Box Can we separate $\overline{\Sigma^{[k]}\Pi\Sigma}$ and VBP?

- \Box Can we separate $\Sigma^{[k]}\Pi\Sigma$ and VBP?
 - > [Limaye-Srinivasan-Tavenas, FOCS 2021] showed that $IMM_{n,d}$ with $d = o(\log n)$ requires $n^{\omega(1)}$ -size depth-3 circuits.

- \Box Can we separate $\Sigma^{[k]}\Pi\Sigma$ and VBP?
 - > [Limaye-Srinivasan-Tavenas, FOCS 2021] showed that $\mathsf{IMM}_{n,d}$ with $d = o(\log n)$ requires $n^{\omega(1)}$ -size depth-3 circuits.
 - Rank-based lower bounds can be lifted in the border!
- \Box Can we separate $\overline{\Sigma^{[k]}\Pi\Sigma}$ and VBP?
 - > [Limaye-Srinivasan-Tavenas, FOCS 2021] showed that $IMM_{n,d}$ with $d = o(\log n)$ requires $n^{\omega(1)}$ -size depth-3 circuits.
 - Rank-based lower bounds can be lifted in the border!
 - ➤ Since, $\mathsf{IMM}_{n,d} \in \mathsf{VBP}, \overline{\Sigma^{[k]}\Pi\Sigma} \neq \mathsf{VBP}.$

Looking for finer lower bounds

 \Box Can we show an *exponential* gap between $\overline{\Sigma^{[k]}\Pi\Sigma}$ and VBP?

- \Box Can we show an *exponential* gap between $\Sigma^{[k]}\Pi\Sigma$ and VBP?
- □ Ambitious goal: Can we separate $\overline{\Sigma^{[k]}\Pi\Sigma}$ and $\overline{\Sigma^{[k+1]}\Pi\Sigma}$?

- \Box Can we show an *exponential* gap between $\Sigma^{[k]}\Pi\Sigma$ and VBP?
- □ Ambitious goal: Can we separate $\overline{\Sigma^{[k]}\Pi\Sigma}$ and $\overline{\Sigma^{[k+1]}\Pi\Sigma}$?
- □ Note: This is already known (impossibility) in the classical setting!

- \Box Can we show an *exponential* gap between $\Sigma^{[k]}\Pi\Sigma$ and VBP?
- \Box Ambitious goal: Can we separate $\overline{\Sigma^{[k]}\Pi\Sigma}$ and $\overline{\Sigma^{[k+1]}\Pi\Sigma}$?
- □ Note: This is already known (impossibility) in the classical setting!
- $\Box x_1 \cdot y_1 + \ldots + x_{k+1} \cdot y_{k+1}$ cannot be computed by $\Sigma^{[k]} \Pi \Sigma$ circuits!

- \Box Can we show an *exponential* gap between $\Sigma^{[k]}\Pi\Sigma$ and VBP?
- \Box Ambitious goal: Can we separate $\overline{\Sigma^{[k]}\Pi\Sigma}$ and $\overline{\Sigma^{[k+1]}\Pi\Sigma}$?
- □ Note: This is already known (impossibility) in the classical setting!

 $\Box x_1 \cdot y_1 + \ldots + x_{k+1} \cdot y_{k+1}$ cannot be computed by $\Sigma^{[k]} \Pi \Sigma$ circuits!

□ Catch: $x_1 \cdot y_1 + \ldots + x_{k+1} \cdot \underbrace{y_{k+1} \text{ does not work anymore since,}}_{x_1 \cdot y_1 + \ldots + x_{k+1} \cdot y_{k+1} \in \Sigma^{[2]} \Pi^{O(k)} \Sigma!$

- \Box Can we show an *exponential* gap between $\Sigma^{[k]}\Pi\Sigma$ and VBP?
- □ Ambitious goal: Can we separate $\overline{\Sigma^{[k]}\Pi\Sigma}$ and $\overline{\Sigma^{[k+1]}\Pi\Sigma}$?
- □ Note: This is already known (impossibility) in the classical setting!
- $\Box x_1 \cdot y_1 + \ldots + x_{k+1} \cdot y_{k+1}$ cannot be computed by $\Sigma^{[k]} \Pi \Sigma$ circuits!
- □ Catch: $x_1 \cdot y_1 + \ldots + x_{k+1} \cdot \underbrace{y_{k+1} \text{ does not work anymore since,}}_{x_1 \cdot y_1 + \ldots + x_{k+1} \cdot y_{k+1} \in \Sigma^{[2]} \Pi^{O(k)} \Sigma!$
- □ What does work (if at all!)?

Hierarchy theorem

Our results

Fix any constant $k \ge 1$. There is an explicit *n*-variate and < n degree polynomial *f* such that *f* can be computed by a $\overline{\Sigma^{[k+1]}\Pi\Sigma}$ circuit of size O(n) such that *f* requires $2^{\Omega(n)}$ -size $\overline{\Sigma^{[k]}\Pi\Sigma}$ circuits.

