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Group actions: affine vs
projective orbits
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Group actions

G - a linear algebraic group over k = C such as GLn,SLn
G acts linearly on a vector space V via · : G × V → V

(g , v) 7→ g · v

The associated representation: ρ : G → GL(V )

Example: GL1 = k∗ acts on V = k2 via representation

ρ(t) =

[
t 0
0 t−1

]
Induced action on the ring k[V ] = k[x , y ] of polynomials :

t.x = tx t.y = t−1y

The ring k[V ]G of invariants is generated by xy .

k[V ]G = k[xy ] ⊂ k[x , y ]
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Affine orbits

General set-up: ρ : G → GL(V )

Example: ρ(t) =

[
t 0
0 t−1

]

Affine orbits:

Orbit of p: O(p) = {g · p | g ∈ G}
Stabilizer of p: Gp = {g ∈ G | g · p = p}
p is stable if O(p) is closed in V (Zariski topology)
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Projective orbits

General set-up: G acts linearly on V

Induced action of G on P(V ) - the set of lines of V through
origin. For an element p ̸= 0 ∈ V , [p] ∈ P(V )

Projective orbits:

Projective orbit O([p]) = {g · [p]|g ∈ G} ⊆ P(V )
This can be seen as a cone over the affine orbit O(p)
Projective stabilizer of [p]: G[p] = {g ∈ G | g · [p] = [p]}

Gp ⊆ G[p]

The new group elements simply translate p on the line [p]
O([p]) is almost always non-closed! (even when p is stable)
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Example of projective orbits and their closures

Revisit:

ρ(t) =

[
t 0
0 t−1

]
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Lie algebra
actions/representations
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Induced Lie Algebra Actions

The group action induces a Lie algebra action – its infinitesimal
version.

G = the tangent space to G at identity e.
Lie bracket [, ] : G × G → G satisfying Jacobi identity ....

Lie algebra of the group GL(V )
gl(V ) = End(V ) = all linear transformations on V .
The Lie bracket is [X ,Y ] = XY − YX .

ρ : G → GL(V ) induces a Lie algebra representation

dρe : TeG = G → TeGL(V ) = gl(V )

This is simply the derivative of ρ at the identity.

9 / 41



Induced Lie Algebra Actions: A geometric view

The Lie algebra representation ρ′ : G → End(V )

The associated Lie algebra action @ : G × V → V

For a point p and an infinitesimal group element g,

g@p = ρ′(g)p = direction along which g moves point p

g@p is bi-linear; linear both in g and p.

g produces a smooth vector field on V

Non-linear action: Let G act on M - a manifold/variety

Group action · : G ×M → M. Each g ∈ G produces a smooth
vector field (g@m ∈ TmM) on M – in notation: g⇝ Xg.
Let Vec(M) be the set of smooth vector fields on M. This is a
Lie algebra with the natural Lie bracket of vector fields on M
The Lie algebra action ⇝: G → Vec(M) is a Lie algebra
homomorphism

[g1, g2]⇝ [Xg1 ,Xg2 ]
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Example ..

Our linear action · : k∗ × k2 → k2.

ρ(t) =

[
t 0
0 t−1

]
ρ′(1) =

[
1 0
0 −1

]
Note that ρ′ is a linear map k → End(k2)

The vector field at p = (α, β) points in the direction (α,−β).
This is the tangent to the orbit at p.
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Action on forms

GLn acts on Symd(X ) - degree d forms in n variables X
For g = (aij) ∈ GLn, g = (bij) ∈ gln and f ∈ Symd(X )

g .f (x1, . . . , xn) = f (a.x) = f (. . . ,
∑
j

aijxj , . . .)

g@f =
∑
i

∑
j

bijxi
∂f

∂xj

Example: let g =

[
1 1
1 0

]
and f = x2 + xy :

g@f = x ∂f
∂x + x ∂f

∂y + y ∂f
∂x

= x(2x + y) + x(x) + y(2x + y)
= 3x2 + 3xy + y2
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Conjugation action: adjoint representation

GLm acts on Mm - m ×m matrices

GLm × V → V (g , x) 7→ gxg−1

glm × V → V (g, x) 7→ [g , x ] = gx − xg

Example: let g =

[
1 1
1 0

]
and x =

[
0 1
0 0

]

g@x =

[
1 1
1 0

] [
0 1
0 0

]
−
[
0 1
0 0

] [
1 1
1 0

]

=

[
0 1
0 1

]
−
[
1 0
0 0

]

=

[
−1 1
0 1

]
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The Lie algebra

In general, the group G action induces the Lie algebra G action

For p ∈ V , the subspace W = {g@p | g ∈ G} is the tangent
space to the orbit O(p) at p.