□ Fix k = 2. Define the polynomial $P_d := x_1 \cdots x_d + y_1 \cdots y_d + z_1 \cdots z_d$, a degree-*d* polynomial on n = 3d-variables.

- □ Fix k = 2. Define the polynomial $P_d := x_1 \cdots x_d + y_1 \cdots y_d + z_1 \cdots z_d$, a degree-*d* polynomial on n = 3d-variables.
- \square *P*_d has trivial fanin-3 depth-3 circuit (and hence in border too!).

- □ Fix k = 2. Define the polynomial $P_d := x_1 \cdots x_d + y_1 \cdots y_d + z_1 \cdots z_d$, a degree-*d* polynomial on n = 3d-variables.
- \square *P*_d has trivial fanin-3 depth-3 circuit (and hence in border too!).
- \Box We will show that P_d requires $2^{\Omega(d)}$ -size $\overline{\Sigma^{[2]}\Pi\Sigma}$ circuits.

- □ Fix k = 2. Define the polynomial $P_d := x_1 \cdots x_d + y_1 \cdots y_d + z_1 \cdots z_d$, a degree-*d* polynomial on n = 3d-variables.
- \square *P*_d has trivial fanin-3 depth-3 circuit (and hence in border too!).
- \Box We will show that P_d requires $2^{\Omega(d)}$ -size $\Sigma^{[2]}\Pi\Sigma$ circuits.
- □ Kumar's proof establishes that P_d has a $2^{O(d)}$ -size $\Sigma^{[2]}\Pi\Sigma$ circuits, showing *optimality*!

- □ Fix k = 2. Define the polynomial $P_d := x_1 \cdots x_d + y_1 \cdots y_d + z_1 \cdots z_d$, a degree-*d* polynomial on n = 3d-variables.
- \square *P*_d has trivial fanin-3 depth-3 circuit (and hence in border too!).
- \Box We will show that P_d requires $2^{\Omega(d)}$ -size $\Sigma^{[2]}\Pi\Sigma$ circuits.
- □ Kumar's proof establishes that P_d has a $2^{O(d)}$ -size $\Sigma^{[2]}\Pi\Sigma$ circuits, showing *optimality*!
- □ Classical is about *impossibility* while in border, it is about *optimality*.

Why k = 2 is hard to analyze?

□ Non-trivial cancellations for k = 2 make things harder.

 \Box Non-trivial cancellations for k = 2 make things harder.

 $\square \text{ E.g., } T_1 := \epsilon^{-3}(1+\epsilon x_1+\epsilon^2 x_2+\epsilon^3 x_3+\ldots), T_2 := \epsilon^{-3}(1+\epsilon x_1+\epsilon^2 x_2+\epsilon^3 x_4+\ldots).$

- \Box Non-trivial cancellations for k = 2 make things harder.
- $\Box \text{ E.g., } T_1 := \epsilon^{-3}(1 + \epsilon x_1 + \epsilon^2 x_2 + \epsilon^3 x_3 + \ldots), T_2 := \epsilon^{-3}(1 + \epsilon x_1 + \epsilon^2 x_2 + \epsilon^3 x_4 + \ldots).$ Note, $\lim_{\epsilon \to 0} (T_1 - T_2) = (x_3 - x_4).$

- \Box Non-trivial cancellations for k = 2 make things harder.
- □ E.g., $T_1 := \epsilon^{-3}(1 + \epsilon x_1 + \epsilon^2 x_2 + \epsilon^3 x_3 + ...), T_2 := \epsilon^{-3}(1 + \epsilon x_1 + \epsilon^2 x_2 + \epsilon^3 x_4 + ...).$ Note, $\lim_{\epsilon \to 0} (T_1 - T_2) = (x_3 - x_4).$

□ Note $x^2 \equiv (x - \epsilon^{M/2} \cdot a)(x + \epsilon^{M/2} \cdot a) \mod \epsilon^M$, for any $a \in \mathbb{F}$.

- \Box Non-trivial cancellations for k = 2 make things harder.
- □ E.g., $T_1 := \epsilon^{-3}(1 + \epsilon x_1 + \epsilon^2 x_2 + \epsilon^3 x_3 + ...), T_2 := \epsilon^{-3}(1 + \epsilon x_1 + \epsilon^2 x_2 + \epsilon^3 x_4 + ...).$ Note, $\lim_{\epsilon \to 0} (T_1 - T_2) = (x_3 - x_4).$
- $\Box \text{ Note } x^2 \equiv (x \epsilon^{M/2} \cdot a)(x + \epsilon^{M/2} \cdot a) \mod \epsilon^M, \text{ for any } a \in \mathbb{F}.$

□ Moreover,

$$\lim_{\epsilon \to 0} \frac{1}{\epsilon^M} \cdot \left(x^2 - (x - \epsilon^{M/2} \cdot a)(x + \epsilon^{M/2} \cdot a) \right) = a^2$$

 \Box Non-trivial cancellations for k = 2 make things harder.

□ E.g., $T_1 := \epsilon^{-3}(1 + \epsilon x_1 + \epsilon^2 x_2 + \epsilon^3 x_3 + ...), T_2 := \epsilon^{-3}(1 + \epsilon x_1 + \epsilon^2 x_2 + \epsilon^3 x_4 + ...).$ Note, $\lim_{\epsilon \to 0} (T_1 - T_2) = (x_3 - x_4).$

 $\Box \text{ Note } x^2 \equiv (x - \epsilon^{M/2} \cdot a)(x + \epsilon^{M/2} \cdot a) \mod \epsilon^M, \text{ for any } a \in \mathbb{F}.$

□ Moreover,

$$\lim_{\epsilon \to 0} \frac{1}{\epsilon^M} \cdot \left(x^2 - (x - \epsilon^{M/2} \cdot a)(x + \epsilon^{M/2} \cdot a) \right) = a^2$$

□ *Infinitely* many factorizations may give *infinitely* many limits.

Non-homogeneity is 'bad'

□ Let $\ell_1 := 1 + \epsilon x_1$. What does taking mod ℓ_1 in the 'border' ($\epsilon \to 0$) mean? Essentially we are eventually setting $x_1 = -1/\epsilon$ (and then $\epsilon \to 0$)!

- □ Let $\ell_1 := 1 + \epsilon x_1$. What does taking mod ℓ_1 in the 'border' ($\epsilon \to 0$) mean? Essentially we are eventually setting $x_1 = -1/\epsilon$ (and then $\epsilon \to 0$)!
- □ In other words, work with $I := \langle \ell_1, \epsilon \rangle = \langle 1 \rangle$!

- □ Let $\ell_1 := 1 + \epsilon x_1$. What does taking mod ℓ_1 in the 'border' ($\epsilon \to 0$) mean? Essentially we are eventually setting $x_1 = -1/\epsilon$ (and then $\epsilon \to 0$)!
- □ In other words, work with $I := \langle \ell_1, \epsilon \rangle = \langle 1 \rangle$!
- □ Lesson: Taking mod blindly fails *miserably*!

- □ Let $\ell_1 := 1 + \epsilon x_1$. What does taking mod ℓ_1 in the 'border' ($\epsilon \to 0$) mean? Essentially we are eventually setting $x_1 = -1/\epsilon$ (and then $\epsilon \to 0$)!
- □ In other words, work with $I := \langle \ell_1, \epsilon \rangle = \langle 1 \rangle$!

□ Lesson: Taking mod blindly fails *miserably*!

 \Box The worst case:

 $f + \epsilon S = T_1 + T_2,$

where T_i has each linear factor of the form $1 + \epsilon \ell!$

□ Three cases to consider:

≻ Case I: Each T_1 and T_2 has one linear form $\ell_i \in \mathbb{F}(\epsilon)[\mathbf{x}]$ as a factor,

- □ Three cases to consider:
 - ≻ Case I: Each T_1 and T_2 has one linear form $\ell_i \in \mathbb{F}(\epsilon)[\mathbf{x}]$ as a factor,
 - > Case II (intermediate): T_1 has one linear form has factor, (ℓ_1) and all factors in T_2 is non-homogeneous (in **x**),

- □ Three cases to consider:
 - ≻ Case I: Each T_1 and T_2 has one linear form $\ell_i \in \mathbb{F}(\epsilon)[\mathbf{x}]$ as a factor,
 - > Case II (intermediate): T_1 has one linear form has factor, (ℓ_1) and all factors in T_2 is non-homogeneous (in **x**),
 - Case III (all-non-homogeneous): Each T_i has all the factors non-homogeneous.

- □ Three cases to consider:
 - ≻ Case I: Each T_1 and T_2 has one linear form $\ell_i \in \mathbb{F}(\epsilon)[\mathbf{x}]$ as a factor,
 - > Case II (intermediate): T_1 has one linear form has factor, (ℓ_1) and all factors in T_2 is non-homogeneous (in **x**),
 - Case III (all-non-homogeneous): Each T_i has all the factors non-homogeneous.
- □ For the first case, take $I := \langle \ell_1, \ell_2, \epsilon \rangle$ (and $1 \notin I$) and show that $x_1 \cdots x_d + y_1 \cdots y_d + z_1 \cdots z_d = P_d \mod I \neq 0$, while RHS $\equiv 0 \mod I$.

- □ Three cases to consider:
 - ≻ Case I: Each T_1 and T_2 has one linear form $\ell_i \in \mathbb{F}(\epsilon)[\mathbf{x}]$ as a factor,
 - > Case II (intermediate): T_1 has one linear form has factor, (ℓ_1) and all factors in T_2 is non-homogeneous (in **x**),
 - Case III (all-non-homogeneous): Each T_i has all the factors non-homogeneous.
- □ For the first case, take $I := \langle \ell_1, \ell_2, \epsilon \rangle$ (and $1 \notin I$) and show that $x_1 \cdots x_d + y_1 \cdots y_d + z_1 \cdots z_d = P_d \mod I \neq 0$, while RHS $\equiv 0 \mod I$.
- □ For the second case, take $I := \langle \ell_1, \epsilon \rangle$. Then, RHS mod $I = \overline{\Pi \Sigma} = \Pi \Sigma$, while $P_d \mod I \notin \Pi \Sigma$.