Stabilizer Lie subalgebra Gp = {g | g@p = 0} is the Lie
algebra associated to the stabilizer subgroup Gp

The action at p induces the linear map G → V (g 7→ g@p)
with kernel Gp and image - the tangent space to the orbit.
@p : G → V results in the identification G/Gp

∼= TpO(p)

Group actions Lie algebra actions

Global Local
Orbit Tangent-space to the orbit

Stabilizer subgroup Stabilizer Lie subalgebra 2

2determines the connected component of the stabilizer subgroup
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The Key Questions - Orbit Closures

Given p and q in V ,

When is p ∈ O(q)? (affine orbit closure membership)

When is [p] ∈ O([q])? (projective orbit closure membership)

Algebraic complexity theory, GCT settings

Determinant vs Permanent question: projective orbit closure
question (p = padded-permanent and q=determinant)

The p and q of interest in GCT are completely determined by
their stabilizers

The point q=determinant is, in fact, stable for SL-action and
p=permanent is partially-stable...
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Action in neighborhood

Neighorhood questions

Given p, which orbits come arbitrary close to p?

How are stabiliziers of points in the neighborhood of p related
to Gp - the stabilizer of p?

These questions are answered when p is stable
In this case, the stabilizer Gp is reductive

Kempf ..

If p ∈ O(q), there is an an optimal 1-PS λ : k∗ → G which drives q
to O(p), that is, limt→0 λ(t).q ∈ O(p). It also aligns Gq inside Gp.

Luna

Luna’s slice theorem describes a tubular neighborhood of the entire
orbit O(p). If q is in this neighborhood, a conjugate of Gq is a
subgroup of Gp.
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Luna model - the underlying space - associated bundle

O(p) - the closed orbit and H = Gp the reductive stabilizer

Write V = TpV = TpO(p)⊕ N where N is a normal slice –
H-invariant complement to the tangent space to the orbit.

H acts on G × N as

h · (g , n) = (gh−1, h.n)

The H-quotient is G ×H N; [(g , n)]H is the H-orbit of (g , n).

p

N

O(p)

G ×H N is the normal bundle of the orbit O(p) = G/H in V ;
It is a twisting of N along G/H and will serve as the model
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Luna model - the G -action on the model G ×H N

p

N

O(p)

G also acts on G × N

g ′ · (g , n) = (g ′g , n)

As this action commutes with the H-action on G × N, we
have G -action on G ×H N:

g ′.[(g , n)]H = [(g ′.g , n)]H

So, an explicit description of G -action on G ×H N.
This is purely synthetic and we only need H-action on N.
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Relating the model to the ambient space V

O(p) - closed, H = Gp reductive and N - a normal H-complement

Commuting actions of H and G on G × N

h · (g , n) = (gh−1, h.n) g ′ · (g , n) = (g ′g , n)

The H-quotient is G ×H N; G acts on G ×H N

The map µ : G × N → V defined as µ(g , n) = g · (p + n) is
G -equivariant and constant on H-orbits

µ(gh−1, h.n) = gh−1(p + h.n) = g .(p + n)

So, µ descends to a G -equivariant map ϕ : G ×H N → V .

ϕ([(g , n)]H) = g .(p + n)

Luna Slice Theorem

The map ϕ sets up an G -isomorphism between an invariant nbd of
G/H in G ×H N and an invariant nbd of O(p).
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Limitations ...
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Luna Slice Theorem:

Applicable to only stable points.

Provides a tubular-neighborhood
of the entire orbit

A description of the G -action in
this nbd can be factored via an
explicit G -action on G ×H N

Objective

To develop a Lune-type factorizable model of a nbd of any p.

Central difficulty: H = Gp may not be reductive and hence a
H-invariant normal slice may not exist.
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Lie algebraic local model

Our result

We develop a Luna-type model which applies to all points.

It is local - we restrict to a nbd of the point and not the entire
orbit, and work with Lie algebra action in this nbd.

We provide an explicit description of the Lie algebra action on
the model.

Application of local model

We apply the local model to the conjugation action to understand
orbits in the vicinity of nilpotent orbits.
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One Matrix under Conjugation
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Conjugation action

G = GLm acts on V - the space of m ×m matrices g .A = gAg−1

Orbits are parametrized by Jordan canonical forms

Invariant ring generated by coefficients of the characteristic
polynomial

det(A− λI )

these coefs are symmetric functions of eigenvalues.