- □ Three cases to consider:
 - ≻ Case I: Each T_1 and T_2 has one linear form $\ell_i \in \mathbb{F}(\epsilon)[\mathbf{x}]$ as a factor,
 - > Case II (intermediate): T_1 has one linear form has factor, (ℓ_1) and all factors in T_2 is non-homogeneous (in **x**),
 - Case III (all-non-homogeneous): Each *T_i* has all the factors non-homogeneous.
- □ For the first case, take $I := \langle \ell_1, \ell_2, \epsilon \rangle$ (and $1 \notin I$) and show that $x_1 \cdots x_d + y_1 \cdots y_d + z_1 \cdots z_d = P_d \mod I \neq 0$, while RHS $\equiv 0 \mod I$.
- □ For the second case, take $I := \langle \ell_1, \epsilon \rangle$. Then, RHS mod $I = \overline{\Pi \Sigma} = \Pi \Sigma$, while $P_d \mod I \notin \Pi \Sigma$.
- □ So, all-non-homogeneous is all we have to care!

- □ Three cases to consider:
 - ≻ Case I: Each T_1 and T_2 has one linear form $\ell_i \in \mathbb{F}(\epsilon)[\mathbf{x}]$ as a factor,
 - > Case II (intermediate): T_1 has one linear form has factor, (ℓ_1) and all factors in T_2 is non-homogeneous (in **x**),
 - Case III (all-non-homogeneous): Each T_i has all the factors non-homogeneous.
- □ For the first case, take $I := \langle \ell_1, \ell_2, \epsilon \rangle$ (and $1 \notin I$) and show that $x_1 \cdots x_d + y_1 \cdots y_d + z_1 \cdots z_d = P_d \mod I \neq 0$, while RHS $\equiv 0 \mod I$.
- □ For the second case, take $I := \langle \ell_1, \epsilon \rangle$. Then, RHS mod $I = \overline{\Pi \Sigma} = \Pi \Sigma$, while $P_d \mod I \notin \Pi \Sigma$.
- □ So, all-non-homogeneous is all we have to care!
- \Box For k > 2, we need a technical lemma, but still can be reduced!
$\Box T_1 + T_2 = P_d(\mathbf{x}) + \epsilon \cdot S(\mathbf{x}, \epsilon), \text{ where } T_i \in \Pi \Sigma \in \mathbb{F}(\epsilon)[\mathbf{x}] \text{ have }$

all-non-homogeneous factors.

Lower bound for all-non-homogeneous k = 2

- □ $T_1 + T_2 = P_d(\mathbf{x}) + \epsilon \cdot S(\mathbf{x}, \epsilon)$, where $T_i \in \Pi \Sigma \in \mathbb{F}(\epsilon)[\mathbf{x}]$ have all-non-homogeneous factors.
- □ Very broad idea: reduce fanin 2 to 1 with a 'nice' form.

- □ $T_1 + T_2 = P_d(\mathbf{x}) + \epsilon \cdot S(\mathbf{x}, \epsilon)$, where $T_i \in \Pi \Sigma \in \mathbb{F}(\epsilon)[\mathbf{x}]$ have all-non-homogeneous factors.
- □ Very broad idea: reduce fanin 2 to 1 with a 'nice' form.
- \Box Apply a scaling map Φ , defined by $\Phi : x_i \mapsto z \cdot x_i$.

- $\Box T_1 + T_2 = P_d(\mathbf{x}) + \epsilon \cdot S(\mathbf{x}, \epsilon), \text{ where } T_i \in \Pi \Sigma \in \mathbb{F}(\epsilon)[\mathbf{x}] \text{ have all-non-homogeneous factors.}$
- $\hfill\square$ Very broad idea: reduce fanin 2 to 1 with a 'nice' form.
- \Box Apply a scaling map Φ , defined by $\Phi : x_i \mapsto z \cdot x_i$.
 - > The variable z is the "degree counter".

- $\Box T_1 + T_2 = P_d(\mathbf{x}) + \epsilon \cdot S(\mathbf{x}, \epsilon), \text{ where } T_i \in \Pi \Sigma \in \mathbb{F}(\epsilon)[\mathbf{x}] \text{ have all-non-homogeneous factors.}$
- □ Very broad idea: reduce fanin 2 to 1 with a 'nice' form.
- \Box Apply a scaling map Φ , defined by $\Phi : x_i \mapsto z \cdot x_i$.
 - > The variable z is the "degree counter".
- □ We use DiDIL Divide, Derive, Interpolate with Limit, introduced in [Dutta-Dwivedi-Saxena, FOCS 2021].

- $\Box T_1 + T_2 = P_d(\mathbf{x}) + \epsilon \cdot S(\mathbf{x}, \epsilon), \text{ where } T_i \in \Pi \Sigma \in \mathbb{F}(\epsilon)[\mathbf{x}] \text{ have all-non-homogeneous factors.}$
- □ Very broad idea: reduce fanin 2 to 1 with a 'nice' form.
- \Box Apply a scaling map Φ , defined by $\Phi : x_i \mapsto z \cdot x_i$.
 - > The variable z is the "degree counter".
- □ We use DiDIL Divide, Derive, Interpolate with Limit, introduced in [Dutta-Dwivedi-Saxena, FOCS 2021].
- □ DiDIL shows: If P_d has *s*-size (comes from product fanin) border depth-3 fanin-2 all-non-homogeneous circuit, then P_d has poly(*s*) border-waring rank.

- $\Box T_1 + T_2 = P_d(\mathbf{x}) + \epsilon \cdot S(\mathbf{x}, \epsilon), \text{ where } T_i \in \Pi \Sigma \in \mathbb{F}(\epsilon)[\mathbf{x}] \text{ have all-non-homogeneous factors.}$
- □ Very broad idea: reduce fanin 2 to 1 with a 'nice' form.
- \Box Apply a scaling map Φ , defined by $\Phi : x_i \mapsto z \cdot x_i$.
 - > The variable z is the "degree counter".
- □ We use DiDIL Divide, Derive, Interpolate with Limit, introduced in [Dutta-Dwivedi-Saxena, FOCS 2021].
- □ DiDIL shows: If P_d has *s*-size (comes from product fanin) border depth-3 fanin-2 all-non-homogeneous circuit, then P_d has poly(*s*) border-waring rank.

 \Box Partial-derivative measure shows that $\overline{\mathsf{WR}}(P_d) = 2^{\Omega(d)}$.

- $\Box T_1 + T_2 = P_d(\mathbf{x}) + \epsilon \cdot S(\mathbf{x}, \epsilon), \text{ where } T_i \in \Pi \Sigma \in \mathbb{F}(\epsilon)[\mathbf{x}] \text{ have all-non-homogeneous factors.}$
- □ Very broad idea: reduce fanin 2 to 1 with a 'nice' form.
- \Box Apply a scaling map Φ , defined by $\Phi : x_i \mapsto z \cdot x_i$.
 - > The variable z is the "degree counter".
- □ We use DiDIL Divide, Derive, Interpolate with Limit, introduced in [Dutta-Dwivedi-Saxena, FOCS 2021].
- □ DiDIL shows: If P_d has *s*-size (comes from product fanin) border depth-3 fanin-2 all-non-homogeneous circuit, then P_d has poly(*s*) border-waring rank.

 \Box Partial-derivative measure shows that $\overline{\mathsf{WR}}(P_d) = 2^{\Omega(d)}$.

 \Box Thus, $s \geq 2^{\Omega(d)}$!

 \Box DiDIL works with $\Phi : x_i \mapsto z \cdot x_i + \alpha_i$, for *random* α_i .

- \Box DiDIL works with $\Phi : x_i \mapsto z \cdot x_i + \alpha_i$, for *random* α_i .
- □ Shifting is required for non-homogenity for DiDIL to succeed, since $1/(1-z) \mod z^d$ exists but $1/z \mod z^d$ does not!

- \Box DiDIL works with $\Phi : x_i \mapsto z \cdot x_i + \alpha_i$, for *random* α_i .
- □ Shifting is required for non-homogenity for DiDIL to succeed, since $1/(1-z) \mod z^d$ exists but $1/z \mod z^d$ does not!
- □ If one blindly does that, we get $\partial_z(P_d/\Pi\Sigma) \equiv (\Pi\Sigma) \cdot (\overline{\Sigma \wedge \Sigma}) \mod z^d$. How to show lower bound?

- \Box DiDIL works with $\Phi : x_i \mapsto z \cdot x_i + \alpha_i$, for *random* α_i .
- □ Shifting is required for non-homogenity for DiDIL to succeed, since $1/(1-z) \mod z^d$ exists but $1/z \mod z^d$ does not!
- □ If one blindly does that, we get $\partial_z(P_d/\Pi\Sigma) \equiv (\Pi\Sigma) \cdot (\overline{\Sigma \wedge \Sigma}) \mod z^d$. How to show lower bound?
- \Box For k > 2, lifting the lower bound via interpolation makes it even harder!

- \Box DiDIL works with $\Phi : x_i \mapsto z \cdot x_i + \alpha_i$, for *random* α_i .
- □ Shifting is required for non-homogenity for DiDIL to succeed, since $1/(1-z) \mod z^d$ exists but $1/z \mod z^d$ does not!
- □ If one blindly does that, we get $\partial_z(P_d/\Pi\Sigma) \equiv (\Pi\Sigma) \cdot (\overline{\Sigma \wedge \Sigma}) \mod z^d$. How to show lower bound?
- \Box For k > 2, lifting the lower bound via interpolation makes it even harder!
- □ Shifting is problematic for showing lower bound!