Stable points = affine closed orbits = diagonalizable matrices

Affine Closed Orbits

Parametrized by the numerical data: eigenvalues along with their
multiplicites.
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Orbits in the null-cone and their closures

Null-cone = the nilpotent matrices

The nilpotent matrix Ja is a single Jordan a× a block

J3 =

 0 1 0
0 0 1
0 0 0


Any nilpotent matrix has a Jordan canonical form
Jā = Ja1 ⊕ Ja2 ⊕ . . .⊕ Jas where
ā = (a1 ≥ a2 ≥ . . . ≥ as) is a partition of m

Orbits in the null-cone

Parametrized by the combinatorial data: partitions of m which
record the sizes of the nilpotent blocks
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Affine orbit closures

Gerstenhaber-Hesselink Theorem for orbit-closures in the nullcone

Jā is in the affine orbit closure of Jb̄ iff ā⊴ b̄, that is,

a1 ≤ b1, a1 + a2 ≤ b1 + b2, ....

Nilpotent-orbit-closures are given by dominance order on partitions.

In particular, Null-cone = orbit closure of Jm.
These orbit closures are also projective orbit closures.

A similar result for affine orbit closures of arbitrary matrices;
However the numerical data (that is, eigenvalues with
multiplicities) are preserved in the affine orbit closure.
The orbit of a Jordan canonical form contains in its affine closure
the closed orbit of the diagonal part.
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Projective orbit closures

Consider y =

[
0 1
1 0

]
and the 1-PS λ(t) =

[
t 0
0 t−1

]

λ(t)yλ(t−1) =

[
t 0
0 t−1

] [
0 1
1 0

] [
t−1 0
0 t

]

=

[
0 t2

t−2 0

]
= t−2

[
0 0
1 0

]
+ t2

[
0 1
0 0

]

= t−2

([
0 0
1 0

]
+ t4

[
0 1
0 0

])
= t−2(n + t4n′) ∼ n + t4n′

The projective orbit closure of the stable point y contains the
nilpotent matrix n.
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The projective orbit closure question

x - a nilpotent matrix given by its nilpotent-block partition.

Let y be any matrix described by its Jordan canonical form.

When does [x ] ∈ O([y ])?

Local model at Jm

We consider Jm and apply the local model at Jm.

It shows that only stable orbits in the vicinity of Jm correspond
to diagonalizable matrices with distinct eigenvalues!

In fact, there is a remarkable slice at Jm which parametrizes
all orbits whose minimal polynomials are of degree m.
This slice contains classical companion forms of these orbits.
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Spectrum block-partition

Let y be in Jordan canonical form with s eigenvalues µ1, . . . , µs .
For µi , we define the block-partition λi = (λi1 ≥ λi2 ≥ . . .) which
records the sizes of Jordan blocks of type µi

The spectrum block-partition λ of y is the sum λ = λ1 + . . .+ λs

y =



−1 1 0 0 0 0
0 −1 0 0 0 0
0 0 −1 0 0 0
0 0 0 −1 0 0
0 0 0 0 3 1
0 0 0 0 0 3


The block-partitions are (2, 1, 1), (2) for eigenvalues −1 and 3
The spectrum block-partition of y is (2, 1, 1) + (2) = (4, 1, 1)

If y has m distinct eigenvalues, its spectrum block-partition is (m).
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Projective orbit closure theorem

Main Theorem

Let x be a nilpotent matrix whose nilpotent block-partition is θ.
and y be a matrix whose spectrum block-partition is λ
The projective orbit closure of y contains x iff θ ⊴ λ.

The proof uses the following G -stable projective varieties.

X r
k =

{
z
| ∃ eigenvalues µ1, µ2, . . . , µk of z such that
| rank((z − µ1I ) · · · (z − µk I )) ≤ r

}

If θ ⋬λ, we show there exists r and k such that y ∈ X r
k and

x ̸∈ X r
k

Otherwise, we exhibit a 1-PS such that the projective limit of
y under this 1-PS is a nilpotent matrix with block-partition λ.
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Illustration of the theorem

Consider the following matrices in Jordan canonical forms

y =

 1 0 0
0 1 0
0 0 −1

 y ′ =

 1 1 0
0 1 0
0 0 −1

 x =

 0 1 0
0 0 1
0 0 0


The spectrum block-partition of y is (1, 1) + (1) = (2, 1)

The spectrum block-partition of y ′ is (2) + (1) = (3).

The nilpotent block-partition of x is (3)

We conclude that

y ∈ O(y ′) (classical)

[x ] ̸∈ O([y ] (our theorem)

[x ] ∈ O([y ′] (our theorem)
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Local model -an introduction

Objective

Build a Luna-style model of a neighborhood of an arbitrary point p.
H - stabilizer subgroup of p and H - its stabilizer Lie subalgebra.
H, H may not be reductive
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RECALL Luna slice theorem for a stable point p

O(p) - closed, H = Gp reductive and N - a normal H-complement

Commuting actions of H and G on G × N

h · (g , n) = (gh−1, h.n) g ′ · (g , n) = (g ′g , n)

The H-quotient is G ×H N; G acts on G ×H N

G ×H N is the normal bundle of the orbit O(p) = G/H in V

The map µ : G × N → V defined as µ(g , n) = g · (p + n) is
G -equivariant and constant on H-orbits

µ(gh−1, h.n) = gh−1(p + h.n) = g .(p + n)

So, µ descends to a G -equivariant map ϕ : G ×H N → V .