- \Box DiDIL works with $\Phi : x_i \mapsto z \cdot x_i + \alpha_i$, for *random* α_i .
- □ Shifting is required for non-homogenity for DiDIL to succeed, since $1/(1-z) \mod z^d$ exists but $1/z \mod z^d$ does not!
- □ If one blindly does that, we get $\partial_z(P_d/\Pi\Sigma) \equiv (\Pi\Sigma) \cdot (\overline{\Sigma \wedge \Sigma}) \mod z^d$. How to show lower bound?
- \Box For k > 2, lifting the lower bound via interpolation makes it even harder!
- □ Shifting is problematic for showing lower bound!
- □ So, the current proof is about pre-processing (technical lemma, reducing to all-non-homogeneous) & DiDIL.

Proof sketch for k = 2

 $\Box \text{ Let } \Phi(T_i) =: \epsilon^{a_i} \cdot \tilde{T}_i, \text{ for } i \in [2], \text{ where } a_i := \text{val}_{\epsilon} (\Phi(T_i)).$

 \Box val_{ϵ}(·) denotes the highest power of ϵ dividing it.

 $\Box \text{ Let } \Phi(T_i) =: \epsilon^{a_i} \cdot \tilde{T}_i, \text{ for } i \in [2], \text{ where } a_i := \text{val}_{\epsilon} (\Phi(T_i)).$

 \Box val_{ϵ}(·) denotes the highest power of ϵ dividing it.

Divide and Derive:

 $\Box \text{ Let } \Phi(T_i) =: \epsilon^{a_i} \cdot \tilde{T}_i, \text{ for } i \in [2], \text{ where } a_i := \text{val}_{\epsilon} (\Phi(T_i)).$

 \Box val_{ϵ}(·) denotes the highest power of ϵ dividing it.

Divide and Derive:

$$P_{d} + \epsilon \cdot S = T_{1} + T_{2}$$

$$\implies \Phi(P_{d}) + \epsilon \cdot \Phi(S) = \Phi(T_{1}) + \Phi(T_{2})$$

$$\implies \Phi(P_{d})/\tilde{T}_{2} + \epsilon \cdot \Phi(S)/\tilde{T}_{2} = \epsilon^{a_{2}} + \Phi(T_{1})/\tilde{T}_{2}$$

$$\implies \partial_{z} \left(\Phi(P_{d})/\tilde{T}_{2} \right) + \epsilon \cdot \partial_{z} \left(\Phi(S)/\tilde{T}_{2} \right) = \partial_{z} \left(\Phi(T_{1})/\tilde{T}_{2} \right) =: g_{1} . \quad (1)$$

 $\Box \text{ Let } \Phi(T_i) =: \epsilon^{a_i} \cdot \tilde{T}_i, \text{ for } i \in [2], \text{ where } a_i := \text{val}_{\epsilon} (\Phi(T_i)).$

 \Box val_{ϵ}(·) denotes the highest power of ϵ dividing it.

Divide and Derive:

$$P_{d} + \epsilon \cdot S = T_{1} + T_{2}$$

$$\implies \Phi(P_{d}) + \epsilon \cdot \Phi(S) = \Phi(T_{1}) + \Phi(T_{2})$$

$$\implies \Phi(P_{d})/\tilde{T}_{2} + \epsilon \cdot \Phi(S)/\tilde{T}_{2} = \epsilon^{a_{2}} + \Phi(T_{1})/\tilde{T}_{2}$$

$$\implies \partial_{z} \left(\Phi(P_{d})/\tilde{T}_{2} \right) + \epsilon \cdot \partial_{z} \left(\Phi(S)/\tilde{T}_{2} \right) = \partial_{z} \left(\Phi(T_{1})/\tilde{T}_{2} \right) =: g_{1} . \quad (1)$$

 $\Box \lim_{\epsilon \to 0} g_1 = 1/t_2 \cdot \partial_z(\Phi(P_d)), \text{ where } \mathbb{F} \ni t_2 := \lim_{\epsilon \to 0} \tilde{T}_2, \text{ because } \lim_{\epsilon \to 0} \prod (1 + \epsilon \ell_i) = 1.$

 $\Box \text{ Target: Compute } \lim_{\epsilon \to 0} g_1 = 1/t_2 \cdot \partial_Z(\Phi(P_d)).$

 $\Box \text{ Target: Compute } \lim_{\epsilon \to 0} g_1 = 1/t_2 \cdot \partial_Z(\Phi(P_d)).$

□ Logarithmic derivative: $dlog_z(h) := \partial_z(h)/h$.

- □ Target: Compute $\lim_{\epsilon \to 0} g_1 = 1/t_2 \cdot \partial_z(\Phi(P_d))$.
- □ Logarithmic derivative: $dlog_z(h) := \partial_z(h)/h$.
- $\Box \ \operatorname{dlog} \ \operatorname{linearizes} \ \operatorname{product:} \ \operatorname{dlog}(h_1h_2) = \operatorname{dlog}(h_1) + \operatorname{dlog}(h_2).$

- $\Box \text{ Target: Compute } \lim_{\epsilon \to 0} g_1 = 1/t_2 \cdot \partial_z(\Phi(P_d)).$
- □ Logarithmic derivative: $dlog_z(h) := \partial_z(h)/h$.