ϕ([(g , n)]H) = g .(p + n)
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Local model: p is arbitrary

O = O(p) - closed, H = Gp reductive and N - a normal
H-complement We initially work with V instead of N

Commuting actions of H and G on G × V

h · (g , v) = (gh−1, h.v) g ′ · (g , v) = (g ′g , v)

The H-quotient is G ×H V ; G acts on G ×H V

The map µ : G × V → V defined as µ(g , v) = g · (p + v) is
G -equivariant and constant on H-orbits

µ(gh−1, h.v) = gh−1(p + h.v) = g .(p + v)

So, µ descends to a G -equivariant map ϕ : G ×H V → V .

ϕ([(g , v)]H) = g .(p + v)
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The quotient construction for Lie algebra actions

So far, we have G -equivariant ϕ : G ×H V → V .

We consider induced Lie algebra G-actions on G ×H V and V ;
ϕ : G ×H V → V is also G-equivariant.

Lie algebra quotient action

Let Xm and Yn be two manifolds with m ≥ n, and G-actions,
ρ : G → Vec(X ) and η : G → Vec(Y).

Let f : X → Y be regular at x ∈ X , with f (x) = y such that
f is G-equivariant. For x ∈ X , let D(x) = ker(f ∗x ). D is a
distribution of rank (m − n).

Let Mm−n be a submanifold of X , transverse to the kernel
distribution D. Then for any m ∈ M and g ∈ G, define
ρM(g)(m) as πM(ρ(g)(m)), the projection onto the tangent
space TMm. Then ρM is a G-action on M
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The quotient construction ...

Y

f

X

M

Let Mm−n be a submanifold of X , transverse to the kernel
distribution D. Then for any m ∈ M and g ∈ G, define

ρM(g)(m) = πM(ρ(g)(m))

where πM(ρ(g)(m)) is the projection from TXm onto the tangent
space TMm.
Note that TXm = TMm ⊕ kernel(f ∗m)
Then ρM is a G-action on M
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The local model

We want to apply the quotient construction to ϕ : G ×H V → V
We choose a submanifold which is transverse to the kernel of ϕ at
the point [e, 0]H

Key choices

Let M ⊂ G - a submanifold containing e ∈ G and
complementary/transversal to H at e; G = H⊕ TeM
Let N be a vector subspace complement to TpO in V . This slice
N may not be H-invariant.
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The Local Model

Fix choices M and N

µ : M × N → V : µ(m, n) = m · (x + n)

M · x is the orbit, M · (x + n) is merely the same dimension of
M · x and transversal to N.

We simply analyze its derivative at (e, 0)

derivative of µ∗ along M maps to the orbit tangent space.
derivative of µ∗ along N maps to the slice N

This shows that µ is a local diffeomorphism.

x

x+n

N

S.(x+n)

S.(x)=TO(x)
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Embedding the local model inside G ×H V

The map µ : G × V → V given by µ(g , v) = g · (x + v)
factorizes through G ×H V .

µ(gh, h−1v) = gh(x + h−1V ) = g(x + v) since h · x = x

G × V → G ×H V → V

↑ ↗

M × N → M × V

Thus, ϕ : G ×H V → V is G-equivariant and regular at (e, 0).

M × N is transversal to the kernel of this map.

This G-space M × N is the local model.

This shows existence and construction of the local model. We need
explicit G action on M × N. To be described in the main talk.
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Summary

Local model

We develop a Luna-type model which applies to all points.

It is local - we restrict to a nbd of the point and not the entire
orbit, and work with Lie algebra action in this nbd.

We provide an explicit description of the Lie algebra action on
the model. (next talk)

Application of local model

We apply the local model to the conjugation action to understand
projective orbit closures.
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Preview of next talk by Milind Sohoni

The Big Picture

The Local Model

Quotients of lie algebra action on G ×H V .
The local model expressions and its properties.

Forms - Limits and the local stabilizers

The family f (t) = A(t) · f = g + tbfb + . . ., with stabilizers H
and K of g and f .
A basis for K(t) and its properties - K0 and fb.
The special case of λ(t) and the triple-stabilizer conditions.
The co-dimension-1 case.

Advanced topics
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Thank You!
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