□ dlog *linearizes* product: $dlog(h_1h_2) = dlog(h_1) + dlog(h_2)$. Note:

$$\begin{split} \partial_z \left(\Phi(T_1) / \tilde{T}_2 \right) &= \Phi(T_1) / \tilde{T}_2 \cdot \operatorname{dlog} \left(\Phi(T_1) / \tilde{T}_2 \right) \\ &= (\Pi \Sigma / \Pi \Sigma) \cdot \operatorname{dlog} \left(\Pi \Sigma / \Pi \Sigma \right) \\ &= \Pi \Sigma / \Pi \Sigma \cdot \left(\pm \sum \operatorname{dlog}(\Sigma) \right). \end{split}$$

- $\Box \text{ Target: Compute } \lim_{\epsilon \to 0} g_1 = 1/t_2 \cdot \partial_z(\Phi(P_d)).$
- □ Logarithmic derivative: $dlog_z(h) := \partial_z(h)/h$.

□ dlog *linearizes* product: $dlog(h_1h_2) = dlog(h_1) + dlog(h_2)$. Note:

$$\begin{split} \partial_z \left(\Phi(T_1) / \tilde{T}_2 \right) &= \Phi(T_1) / \tilde{T}_2 \cdot \operatorname{dlog} \left(\Phi(T_1) / \tilde{T}_2 \right) \\ &= (\Pi \Sigma / \Pi \Sigma) \cdot \operatorname{dlog} \left(\Pi \Sigma / \Pi \Sigma \right) \\ &= \Pi \Sigma / \Pi \Sigma \cdot \left(\pm \sum \operatorname{dlog}(\Sigma) \right). \end{split}$$

 \Box Here Σ means just a linear polynomial ℓ .

 $\square \operatorname{Recap:} 1/t_2 \cdot \partial_z(\Phi(P_d)) = \lim_{\epsilon \to 0} g_1 = \lim_{\epsilon \to 0} (\Pi \Sigma / \Pi \Sigma) \cdot (\pm \sum \operatorname{dlog}(\Sigma)).$

 $\square \operatorname{Recap:} 1/t_2 \cdot \partial_z(\Phi(P_d)) = \lim_{\epsilon \to 0} g_1 = \lim_{\epsilon \to 0} (\Pi \Sigma / \Pi \Sigma) \cdot (\pm \Sigma \operatorname{dlog}(\Sigma)).$

 $\Box \ \deg(P_d) = d \implies \deg_Z(\Phi(f)) = d \implies \deg_Z(\partial_Z(\Phi(P_d))) = d - 1.$

 $\square \operatorname{Recap:} 1/t_2 \cdot \partial_z(\Phi(P_d)) = \lim_{\epsilon \to 0} g_1 = \lim_{\epsilon \to 0} (\Pi \Sigma / \Pi \Sigma) \cdot (\pm \Sigma \operatorname{dlog}(\Sigma)).$

 $\Box \ \deg(P_d) = d \implies \deg_Z(\Phi(f)) = d \implies \deg_Z(\partial_Z(\Phi(P_d))) = d - 1.$

□ Suffices to compute $\lim_{\epsilon \to 0} g_1 \mod z^d$.

□ What is $dlog(\ell)$ for a linear polynomial $\ell = 1 - z \cdot \ell$?

□ What is $dlog(\ell)$ for a linear polynomial $\ell = 1 - z \cdot \ell$?

$$d\log(1 - z\ell) = -\frac{\ell}{(1 - z \cdot \ell)}$$
$$= \sum_{j=0}^{d-1} \ell \cdot (z \cdot \ell)^j \mod z^d$$
$$\in \Sigma \land \Sigma$$

□ What is $dlog(\ell)$ for a linear polynomial $\ell = 1 - z \cdot \ell$?

$$d\log(1 - z\ell) = -\frac{\ell}{(1 - z \cdot \ell)}$$
$$= \sum_{j=0}^{d-1} \ell \cdot (z \cdot \ell)^j \mod z^d$$
$$\in \Sigma \land \Sigma .$$

Thus,

$$\begin{split} \lim_{\epsilon \to 0} g_1 \mod z^d &\equiv \lim_{\epsilon \to 0} (\Pi \Sigma / \Pi \Sigma) \cdot \left(\sum d \log(\Sigma) \right) \mod z^d \\ &\equiv \lim_{\epsilon \to 0} (\Pi \Sigma / \Pi \Sigma) \cdot (\Sigma \wedge \Sigma) \mod z^d \\ &\in \overline{(\Pi \Sigma / \Pi \Sigma) \cdot (\Sigma \wedge \Sigma)} \mod z^d \,. \end{split}$$
$\Box \ \overline{\mathcal{C} \cdot \mathcal{D}} = \overline{\mathcal{C}} \cdot \overline{\mathcal{D}}.$ Therefore,

 $\Box \ \overline{C \cdot \mathcal{D}} = \overline{C} \cdot \overline{\mathcal{D}}.$ Therefore,

$$\overline{(\Pi\Sigma/\Pi\Sigma) \cdot (\Sigma \wedge \Sigma)} = \overline{(\Pi\Sigma/\Pi\Sigma)} \cdot (\overline{\Sigma \wedge \Sigma})$$
$$\subseteq \overline{\Sigma \wedge \Sigma} .$$

 $\Box \ \overline{C \cdot D} = \overline{C} \cdot \overline{D}. \text{ Therefore,}$ $\overline{(\Pi \Sigma / \Pi \Sigma) \cdot (\Sigma \wedge \overline{\Sigma})} = \overline{(\Pi \Sigma / \Pi \Sigma)} \cdot (\overline{\Sigma \wedge \overline{\Sigma}})$ $\subseteq \overline{\Sigma \wedge \overline{\Sigma}}.$

□ The above is because $\lim_{\epsilon \to 0} \prod (1 + \epsilon \ell) = 1$.

 $\Box \ \overline{C \cdot D} = \overline{C} \cdot \overline{D}. \text{ Therefore,}$ $\overline{(\Pi \Sigma / \Pi \Sigma) \cdot (\Sigma \wedge \overline{\Sigma})} = \ \overline{(\Pi \Sigma / \Pi \Sigma)} \cdot (\overline{\Sigma \wedge \overline{\Sigma}})$ $\subseteq \ \overline{\Sigma \wedge \overline{\Sigma}}.$

□ The above is because $\lim_{\epsilon \to 0} \prod (1 + \epsilon \ell) = 1$.

 $\Box \text{ Thus, } 1/t_2 \cdot \partial_z(\Phi(P_d)) = \lim_{\epsilon \to 0} g_1 \in \overline{\Sigma \wedge \Sigma}.$

 $\Box \ \overline{C \cdot D} = \overline{C} \cdot \overline{D}. \text{ Therefore,}$ $\overline{(\Pi \Sigma / \Pi \Sigma) \cdot (\Sigma \wedge \overline{\Sigma})} = \ \overline{(\Pi \Sigma / \Pi \Sigma)} \cdot (\overline{\Sigma \wedge \overline{\Sigma}})$ $\subseteq \ \overline{\Sigma \wedge \overline{\Sigma}}.$

□ The above is because $\lim_{\epsilon \to 0} \prod (1 + \epsilon \ell) = 1$.

 $\Box \text{ Thus, } 1/t_2 \cdot \partial_z(\Phi(P_d)) = \lim_{\epsilon \to 0} g_1 \in \overline{\Sigma \wedge \Sigma}.$

 $\Box \text{ Thus, } \Phi(P_d) \in \overline{\Sigma \land \Sigma} \implies P_d \in \overline{\Sigma \land \Sigma}.$

Conclusion

□ Can we show exponential lower bound for $\overline{\Sigma^{[o(n)]}\Pi\Sigma}$ -circuits? The current method gives subexponential lower bound only as long as $k = o(\log n)$.

- □ Can we show exponential lower bound for $\overline{\Sigma^{[o(n)]}\Pi\Sigma}$ -circuits? The current method gives subexponential lower bound only as long as $k = o(\log n)$.
- □ Can we show exponential lower bound for $\Sigma^{[k]}\Pi\Sigma\wedge$ -circuits (i.e. rather special depth-4)?

- □ Can we show exponential lower bound for $\Sigma^{[o(n)]}\Pi\Sigma$ -circuits? The current method gives subexponential lower bound only as long as $k = o(\log n)$.
- □ Can we show exponential lower bound for $\Sigma^{[k]}\Pi\Sigma$ ∧-circuits (i.e. rather special depth-4)?
- □ Can we extend the hierarchy theorem to bounded (top & bottom fanin) depth-4 circuits? i.e., for a *fixed* constant δ , is $\Sigma^{[1]}\Pi\Sigma\Pi^{[\delta]} \subseteq \Sigma^{[2]}\Pi\Sigma\Pi^{[\delta]} \subseteq \Sigma^{[3]}\Pi\Sigma\Pi^{[\delta]} \cdots$, where the respective gaps are exponential? Clearly, $\delta = 1$ holds, from this work.

- □ Can we show exponential lower bound for $\Sigma^{[o(n)]}\Pi\Sigma$ -circuits? The current method gives subexponential lower bound only as long as $k = o(\log n)$.
- □ Can we show exponential lower bound for $\Sigma^{[k]}\Pi\Sigma$ ∧-circuits (i.e. rather special depth-4)?
- □ Can we extend the hierarchy theorem to bounded (top & bottom fanin) depth-4 circuits? i.e., for a *fixed* constant δ , is $\overline{\Sigma^{[1]}\Pi\Sigma\Pi^{[\delta]}} \subseteq \overline{\Sigma^{[2]}\Pi\Sigma\Pi^{[\delta]}} \subseteq \Sigma^{[3]}\Pi\Sigma\Pi^{[\delta]}} \cdots$, where the respective gaps are exponential? Clearly, $\delta = 1$ holds, from this work.

Thank you! Questions?